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Abstract
Complex polarization ratio (CPR) in materials with birefringence and biattenuance is shown as a
logarithmic spiral in the complex plane. A multi-state Levenberg-Marquardt nonlinear fitting
algorithm using the CPR trajectory collected by polarization sensitive optical coherence tomography
(PS-OCT) was developed to determine polarization properties of an anisotropic scattering medium.
The Levenberg-Marquardt nonlinear fitting algorithm using the CPR trajectory is verified using
simulated PS-OCT data with speckle noise. Birefringence and biattenuance of a birefringent film,
ex-vivo rodent tail tendon and in-vivo primate retinal nerve fiber layer were determined using
measured CPR trajectories and the Levenberg-Marquardt nonlinear fitting algorithm.

1. Introduction
Polarization-sensitive optical coherence tomography (PS-OCT) is a non-invasive imaging
modality that provides depth-resolved polarimetric information with high-resolution in
anisotropic tissues [1,2]. Measurement of depth-resolved polarimetric information by PS-OCT
is widely investigated for diagnosis of various pathological conditions or trauma by observing
the variation of polarimetric properties between normal and abnormal tissues [3–8].

In general PS-OCT, horizontal  and vertical  interference fringe

magnitudes and relative phase  as a function of depth (z) are recorded by controlling
polarization elements in source, sample and reference paths of time- or frequency-domain OCT
instrumentation [9,10]. Diverse analytic techniques have been used to extract polarimetric
information such as depth-resolved phase retardation (δ(z)), birefringence (Δn), amplitude
attenuation (ε(z)) (or diattenuation (d(z))), biattenuance (Δχ), and optic axis orientation (α) from

,  and  [11–27]. In early PS-OCT studies, the phase retardation was
computed from the arc tangent of the ratio of the horizontal and vertical fringe magnitudes

 [1,11]. Although this technique was simple and appropriate
for a coarse two-dimensional image, polarimetric values in a target region (e.g. retinal nerve
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fiber layer in retina) were not accurately computed due to background noise including speckle
[9].

A Mueller matrix formalism was applied to time- and frequency-domain PS-OCT to obtain
the polarimetric properties of biological tissue [12–14]. A two-dimensional depth-resolved 4
× 4 Mueller matrix of the tissue sample was measured by open-air and fiber-based PS-OCT
systems. Birefringence, diattenuation and optic axis orientation were extracted from the
measured Mueller matrix. Although the Mueller matrix can provide the complete polarimetric
transformation of the tissue specimen, each element of the Mueller matrix is not easily
interpreted.

A Jones matrix formalism was applied to analyze polarization state of light backscattered from
tissue and recorded by PS-OCT [15–19]. Light propagation into many components (including
tissue specimen) was described by products of Jones matrices in time-domain fiber-based PS-
OCT. Birefringence, diattenuation and optic axis orientation of the samples were determined
by calculation of the Jones matrices [15]. Similar to Mueller matrix images using PS-OCT,
two-dimensional depth-resolved Jones matrix images were demonstrated and local polarization
properties such as phase retardation, diattenuation, and optic axis orientation were computed
in open-air [16,17] and fiber-based [18,19] Fourier-domain PS-OCT.

Stokes parameters are also utilized to analyze polarimetric properties of biological tissue using
PS-OCT [20–27]. In early studies using Stokes parameters, two-dimensional images of depth-
resolved Stokes parameters were generated and compared to intensity images for identifying
tissue characteristics [20,21]. As the Stokes parameters are represented geometrically as a
three-dimensional vector (Stokes vector), polarization properties of tissue in PS-OCT can be
visually interpreted compared with other polarization analysis techniques such as Jones
vectors. Depth-resolved Stokes vectors on the Poincaré sphere allow visualization of the
polarization state of light backscattered by a tissue specimen. Birefringence and optic axis
orientation were obtained by vector calculation using the depth-resolved Stokes vectors in a
fiber-based PS-OCT instrument [22,23]. Trajectory of the depth-resolved Stokes vectors on
the Poincaré sphere was theoretically and experimentally investigated corresponding to light
propagation in anisotropic tissues. Numerical expressions of the trajectory and associated
differential geometry were derived for materials with arbitrary birefringence, biattenuance and
optic axis orientation [24]. A Levenberg-Marquardt nonlinear fitting algorithm with multi-
incident polarization states of light were applied to analyze the depth-resolved Stokes
parameters of backscattered light from tissue specimens recorded by an open-air PS-OCT
instrument. Tissue birefringence, biattenuance, and optic axis orientation were determined by
estimating Stokes parameters from speckle-noise corrupted PS-OCT data. Multiple incident
polarization states of light were used to suppress noise and increase polarimetric signal to noise
ratio (PSNR) of PS-OCT data [25–27].

