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Abstract
Correct identification of peptides and proteins in complex biological samples from proteomic
mass-spectra is a challenging problem in bioinformatics. The sensitivity and specificity of
identification algorithms depend on underlying scoring methods, some being more sensitive, and
others more specific. For high-throughput, automated peptide identification, control over the
algorithms’ performance in terms of trade-off between sensitivity and specificity is desirable.
Combinations of algorithms, called ‘consensus methods’, have been shown to provide more
accurate results than individual algorithms. However, due to the proliferation of algorithms and
their varied internal settings, a systematic understanding of relative performance of individual and
consensus methods are lacking. We performed an in-depth analysis of various approaches to
consensus scoring using known protein mixtures, and evaluated the performance of 2310 settings
generated from consensus of three different search algorithms: Mascot, Sequest, and X!Tandem.
Our findings indicate that the union of Mascot, Sequest, and X!Tandem performed well
(considering overall accuracy), and methods using 80–99.9% protein probability and/or minimum
2 peptides and/or 0–50% minimum peptide probability for protein identification performed better
(on average) among all consensus methods tested in terms of overall accuracy. The results also
suggest method selection strategies to provide direct control over sensitivity and specificity.
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Introduction
Routine studies in mass spectrometry-based proteomics rely on search algorithms to match
tandem mass spectra (MS/MS) against a selected database for peptide identification. In
general, the raw spectra file generated by a mass spectrometer is submitted to a search
algorithm of choice, which generates an experimental peak list. The experimental peaks
(precursor masses and their fragmentation patterns) are then searched by the algorithm
against the amino acid sequences of a protein database with constrained search space
parameters such as enzyme specificity, numbers of missed cleavages, amino acid
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modifications and mass tolerance. The details of the MS/MS search criteria greatly differ
among the algorithms; additionally, the methods each algorithm uses to assign peptide and
fragment ion scores vary in their logic and implementation details. The database search
algorithms, therefore, play crucial roles to identify correctly peptides and corresponding
proteins (Sadygov et al., 2004). Sequest (Eng et al., 1994) and Mascot (Perkins et al., 1999)
are two of the most widely used search algorithms. Sequest peptide scores are based on the
similarity between the peptides in experimental and theoretical lists, whereas Mascot uses a
probability based Mowse scoring model, where the peptides are scored based on the
probability that the match occurred at random. X!Tandem, another search algorithm, creates
a model database containing only the identified proteins and performs an extensive search
for modified/non-enzymatic peptides only on the identified proteins to improve confidence
of identification (Craig et al., 2004). An increasing number of commercial and open source
search algorithms are available (Balgley et al., 2007), with unique strengths and weaknesses,
and are listed at www.ProteomeCommons.org. Each creates a top ranking protein list based
on their scoring method, which cannot necessarily be deemed correct without further
validation (Johnson et al. 2005).

To obtain greater mass spectral coverage for improved peptide and protein identification,
recent studies have focused on consensus approaches, i.e. merging the search results
generated by two or more algorithms (MacCoss et al., 2002; Moore et al., 2003; Chamrad et
al., Resing et al., 2004; Boutilier et al.; Kapp et al.; Rudnick et al.2005; Rohrbough et al.,
2006; Searle et al., Alves et al., 2008). Most of these evaluation studies focused only on the
performance of individual algorithms, while few evaluated consensus approaches. Alves et
al., for example, studied seven database search methods using a composite score approach,
based on a calibrated expected-value. They reported that a weak correlation may be present
among different methods and that the combination does improve retrieval accuracy.

The thorough evaluation of consensus method space is critical for a number of reasons. The
first, and most important reason, is that consensus method space is combinatoric. The
question of which individual method (e.g., Mascot, Sequest, X!Tandem) should contribute
to the consensus result is compounded by the question of how to logically create the
consensus (e.g., union vs. intersection vs. other logical statements). Moreover, just as the
peptide list generated from each individual method varies according to the search engine’s
parameter settings, the output of any given consensus approach will be sensitive to filter or
probability settings.