Complex valued analytic signals are utilized to solve a variety of problems arising in science
and engineering. Even though real numbers are natural for representing recorded data, complex
numbers provide a useful approach to analyze many engineering problems. In control theory,
systems are transformed from time-domain to frequency-domain, and vice versa using Laplace
or Z-transforms. Characteristics of systems are analyzed by poles and zeros using signals
represented as complex numbers in the complex plane [28]. In other fields such as fluid
dynamics, quantum mechanics, relativity and applied mathematics [29], complex numbers are
routinely employed to represent real phenomena.

We demonstrate a new approach which analyzes the trajectory of the complex polarization
ratio (CPR) in the complex plane of PS-OCT data to determine polarimetric properties of
biological tissues. The technique using CPR combines the advantages of matrix formalisms
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(Jones and Mueller matrices) and Stokes parameters. Similar to Jones and Mueller matrices,
CPR can mathematically express the polarization state of light backscattered from tissue as a
single complex number. Computations relating to the polarization state of light are simplified,
however, because the CPR is a single number. Similar to Stokes vectors on the Poincaré sphere,
CPR may be displayed geometrically to visualize the polarization state of light backscattered
from tissue on a complex plane. Moreover, two-dimensional display of CPR on the flat complex
plane is more convenient than three-dimensional display of Stokes vectors on the Poincaré
sphere.

We utilized a Levenberg-Marquardt nonlinear fitting algorithm to determine the polarization
properties of a tissue specimen from CPR trajectories in the complex plane. The algorithm was
verified using CPR trajectories of simulated PS-OCT data corrupted with polarimetric speckle
noise. In addition, the CPR algorithm was applied to PS-OCT data recorded from a birefringent
film, ex-vivo rodent tail tendon and in-vivo primate retinal nerve fiber layer (RNFL).

2. Background and Theory
2.1 Definition of complex polarization ratio

Ellipsometry is an optical technique for determining polarization properties of a material by
observing the change of polarization state of light reflected from a sample surface. Jones vector
and complex polarization ratio (CPR) are used to describe purely polarized light. However,
Stokes vector and coherence matrix formalisms are the most general representations of the
polarization state of incident light. Both representations describe both polarized and
unpolarized components of light, whereas Jones vector and CPR are used to describe purely
polarized components [30,31].

The CPR (Cyx) is defined by the ratio of Jones vector components (Ex and Ey) according to an
arbitrary polarization bases (x, y) as

(1)

where | Cyx |=| Ey | / | Ex | and  are relative magnitude and relative phase,
respectively [30,31].

2.2 Characteristics of complex polarization ratio
An arbitrary CPR representing a purely polarized state of light can be assigned to a point on
the Cartesian complex plane. All purely polarized states of light can be transformed from the
CPR representation on the Cartesian complex plane (more simply the complex plane). For
example, if linearly horizontal (h) and vertical (v) polarization states of light are used as an
orthonormal basis set, the origin (Cvh = 0) and the point-at-infinity (Cvh = ∞) in the complex
plane are assigned to horizontal (h) and vertical (v) polarization states of light, respectively.
For this basis set, all linear polarization states of light are located on the real axis of the complex
plane with the assignments of linear 45° and –45° polarization states at 1 and –1(Cvh = 1 and
–1) respectively. Two points (Cvh = j and −j) on the imaginary axis represent right and left
circular polarization states of light respectively. All other points excluding the real axis and
the two points on the imaginary axis represent elliptical polarization states (Fig. 1(a)).
Interestingly, if the relative magnitude is constant (| Cvh |=| Ev | / | Eh | = constant), the locus
of points in the complex plane is a circle with a center at the origin. Similarly, if the relative
phase is constant , the locus of the points is a straight line passing
through the origin (Fig. 1(b)) representing lines of latitude and longitude on the Poincaré sphere
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respectively. The complex plane used to represent the CPR may be directly mapped
geometrically to the Poincaré sphere of unit diameter by stereographic projection (Fig. 1(c))
[30,31].