To simplify our search of method space, we refer to a set of peptides derived via a given
consensus approach as a ‘consensus set’. We refer to each specific combination of method,
consensus logic, and consensus filter settings as a ‘consensus method’ (CM). For a given
spectrometry profile, each CM will lead to one consensus set. To disambiguate, we refer to a
specific implementation of an algorithm with specific search engine settings as a ‘method’.
Individual methods (e.g., Mascot, Sequest), logically, are a type of CM with a set that
contains one member. With a growing number of search algorithms, each having numerous
search parameter settings, the resulting method space is enormous. Evaluating of the
performance of each CM should lead us to improved understanding of the effects our
assumptions have on individual search engines, and creating CMs, thus leading to improved
peptide identification.

Materials and Methods
Datasets

Two datasets were used in this study. The first dataset was generated from a 10- protein
mixture (Searle et al., 2004). In the original study, the sample was reduced with
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dithiothreitol (DTT), alkylated with iodoacetamide (IAc) and digested with trypsin
(Promega) before 22 2-pmol injections. The ESI-MS and MS/MS spectra were acquired
with a Micromass Q-TOF-2 with an online capillary LC (Waters, Milford, MA). The second
dataset was generated at Thermo Scientific for the University of Pittsburgh’s Genomics and
Proteomics Core Laboratories (GPCL) from a 50-human protein mixture (Sigma-Aldrich,
St. Louis, MO) digest. The sample was reduced with tris-2-carboxyethylphosphine (TCEP),
alkylated with methylmethanethiosulfonate (MMTS) and digested with trypsin (Promega) at
GPCL. The ESI-MS and information dependent (IDA) MS/MS spectra were acquired at
Thermo (by Research Scientist Tim Keefe) with an LTQ-XL coupled with a nano-LC
system (Thermo Scientific, Waltham, MA). The IDA was set so that MS/MS was done on
the top three intense peaks per cycle.

Database Search
Both datasets were searched using three search algorithms: Mascot (M), Sequest (S) and X!
Tandem (X).

Sequest is a registered trademark of the University of Washington and is embedded into
“Bioworks” software distributed by Thermo Scientific Inc. Sequest selects the top 500
candidate peptides based on the rank of preliminary score (Sp), computed by taking into
consideration the spectral intensities of the matched fragment ions, continuity of an ion
series, and peptide length. The top ranking peptides are then subjected to cross-correlation
(Xcorr) analysis, which estimates the similarity between experimental and theoretical
spectra (Sadygov et al., 2004; Jiang et al., 2007).

Mascot is a registered trademark of the Matrix Sciences Ltd. It is an open source tool for
small datasets and the license is sold at a fee for automatic searching of large datasets.
Mascot uses the probability-based Mowse scoring algorithm where the total score calculated
for a peptide match is the probability (P) that the observed match is a random event. The
final score is reported as -10*LOG10(P), thus a probability of 10−20 becomes a score of 200
implying a good peptide match (Kapp et al., 2005).

X!Tandem is freeware distributed by Global Proteome Machine Organization and is also
embedded into the Scaffold software, described later. X!Tandem identifies proteins from the
peptide sequences, creates a model database containing only the identified proteins, and
performs an extensive search for modified/non-enzymatic peptides only on identified
proteins. X!Tandem generates a hyperscore for each comparison between experimental
spectra and model spectra, and calculates an expectation-value, giving an estimate of
whether or not the observed match is a random event (www.proteomesoftware.com).

The database search results for the 10-protein dataset were provided by Proteome Software,
Inc. A control protein database (control_sprot database, unknown version, 127876 entries)
was used for searching the 10-protein dataset. The search parameters for the 10-protein
dataset were precursor ion tolerance: 1.2 Dalton (Da), fragment ion tolerance: 0.50 Da, fixed
modifications: carbamidomethyl on cysteine, and variable modification: oxidation on
methionine. IPI Human v3.48 was used for searching the 50-protein dataset. The search
parameters for the 50-protein dataset were precursor ion tolerance: 2 Da, fragment ion
tolerance: 1 Da, fixed modifications: MMTC on cysteine, and variable modification:
oxidation on methionine. The searches on the 50-protein dataset were performed at the
GPCL Bioinformatics Analysis Core (BAC) University of Pittsburgh.

Data Merging
We used the software package Scaffold v2.0.1, licensed by Proteome software Inc., to merge
search results from Mascot, Sequest and X!Tandem. The scheme that Scaffold uses to merge
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the probability estimates from Sequest or Mascot with X!Tandem is based upon applying
Bayesian statistics to combine the probability of identifying a spectrum with the probability
of agreement among search methods. The probability of agreement between search methods
is calculated using Peptide and Protein Prophet (Keller et al., 2002; Nesvizhskii et al., 2003).