2.3 Change of polarization basis vectors
Although a horizontal and vertical linear polarization basis set (h, v) is commonly used in CPR
polarization analysis, any two fixed elliptic states (a, b) can be selected as a basis set. Position
of CPR in the complex plane depends on the selected basis set, and numerous displays of CPR
on the complex plane are possible. An algebraic expression for transformation of the CPR due
to a change in basis set is easily derived from Jones vector calculus. An arbitrary state of
polarized light expressed by Jones vector (Exy) with the basis set (x, y) can be expressed as a

linear combination  of basis Jones vectors

 corresponding to the basis set (a, b) where fij are complex
numbers representing the basis transformation. If Exy is written as

(2)

the transformation of CPR between basis sets (x, y) and (a, b) is computed by taking the ratios
in both sides of Eq. (2), and gives

(3)

The ratio of two linear functions (Eq. (3)) is a Möbious (or linear fractional) transformation.
Lines and circles in the basis states (x, y) are mapped to lines and circles in the basis set (a,
b) (and vice versa) by the characteristics of the Möbious transformation [30,31].

2.4 CPR trajectory
We consider a birefringent tissue with a polarization state corresponding to an optic axis given
by CPR a and an orthogonal state b. The orthonormal basis pair is represented by (a, b). We
consider this basis set and examine the CPR trajectory corresponding to light propagation in
the birefringent tissue. After forward-scattered light propagates a distance (z) through tissue,
the CPR with an arbitrary polarization basis set (a, b) is given by

(4)

where δ(z) and ε(z) are the depth-resolved phase retardation and amplitude attenuation,
respectively [24]. When the optic axis corresponds to either states a or b, a depth-resolved
trajectory of the CPR in the (a, b) basis complex plane is generated by rotation δ(z) and
attenuation ε(z) (Fig. 2). Considering only δ(z), the trajectory of the CPR uniformly rotates
around the origin and forms a circular arc (Fig. 2(a)). Diattenuation (or biattenuance [27]) leads
to ε(z) exponentially collapsing the trajectory for increasing depths (z). Therefore, trajectory
in the complex plane with both δ(z) and ε(z) becomes a logarithmic spiral converging toward
the origin in the (a, b) basis set (Fig. 2(b)).
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3. Methods
3.1 Generation of simulated PS-OCT data

Multi-state, noise-free PS-OCT data were generated to verify polarization analysis using the
CPR representation. The M incident polarization states were uniformly distributed on a
meridian of the Poincaré sphere. A Jones matrix formalism was used to transform each incident
polarization state due to light propagation through the material [14,15]. The transform gave
noise-free PS-OCT data as a function of depth (z) for the M polarization states. For practical
simulations, speckle-noise corrupted PS-OCT data were also generated by adding random
speckle noise onto noise-free PS-OCT data. Random speckle noise had a uniformly distributed
phase variation between 0 and 2π radians and Gaussian distributed magnitude variation with
zero mean and standard deviation (σ).

3.2 Acquisition of tissue specimen PS-OCT data
An open-air time-domain PS-OCT instrument with a mode-locked Ti:Al2O3 laser source (λ0
= 830 nm, λFWHM = 55 nm) was employed to record PS-OCT data of specimens including
birefringent film, ex-vivo rat tail tendon and in-vivo primate retinal nerve fiber layer (RNFL).
PS-OCT data of specimens in the M polarization states were acquired by controlling the
polarization state of light incident on tissue specimens using a liquid-crystal variable retarder
positioned in the sample arm of the interferometer. Details of the PS-OCT system were
described previously [9].

3.3 Basis transformation

PS-OCT data (horizontal  and vertical  interference fringe magnitudes and

relative phase ) were converted to CPRs (Cvh (z)) as a function of depth (z) using
Eq. (1). Generally, when the Cvh (z) is displayed in the (h, v) based complex plane, the trajectory
of Cvh (z) is not uniformly rotated around the origin nor exponentially converging toward the
origin because the real basis set ((x, y)) of CPRs in the specimen is not matched with the basis
set ((h, v)) for displaying the CPRs. The mismatch of basis sets also complicates determination
of δ(z) and ε(z) in a specimen using a Levenberg-Marquardt nonlinear fitting algorithm. A
trajectory of the normalized Stokes vectors on the Poincaré sphere gives us geometrical
knowledge about the determination of the basis set in a specimen. Trajectory of Stokes vectors
with respect to δ(z) and ε(z) of the specimen is a spiral which rotates around and converges
toward a point that represents the optic axis of the specimen [24,26]. Therefore, CPR of the
optic axis and its orthogonal polarization state are used as a transformed basis set for the
specimen. Since the optic axis in the (h, v) basis set is expressed as a complex number
(Cvh _ oa = r exp(jθ)), the CPR representing optic axis in the (x, y) basis set is zero (Cyx _ oa =
0).

A basis transformation between (h, v) and (x, y) is given by Eq. (3). If the (x, y) basis set from
the optic axis of specimen are determined, Cvh (z) can be transformed to the CPR (Cvh (z)) in
an arbitrary basis set (x, y) by estimating the unknown complex variables of Eq. (3) (f11, f22,
f12 and f21). Equation (3) was simplified by dividing f12 to both numerator and denominator
(Cyx = (α Cvh + β) / (Cvh + γ)) to reduce number of variables (α = f22 / f12, β = f21 / f12 and γ =
f11 / f12). Three CPRs (Cvh = 0, 1, and j) in the (h, v) basis set were selected to obtain transformed
CPRs (Cyx = K1, K2 and K3) in the (x, y) basis. Because Stokes vectors of the Cvh = 0, 1, and
j in (h, v) basis set were described as three orthogonal points (Q = 1, U = 1, and V = 1) on the
Poincaré sphere, Stokes vectors of Cyx = K1, K2 and K3 were determined by Euler rotations
between Stokes vectors representing Q = 1 (related to (h, v) basis set) and optic axis (related
to (x, y) basis set) of the specimen [24]. The Cyx = K1, K2 and K3 in (x, y) basis set were computed
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from the Stokes vectors of Cyx. Finally the α, β and γ were obtained by solving three equations
corresponding to three pairs ((0, K1), (1, K2), (j, K3)) of CPRs in both basis sets.

3.4 Levenberg-Marquardt nonlinear fitting algorithm
A Levenberg-Marquardt nonlinear fitting algorithm with single incident polarization state was
developed for determining an unbiased estimate of double-pass phase retardation (2δ), double-
pass amplitude attenuation (2ε), CPR of optic axis (Cvh _ oa), noise-free CPRs at the surface of
specimen in (h, v) basis set (Cvh (0)) by minimizing a residual function (Ro). The residual
function specifies goodness of fit between depth-resolved CPR (Cvh (z)) in (h, v) basis set
measured by PS-OCT and noise-free CPR (Cyz (z)) in an arbitrary basis set (x, y).

(5)

where Tyx[Cvh] represents basis transformation of Cvh from (h, v) to (x, y) basis sets. Multiple
incident polarization states of light were applied as input to the Levenberg-Marquardt nonlinear
fitting algorithm for suppressing noise and increasing polarimetric signal to noise ratio (PSNR)
in PS-OCT data [9].

A multi-state residual function (RM) was computed as an algebraic sum of single-state residual
function (Ro) over the M incident polarization states.

(6)

More accurate 2δ, 2ε, Cvh _ oa , and noise-free CPRs at the surface of the specimen in (h, v)
basis set (Cvh(m) (0)) at the M states were determined by minimizing a multi-state residual
function (RM) [9].

4. Results
4.1 Mapping of trajectory by basis transformation

Trajectory of CPRs using single-state simulated noise-free PS-OCT data (Cvh (z)) is displayed
in (h, v) basis complex plane (Fig. 3(a)). Similar to Fig. 2(a), the trajectory is generated by
double-pass phase retardation (2δ(z) = 360°), but a CPR representing an optic axis (Cvh _ oa =
0.3exp(j45°)) is assumed. Although double-pass amplitude attenuation (2ε(z)) is usually
considered in biological tissues, only δ(z) is considered to observe skewing of Cvh (z). The
Cvh _ oa in the (h, v) basis complex plane is not the origin of the trajectory of Cvh (z), which
indicates the Cvh (z) cannot rotate around and converge to the Cvh _ oa. Therefore, accurate
estimates of δ(z) and ε(z) are not determined using an incorrect basis set. By the basis
transformation procedure mentioned in Methods section, complex number variables are
computed. The trajectory of Cvh (z) is transformed to a trajectory of CPRs (Cyx (z)) in (x, y)
basis complex plane (Fig. 3(b)). A CPR representing optic axis (Cyx _ oa) in (x, y) basis complex
is zero and the origin of trajectory of Cyx (z). The δ(z) and ε(z) can be determined by uniform
rotation around the origin and exponential convergence toward the origin of Cyx (z) in the (x,
y) basis set.