The search results for the 10-protein and 50-protein datasets were imported into Scaffold,
and merged lists of peptides named MSX-10 and MSX-50 were generated for 10-protein and
50-protein datasets, respectively. MSX stands in these cases for the merged results from
Mascot, Sequest, and X!Tandem. Please see Table 1 for a list of programs used in this study.

CMs
Scaffold was used for the generation of CMs: peptides identified under variable Scaffold
confidence filter settings, starting from the MSX-10 and MSX-50 peptide lists. Scaffold
peptide lists can be generated based on three different settings, which limit the proteins
displayed to those that meet all three of the following threshold values set. The three filters
in Scaffold (www.proteomesoftware.com) explored were:

Minimum Protein: filters the results by Scaffold’s probability that the protein
identification is correct. Identifications with lower probability scores are not shown. A
dropdown menu offers several choices between 20–99.9%;

Minimum # Peptides: filters the results by the number of unique peptides on which the
protein identification is based. Proteins identified with fewer unique peptides are not
shown. A dropdown menu offers choices of 1–5;

Minimum Peptide Probability: filters the results by requiring a minimum identification
probability of a peptide from at least one spectrum. A dropdown menu offers several
values between 0–95%.

The CMs were manually exported from MSX-10 and MSX-50 peptide lists by keeping any
two of the above three filter settings constant and varying the third one. A total of 210 files
were generated this way; 11 files (MO, SO, XO, MSI, MXI, SXI, MSXI, MSU, MXU, SXU
and MSXU) were generated from each of the 210 files, giving rise to a total of 2310 CMs
possible with the Scaffold software filter setting combinations. MO, for example, stands for
Mascot only method; MSI stands for the intersection between Mascot and Sequest; and
MSXU stands for the union of Mascot Sequest and X!tandem. The list of peptides derived
from each CM is defined as the consensus set.

Calculation of Sensitivity and Approximation of Specificity
A program written in Python (RJ and TS) was used to calculate the sensitivity (SN), and a
measure we introduce and call “apparent specificity” (SP*) was used for each of the
consensus sets. The program inputs are a text file containing the list of expected peptides,
text files containing the list of peptides in each of the consensus sets (total 2310 peptide
lists), and the total number of peptides that were not expected to be found (total number of
false positives). The list of expected peptides was generated from the least stringent MSX
peptide list by discarding the false positives (FP) and duplicates. The total number of FP was
computed from the least stringent MSX peptide list by discarding the true positives and
duplicate peptide sequences.

The program counts the true positives (TP) and false positives, and calculates the false
negatives (FN), the SN and SP* for each CM. Because TPs and FNs are known for the two
datasets, sensitivity was calculated directly as:
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(1)

Because true negatives (TN) can not be known directly for studies such as ours, the false
positive rate must be estimated. For ease of implementation, we used an indirect
approximation of specificity, SP*. Given FPCM as the false positive rate of a given
consensus method, and FPTotal as the universe of detected false positive by any method, we
can define apparent specificity as calculated as follows:

(2)

The precise value of SP* will depend on the methods examined in a study, and it should be
considered a relative value and only an approximate measure of the specificity. Values of
apparent specificity can only be derived within the context of comparison of methods; it
should be not assumed they are empirical estimates of specificity (SP), and because they are
plastic to which methods are included in a consensus study, should be not compared directly
across studies. Nevertheless, they allow a relative comparison of methods within a study.

Results
The performance of methods and CMs are summarized using “Receiver Operating
Characteristics (ROC) Methods Plots”. These are identical to the previously described “data
set ROC plots” (Lyons-Weiler, 2005), in this context applied to summarize the performance
of various methods. These plots show a single optimally selected point on a ROC curve for
each method, making comparative method space exploration tractable. ROC method plots
are a good measure of sensitivity and the apparent specificity of an algorithm/ method at a
particular cut-off. The cut-off we chose reflects a balance of errors of the first and second
kind, mimicking the approach that focuses on maximum accuracy under the assumption of
equal error type costs. ROC method plots were generated for both 10-protein and 50-protein
datasets each containing 2310 CMs.

All Consensus Methods
An ROC method plot is a plot of the paired values of SN and SP for any particular method
of detection. Our findings (Figure 1) indicate that the union of Mascot, Sequest and X!
Tandem (MSXU) for both datasets produced as accurately as possible (optimal) results in
terms of SN and SP*, closely followed by SXU and MXU. Individual CMs were less
accurate (worse under the optimization function of maximum accuracy) than the unions, but
more accurate (better) than the intersections. A general observation for individual CMs of
both datasets is: MO was more specific, whereas SO was found to be more sensitive when
compared between MO and SO. Of the intersection CMs, MSI performed better in terms of
both SN and SP*. For the10-protein dataset, XO performed better than both MO and SO.

General Scaffold Filter Trends
To further detect overall trends in the Scaffold filter settings, we averaged the SN and SP*
values within the various filter settings. This allowed us to draw empirical generalizations
on the impact of the filter settings. In Figure 2, we summarize the ROC method plot of the
average of all the CMs, average of individual CMs, average of intersection CMs, and
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average of union CMs. The ROC method plot of the average of all CMs (Figure 2, A and B)
supports that average MSXU (AvgMSXU) is more accurate than the average of the other ten
CMs. Under averaging, SXU and MXU in the 10-protein dataset are the next best
performing consensus methods, whereas SXU and MSU are next best performing in 50-
protein dataset. The performance trends of average Mascot only (AvgMO), average Sequest
only (AvgSO), and average X!Tandem only (AvgXO) individual CMs can be observed in
Figure 2 (C and D). AvgXO- 10 (10-protein) showed better performance than AvgMO-10
and AvgSO-10, whereas AvgXO-50 (50-protein) showed the worst performance. One
common observation among the two datasets is that both MO-10 and MO-50 tended to be
more specific and both SO-10 and SO-50 tended to be more sensitive when compared
between MO and SO. The performance of average intersection CMs (Figure 2 E and F)
followed a common trend of MSI (intersection of Mascot and Sequest), a result reproduced
with the findings from both both datasets. Under averaging, MSXU also showed better
performance for both datasets.

Average Minimum Protein Probability of all CMs
Figure 3 shows ROC method plots of all, individual, intersection, and union CMs within
various settings of average minimum protein probability. Among all the CMs, SN remained
somewhat constant except, for 50-protein dataset, the average SN of all sets with 99.9%
minimum protein probability (Avg99.9) slightly dropped. SP* varied, with a trend of 99.9%
being the most specific, and 50 to 99% having similar SP* for 10-protein dataset, and 80 to
99.9% being closely specific for the 50-protein dataset. The same result was observed for
the averages of individual and union CMs for 10 and 50-protein datasets. The average of
intersection sets with 20–99.9% minimum protein probability perform similarly in terms of
SP* for both datasets, except SN falls with higher protein probability for the 50-protein
dataset.

Average Minimum Number of Peptides of all CMs
Figure 4 shows ROC method plots of all, individual, intersection, and union CMs in terms of
average minimum number of peptides. Considering the average of all, individual and union
CMs for both datasets average CMs with minimum of two peptides performed best. Average
CMs with three to five minimum peptides were apparently more specific, but lost SN. The
CM with one minimum peptide was found to have the highest SN for 50-protein dataset.
The average of intersection sets with one to two minimum peptides were better in SN and
those with 3–5 minimum peptides performed better in SP* for 10-protein dataset. For 50-
protein dataset, the average intersection CMs with one to five minimum peptides performed
similar in SP*, and those with one minimum peptide showed the highest SN.

Average Minimum Peptide Probability of all CMs
For average of all, individual, intersection, and union CMs in terms of average minimum
protein probability, consensus methods with 0–50% minimum peptide probability
consistently performed better (Figure 5).

Consensus Methods that Provide Control Over Sensitivity and Specificity
Figure 6 emphasizes the results from some selected methods to allow control over the SN
and SP of a given search. Few selected spots are shown in the figure for clear viewing
purpose. The figure points out to methods that are either highly sensitive or highly specific
for those who are interested in SN at the cost SP* and vice versa. Some of these methods are
obviously using either high protein probability or low minimum number of peptides, and
therefore should be carefully implemented for peptide identification.