Multi-state trajectories of simulated noise-free PS-OCT data (Cvh(M =6) (z)) with six incident
polarization states (M = 6) are plotted in (h, v) basis complex plane (Fig. 4(a)). Each trajectory
is generated with 2δ(z) = 60°, 2ε(z) = 6.0° and optic axis (Cvh _ oa = 0.3exp(j45°)). Even though
Cvh _ oa is a common optic axis in all trajectories, identical δ(z) and ε(z) in each state are not
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observed in (h, v) basis complex plane. Multi-state trajectories of PS-OCT data (Cyx(M =6) (z))
in the (x, y) basis complex plane are transformed from Cyx(M =6) (z) using basis transformation
method. Identical δ(z) and ε(z) are observed corresponding to the optic axis (Cyx _ oa = 0) (Fig.
4(b)).

4.2 Determination of polarization properties using simulated CPR
Multi-state trajectories (M = 6) of speckle-noise corrupted CPRs (Cvh(M =6) (z)) in (h, v) basis
complex plane are applied to verify the ability of a multi-state Levenberg-Marquardt nonlinear
algorithm to determine δ and ε. Polarization values (2δ(z) = 60°, 2ε(z) = 6.0° and Cvh _ oa =
0.3exp(j45°)) similar to those used in Fig. 4(a) are used to generate noise-free CPRs
(Cvh(M =6) (z)). Speckle noise with standard deviation (σ = 3°) is added into each noise-free
CPRs. Figure 5 shows the performance of the multi-state Levenberg-Marquardt nonlinear
algorithm. The Cvh(M =6) (z) and fitted CPRs (Cvh(M =6) _ fit (z), black trajectories) are depicted.
A fitted CPR (Cvh _ oa _ fit = 0.29exp(j45.4°), black dot) of optic axis, each CPR at the surface
of specimen (Cvh(M =6) _ fit (0)) in the (h, v) basis complex plane, double-pass retardation
(2δ_fit(z) = 60.3°), and double-pass attenuation (2ε_fit(z) = 6.02°) are computed by minimizing
the multi-state residual function (RM) including estimation of basis transformation.

4.3 Determination of polarization properties using birefringent film
Phase retardation (δfilm(z)) of a turbid birefringent film (New Focus, #5842) are determined by
the multi-state (M = 6) Levenberg-Marquardt nonlinear fitting algorithm using the CPRs. The
thickness was 80μm (z = 80μm), and uniform retardation was observed without respect to
position of the film. The mean and standard deviation of 36 uncorrelated measurements within
a small square region (50 μm × 50 μm) are δfilm(z = 80μm) = 24.76° ± 0.62°. The mean
birefringence (Δnfilm) was 7.14 × 10−4 or 30.95°/100μm. Birefringence measured using the
CPRs is similar to that using Stokes vectors [9].

4.4 Determination of polarization properties using ex-vivo rodent tail tendon
Ex-vivo rodent tail tendon is an excellent specimen to study both phase retardation
(δtendon(z)) (or birefringence (Δntendon)) and relative amplitude attenuation (εtendon(z)) (or
biattenuance (Δχtendon)) due to relatively large magnitude of these polarization properties. A
trajectory of speckle noise-corrupted and fitted CPRs of the ex-vivo rodent tail tendon
(thickness z = 165.0μm) are plotted in the (h, v) complex plane (Fig. (6)). A logarithmic spiral
is visualized from the trajectory of CPRs. Unlike the trajectory converging to the optic axis in
(x, y) basis complex plane (Fig. 2(b)), the trajectory diverges to infinity because the optic axis
of the tendon specimen is closer to linear vertical polarization state (v basis state) than to the
horizontal polarization state (h basis state). Convergence toward the optic axis in the trajectory
can be observed when the CPRs of tendon specimen are displayed in (x, y) complex plane based
on the optic axis rather than the (h, v) complex plane. Although only one trajectory related to
one incident polarization state is displayed in Fig. 6 for clear graphical observation of the CPRs,
six trajectories by six incident polarization states were applied to the Levenberg-Marquardt
nonlinear fitting algorithm to determine accurate estimates of δtendon(z) and εtendon(z). Phase
retardation and amplitude attenuation of ex-vivo rodent tail tendon were determined as
δtendon(z = 165μm) = 382.35° and εtendon(z = 165μm) = 41.02°, respectively. Birefringence
and biattenuance of the tendon specimen are also computed as Δntendon = 53.4 × 10−4 (or
231.72°/100μm) and Δχtendon = 5.72 × 10−4 (or 24.86°/100μm). These values are within the
range of previously determined values using algorithms employing Stokes vectors on the
Poincaré sphere [27].

Park et al. Page 7

Opt Express. Author manuscript; available in PMC 2010 August 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.5 Determination of polarization properties using in-vivo primate RNFL
In-vivo primate RNFL was imaged to obtain the phase retardation (δRNFL(z)) in a thick region
(1mm inferior to the center of the optic nerve head, thickness z = 150.0μm) and a thin region
(1mm nasal to the center of the optic nerve head, thickness z = 53.5μm). Speckle noise-
corrupted CPRs of the primate RNFL in the two regions were determined and displayed in the
(h, v) complex plane (Fig. 7 (a-b)). The Levenberg-Marquardt nonlinear fitting algorithm with
six incident polarization states was used to estimate the phase retardation, optic axis, and initial
CPRs in each state by minimizing the multi-state residual function. Fitted trajectories (black
trajectories) were obtained from estimated parameters, and overlapped on the noisy trajectories
(color trajectories). The CPR of the optic axis (black dot) is almost coincident with the linear
horizontal state (h basis). Phase retardations in the inferior and nasal regions were determined
as δRNFL(z = 150.0μm) = 28.2° and δRNFL(z = 53.5μm) = 2.78°, respectively. Birefringence in
the inferior (ΔnRNFL = 4.33 × 10−4 or 18.8°/100μm) and nasal region (ΔnRNFL = 1.20 × 10−4

or 5.20°/100μm) were easily determined from the fitted phase retardation values. These values
closely match those determined using Stokes vectors on the Poincaré sphere [9,25].

5. Discussion
We have demonstrated the use of CPR to analyze polarized light backscattered from a medium
and measured with PS-OCT instrumentation. CPR provides a mathematically simple
framework to easily visualize polarization states in the complex plane. Application of CPR to
determine the polarimetric properties of a tissue specimen using a Levenberg-Marquardt
nonlinear fitting algorithm was evaluated. Three main considerations such as complexity of
the Levenberg-Marquardt nonlinear fitting algorithm, processing-time efficiency and accuracy
of fitted polarization properties are investigated in greater detail by comparing Levenberg-
Marquardt nonlinear fitting algorithms using CPR to Stokes vectors.

5.1 Complexity of nonlinear fitting algorithms using CPR and Stokes vectors

Stokes vectors represented by three real numbers are computed from horizontal  and

vertical  interference fringe magnitudes and relative phase  as a function
of depth (z). This calculation requires eight real multiplications and two real additions. In
contrast, CPR represented by a complex number requires only three multiplications for the
same computation. When M multiple polarization states with N depth samples in each state are
considered to determine polarization properties of a specimen, 8 × M × N real multiplications
and 2 × M × N real additions for the Stokes vectors, and 3 × M × N real multiplications for
CPR are required. Therefore, CPR is a more efficient representation than Stokes vectors for
the conversion from the recorded PS-OCT data (  and ). In the multi-
state Levenberg-Marquardt nonlinear fitting algorithms using polarization data, a trajectory of
noise-free polarization data is generated using model parameters to minimize a residual
function. Complexity of the residual function is highly correlated to generation of a noise-free
trajectory. As the Stokes vectors are applied to the nonlinear fitting algorithms, the trajectory
is three-dimensional and requires use of intricate geometrical expressions on the Poincaré
sphere with approximately 22 × M × N real multiplications and 10 × M × N real additions
[24]. Although the conversion of polarization basis set with about 16 × M × N real (or 4 × M
× N complex) multiplications and 8 × M × N real (or 4 × M × N complex) additions slightly
complicates generation of CPR trajectories, total number of operations with 20 × M × N real
(or 5 × M × N complex) multiplications and 8 × M × N real (or 4 × M × N complex) additions
are required. For example, as six polarization states (M = 6) and 1000 depth samples (N = 1000)
are used, a reduction of 24,000 computational operations are realized using CPRs that can
provide to a substantial reduction in processing time as discussed in the next section.
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5.2 Processing time of two nonlinear fitting algorithms using CPR and Stokes vector
Processing times of the Levenberg-Marquardt nonlinear fitting algorithms were evaluated
using simulated CPRs and Stokes vectors. 100 independent estimates using equivalent
polarization conditions are measured and averaged. The nonlinear fitting algorithms used a
Microsoft Windows XP operating system and hence measured processing times included
Windows OS calls. Assuming that the Windows operation time is identical for both algorithms,
relative efficiency can be investigated by computing the relative processing times between two
algorithms. Figure 8(a) shows the relative processing time which is computed using the
measured processing time divided by a maximum processing time in both algorithms. Phase
retardation (δ(z) = 10°, 30°, 50°, 70° and 90°) and high speckle noise with standard deviation
(σ = 5°) were applied to generate the speckle noise-corrupted CPRs and Stokes vectors. For
the Stokes vector calculation, as the retardation increases a monotonic reduction of the relative
processing time is observed. However, for CPR as the retardation increases a more rapid
reduction of the relative processing time is observed. Difference of the relative processing time
apparently increases, and an over 20% time difference is observed when the retardation is 90°
(Fig. 8(b)). Therefore, the nonlinear algorithm using CPRs is faster by approximately 25% than
the algorithm using Stokes vectors. Processing times with respect to different speckle noise
(σ = 1°, 2°, 3°, 4° and 5°) at a phase retardation (δ(z) = 30°) are also studied and displayed in
Fig. 8(c). The processing time in the Stokes vectors is less affected than that in CPRs by
magnitude of speckle noise, and a 10% time difference is observed when the speckle nose is
5° (Fig. 8(d)). As speckle noise is reduced, difference between processing times increases. In
other words, determination of polarimetric properties is increasingly faster as the speckle noise
is reduced in the nonlinear fitting algorithm using CPRs compared to Stokes vectors.