Sultana et al. Page 6

J Proteomics Bioinform. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Discussion
The conclusions that data analysts might find most interesting include (a) the possibility that
union methods may be generally recommended, (b) that various filter settings result in
specific responses in SN and SP*, and (c) that certain CMs may be useful in controlling SN
and SP.

From the sensitivity (SN) and apparent specificity (SP*) data, it is apparent that the
MSXU-10 and MSXU-50 CMs showed overall better performance than the other CMs. The
AvgMSXU-10 and AvgMSXU-50 also showed the same trend. The closely followed CMS
were AvgMXU, which performed comparatively with AvgMSXU. Among the individual
methods, better performance of AvgXO-10, while poor performance of AvgXO-50, may be
related to relatively smaller database that was used for searching the 10-protein mixture, and
requires further study. The observation that the MO performed better in terms of specificity
and SO performed better in terms of sensitivity is due to the comparatively strict MOWSE
algorithm used by Mascot, and the relatively liberal scoring algorithm used by Sequest,
respectively.

Nevertheless, it is clear from the results that there is common trend of generalizability
among the two datasets. The union approach performs better overall, compared to the
intersection approach, in terms of raw accuracy, whereas the later performs better in terms
of SP* at a cost to SN. The methods among the two data sets show similar performance
trends considering minimum number of peptides and minimum peptide probability even
though the best sets are with minimum protein probability between 80–99.9%. It is apparent
that in case of both datasets, the CMs based on the identification of at least 2 minimum
peptides and 0 to 50 percent minimum peptide probability consistently perform better than
the others. We interpret this result as reflecting that when protein probability is set to at least
95%, the conservative settings of the original search engines already provide a de facto filter
on the minimum peptide probability, and therefore strict filtering on minimum peptide
probability does not further increase SN or SP*. Thus for this consensus study, the results
were insensitive to minimum peptide probability. An important caveat is that this does not
mean minimum peptide probability is an irrelevant filter or search parameter in all cases.
Our results empirically support the position that, assuming that the cost of following up on
false positives is equivalent to missing a true positive, one should consider at least two
minimum peptides for confidence protein identification, and avoid ‘one hit wonders’ if
maximum accuracy is desired.

An important caveat of the consensus study is that the study outcome is limited to the mass
spectrum platform, database and search algorithms, as well as the initial database search
parameters of choice. This may or may not limit the generalizability of our findings (Jiang et
al., 2007).

Our approximation of SP via SP* is also worth considering. Obviously, as additional peptide
signatures are added to the databases, and as additional search algorithms are developed, the
universe of detected false positives increases. In this way, the results are comparable within
a given study, but the SP* of a given method will change with the specifics of the given
study. The approximation SP* is meant only to provide relative information.

Our results are based on the observation from two datasets of known proteins and will be
further investigated with additional datasets, search engines, and databases as part of future
research. The outcome of this study provided us with useful information for further
consensus study, generalization, and automated program development. One can now focus
on only methods that require identification of two minimum peptides and 50% minimum
peptide probability, rather than searching through thousands of methods (assuming equal
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costs of misses and misleads). For choosing the optimal performance, we have focused on
methods that are higher than 0.8 in both SN and SP*. We understand that there is not likely
to be one universally best overall CM, but the outcome of this study has lead to the relative
prioritization of a few ‘good’ methods to be preferred among thousands of methods. It is
also likely that proteomic data analysts would prefer direct control over SN and SP in
protein identification problem, and in some applications, prefer a more specific method at
the cost of sensitivity, and vice versa, depending on the specific application. For example, in
the case where high specificity is desired, the CMs that gave high specificity and retained
reasonable sensitivity (>50%) were MO and MXU; in the case where high sensitivity is
desired but low specificity could be tolerated one might consider the SO, MSU and the SXU
CMs. Because known protein datasets were used, it was possible to manually validate the
results. The outcome of this study informs on the trends, the response of the filter settings,
and consensus set determination, but not necessarily on the application of any specific
method on new datasets from other mass spectrometry platforms. The study results will
hopefully bring about the design of future studies researching the effect of databases,
algorithms and/or search parameters on CMs. The results will also provide feedback for
priorities in the design of novel software to automate the evaluation approach used in this
study.
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Figure 1.
ROC methods plots (SN vs. 1-SP*) of consensus methods (CMs) for two datasets. The three
search engines used were Mascot (M), Sequest (S), and X!Tandem (X). The search engine
alone (O), intersection (I), and union (U) were compared. A) all CMs,10-protein, B) All
CMs, 50-protein, C) individual CMs, 10-protein, D) individual CMs, 50-protein, E)
intersection CMs, 10-protein, F) intersection CMs, 50-protein, G) union CMs, 10-protein,
and H) union CMs, 50-protein. This figure illustrates the performance of all the consensus
methods tested. In general MSXU followed closely by MXU performed accurate in both
sensitivity (SN) and apparent specificity (SP*) among both 10-protein and 50-protein
datasets.
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Figure 2.
ROC methods plots (SN vs. 1-SP*) of average of consensus methods (CMs) for two
datasets. A) average of all CMs,10-protein, B) average of all CMs, 50-protein, C) average of
individual CMs, 10-protein, D) average of individual CMs, 50-protein, E) average of
intersection CMs, 10-protein, F) average of intersection CMs, 50-protein, G) average of
union CMs, 10-protein, and H) average of union CMs, 50-protein. This figure illustrates the
performance of the average Scaffold settings of all eleven consensus methods. It is notable
that the AvgMSXU appears, overall, most accurate in terms of both SN and SP*. This result
was reproducible across both data sets. A comparative accuracy was also observed for the
AvgMXU methods. Among the individual methods, MO tended to more specific, and SO
tended to be more sensitive. Another finding is that intersection consensus methods showed
the highest specificity but at a notable reduction in sensitivity.