5.3 Accuracy of fitted phase retardation in nonlinear fitting algorithms using CPR and Stokes
vector

Accuracy of Levenberg-Marquardt nonlinear algorithms using CPRs and Stokes vectors was
compared by a statistical analysis using simulated PS-OCT data. In order to know distribution
characteristics of the unknown variables, we computed confidence intervals in both nonlinear
algorithms. Based on the estimated polarization properties determined by the Levenberg-
Marquardt nonlinear fitting algorithm, we calculated the estimate (s2) of the variance of the
residual function with n - p degrees of freedom and n × p Jacobian matrix (J). The n refers to
number of CPRs or Stokes vectors, and the p to number of variables. A p × p product matrix
(P) given by the inverse of JT × J was used to acquire confidence interval of each estimated
polarization property. The confidence interval (CI) was determined by [32].

(7)

where t is a value of the t-distribution, and Pii is the ith diagonal element of the matrix (P).

The confidence intervals of two algorithms were tested by varying depth-resolved phase
retardation and speckle noise using simulated PS-OCT data. 100 independent estimate sets
were obtained and averaged under the same condition. Figure 9(a) shows 95% confidence
intervals computed by changing phase retardation (δ(z) = 10°, 30°, 50°, 70° and 90°) at a fixed
optic axis (cvh _ oa = 0.3exp(j45°)) and relatively large speckle noise with standard deviation
(σ = 5°). Confidence intervals increase when phase retardation increases in both algorithms.
The confidence interval in CPR is slightly larger than that for Stokes vectors, which suggests
that the algorithm using Stokes vector is statistically more accurate than that using CPRs. But
the difference in accuracy between the two algorithms may be negligible because the
confidence intervals represented by green error bars are too small compared to estimated phase
retardation in both algorithms (Fig. 9(b)). Similarly, 95% confidence intervals were observed
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by changing magnitude of speckle noise (σ = 1°, 2°, 3°, 4° and 5°) at a fixed phase retardation
(δ(z) = 30°) (Fig. 9(c)). The confidence intervals linearly increase with increased speckle noise,
and difference between the confidence intervals of the two algorithms increases as the speckle
noise increases. Although the algorithm using Stokes vectors is slightly more accurate than
that using CPRs, the confidence intervals are substantially smaller than the fitted phase
retardation (Fig. 9(d)).