Sultana et al. Page 11

J Proteomics Bioinform. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
ROC method plot (SN vs. 1-SP*) of average ‘minimum protein probability’ for all
consensus methods (CMs) tested. The ‘minimum protein probability’ is the minimum
probability at which a protein’s identification is considered correct. The ‘minimum protein
probability’ values used were 20%, 50%, 80%, 90%, 95%, 99%, and 99.9%. A–H) Same as
figure 2. In case of all CMs, individual CMs and union CMs somewhat constant SN for
minimum protein probabilities were observed except Avg99.9 showed slightly dropped SN
(A–D, G, and H). Avg50-Avg99 show similar SP* for 10-protein dataset whereas Avg80-
Avg99 show close SP* for the 50-protein dataset. In case of intersection consensus methods,
CMs Avg20-Avg99.9 performed similarly in terms of SP* for both datasets except SN is
reduced via higher protein probability for the 50-protein dataset (E and F).
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Figure 4.
ROC method plot (SN vs. 1-SP*) of average ‘minimum number of peptides’ for all
consensus methods (CMs) tested. The ‘minimum number of peptides’ value refers to the
number of unique peptides the protein identification is based on. The ‘minimum number of
peptides’ values used were 1, 2, 3, 4 and 5. A–H) Same as figure 2. Individual and union
CMs with minimum two peptides performed accurately in terms of SN and SP*. CMs with
three to five minimum peptides were apparently more specific, but at a loss in sensitivity.
The intersection CMs with one to two minimum peptides were more sensitive and those
with three to five minimum peptides performed apparently more specific for the10-protein
dataset. For the 50-protein dataset, the average intersection CMs with one to five minimum
peptides performed similar in SP*. Average CM with one minimum peptide was found to
have the highest SN for this dataset.
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Figure 5.
ROC method plot (SN vs. 1-SP*) of average ‘minimum peptide probability’ of all consensus
methods (CMs) tested. The ‘minimum peptide probability’ requires a minimum probability
from at least one spectrum. The minimum peptide probability values used were 0%, 20%,
50%, 80%, 90%, and 95%. A–H) Same as figure 2. All the CMs with average 0–50%
minimum peptide probabilities performed consistently better that those with average 80–
95% minimum peptide probabilities.
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Figure 6.
Representative consensus methods demonstrating the potential for control over SN, SP and
accuracy via choice of consensus method.
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Table 1

Programs used in this study, their immediate applications and the websites where more information can be
obtained, are listed.

Program Application Website

Mascot Protein identification/ quantitation http://www.matrixscience.com

Sequest Protein identification/ quantitation http://fields.scripps.edu, or http://www.thermo.com

X!Tandem Protein identification http://www.thegpm.org/TANDEM

Scaffold Protein identification/ validation/quantitation http://www.proteomesoftware.com
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