6. Conclusion
CPR is a mathematical expression to represent polarization state of light as a single complex
number. Complex number computation of CPRs and two-dimensional visualization in a
complex plane are competitive advantages compared to methods to analyze PS-OCT data using
Jones, Mueller matrices and Stokes vectors. A Levenberg-Marquardt nonlinear fitting
algorithm using CPR was developed to determine polarization properties including phase
retardation (or birefringence), relative amplitude attenuation (or biattenuance) and optic axis
orientation of anisotropic tissues from PS-OCT data. After the algorithm was tested by
simulated PS-OCT data, polarization properties of several anisotropic specimens including
birefringent film, ex-vivo rat tail tendon and in-vivo primate RNFL are determined. The
Levenberg-Marquardt nonlinear fitting algorithm using CPR has less complexity, faster
processing time than that using Stokes vectors [9,25]. Although uncertainty of estimated
polarization properties are slightly greater when using CPR, the benefits provides by easy
visualization, reduced complexity and fast processing time are important practical advantages
using CPR.
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Fig. 1.
(a) Assignment of polarization states in the (h, v) basis Cartesian complex plane (L = 0°:
Linearly horizontal, L = 45°: Linearly 45°, L = –45°: Linearly –45°, R.C.: right circular, L.C.:
left circular polarization states) (b) Loci of polarization states of constant relative magnitude
(| Cvh |=| Ev | / | Eh |) and phase . (c) Relationship between (h, v) basis complex
plane and Poincaré sphere. The Poincaré sphere of unit diameter is transformed to the complex
plane by stereographic projection.
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Fig. 2.
CPR trajectories in the complex plane. (a) Trajectory with only phase retardation (δ(z) = 360°)
uniformly rotates around the origin (black dot) (b) Trajectory with phase retardation (δ(z) =
360°) and amplitude attenuation (ε(z) = 36°) is a logarithmic spiral converging toward the
origin. (Red and blue dots represent the first and last CPRs, respectively).
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Fig. 3.
Trajectories of CPRs in the (h, v) and (x, y) basis complex planes. (a) Trajectory with double-
pass phase retardation (2δ(z) = 360°) and an optic axis (cvh _ oa = 0.3exp(j45°), black dot) in
the (h, v) basis complex plane (b) Trajectory in the (x, y) basis complex plane. The optic axis
(cyx _ oa) in (x, y) basis complex plane is zero and at the origin of trajectory (Red and blue dots
represent the first and last CPRs, respectively).
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Fig. 4.
Multi-state trajectories of CPRs in the (h, v) and (x, y) basis complex planes (a) Trajectories
with 2δ(z) = 60°, 2ε(z) = 6.0° and an optic axis (cvh _ oa = 0.3exp(j45°), black dot) in the (h,
v) basis complex plane (b) Trajectories in the (x, y) basis complex plane. Identical δ(z) and ε
(z) are visually observed (Red and blue dots represent the first and last CPRs, respectively).
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Fig. 5.
CPRs of simulated PS-OCT data in the (h, v) basis complex plane. The CPR of optic axis (black
dot) and noise-free polarization arcs (black trajectories) were estimated from speckle-noise
CPRs (colored trajectories)(Red dot behind the black dot represents true CPR of optic axis).
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Fig. 6.
Trajectory of CPRs by ex-vivo rodent tail tendon specimen in the (h, v) basis complex plane.
The CPR of optic axis (black dot) and noise-free polarization arcs (black trajectory) are
estimated from speckle-noise CPRs (red trajectory) (Red and blue dots represents the first and
last CPRs, respectively).
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Fig. 7.
Multi-states trajectories of CPRs by in-vivo primate RNFL in the (h, v) basis complex planes
(a) Speckle noise-corrupted and fitted (black) trajectories in an inferior region (thickness z =
150.0μm). Phase retardation is δRNFL(z = 150.0μm) = 28.2° (b) Speckle noise-corrupted and
fitted (black) trajectories in a nasal region (thickness z = 53.5μm). Phase retardation is
δRNFL(z = 53.5μm) = 2.78° (Black dots represents the CPR of optic axis).
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Fig. 8.
Relative processing times between the two nonlinear fitting algorithms using CPRs and Stokes
vectors. The relative processing times were measured by 100 independent estimate sets using
simulated PS-OCT data (a) Relative processing times with different phase retardation (δ(z) =
10°, 30°, 50°, 70° and 90°) at a high speckle noise with standard deviation (σ = 5°) (b)
Difference of relative processing times computed from (a) (c) Relative processing times with
speckle noise (σ = 1°, 2°, 3°, 4° and 5°) at a fixed phase retardation (δ(z) = 30°) (d) Difference
of relative processing times computed from (c).
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Fig. 9.
Estimated retardation and 95% confidence intervals by simulated PS-OCT data in two
Levenberg-Marquardt nonlinear fitting algorithms using CPRs and Stokes vectors (a)
Confidence intervals with different phase retardation (δ(z) = 10°, 30°, 50°, 70° and 90°) at a
fixed optic axis and high speckle noise with standard deviation (σ = 5°) (b) Estimated
retardation and 95% confidence intervals (green error bar) from (a) (c) Confidence intervals
with speckle noise (σ = 1°, 2°, 3°, 4° and 5°) at a true phase retardation (δ(z) = 30°) (d) Estimated
retardation and 95% confidence intervals (green error bar) from (c).
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