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† Background and Aims Flavonoids have the potential to serve as antioxidants in addition to their function of UV
screening in photoprotective mechanisms. However, flavonoids have long been reported to accumulate mostly in
epidermal cells and surface organs in response to high sunlight. Therefore, how leaf flavonoids actually carry out
their antioxidant functions is still a matter of debate. Here, the distribution of flavonoids with effective antiox-
idant properties, i.e. the orthodihydroxy B-ring-substituted quercetin and luteolin glycosides, was investigated
in the mesophyll of Ligustrum vulgare leaves acclimated to contrasting sunlight irradiance.
† Methods In the first experiment, plants were grown at 20 % (shade) or 100% (sun) natural sunlight. Plants were
exposed to 100 % sunlight irradiance in the presence or absence of UV wavelengths, in a second experiment.
Fluorescence microspectroscopy and multispectral fluorescence microimaging were used in both cross sections
and intact leaf pieces to visualize orthodihydroxy B-ring-substituted flavonoids at inter- and intracellular
levels. Identification and quantification of individual hydroxycinnamates and flavonoid glycosides were
performed via HPLC-DAD.
† Key Results Quercetin and luteolin derivatives accumulated to a great extent in both the epidermal and meso-
phyll cells in response to high sunlight. Tissue fluorescence signatures and leaf flavonoid concentrations were
strongly related. Monohydroxyflavone glycosides, namely luteolin 40-O-glucoside and two apigenin 7-O-glyco-
sides were unresponsive to changes in sunlight irradiance. Quercetin and luteolin derivatives accumulated in the
vacuoles of mesophyll cells in leaves growing under 100 % natural sunlight in the absence of UV wavelengths.
† Conclusions The above findings lead to the hypothesis that flavonoids play a key role in countering light-
induced oxidative stress, and not only in avoiding the penetration of short solar wavelengths in the leaf.

Key words: Confocal laser scanning microscopy (CLSM), flavonoid glycosides, fluorescence microimaging,
fluorescence microspectroscopy, hydroxycinnamates, intra-cellular flavonoid localization, Ligustrum vulgare,
photoprotection, UV stress.

INTRODUCTION

The idea that flavonoids may counter oxidative damage, in
addition to attenuating the highly energetic UV-B wavelengths
reaching sensitive targets in a leaf, in response to high solar
irradiance, may be inferred from several lines of evidence.

Firstly, it is unlikely that the widely reported UV-B-induced
increase in the flavonoid to hydroxycinnamate ratio (Ollson
et al., 1999; Burchard et al., 2000; Tattini et al., 2004)
depends on their relative abilities to absorb the UV-B wave-
lengths. Hydroxycinnamic acid derivatives (1max between
310 and 325 nm) have a greater ability to absorb over the
UV-B waveband with respect to most flavonoids (1max .
330 nm and 1min around 300 nm; Sheahan, 1996; Harborne
and Williams, 2000; Tattini et al., 2004).

Secondly, in high light-treated leaves, the biosynthesis of
orthodihydroxy B-ring-substituted flavonoids is strongly
favoured over that of its monohydroxy B-ring-substituted
counterparts (Markham et al., 1998; Ryan et al., 1998;
Gould et al., 2000; Tattini et al., 2004, 2005). Nevertheless,

the molar extinction coefficient, over the 300–390-nm wave-
band, of the monohydroxy flavone apigenin 7-O-rutinoside
(12.2 mM

21 cm21) considerably exceeds that of the orthodihy-
droxy flavonol quercetin 3-O-rutinoside (9.8 mM

21 cm21;
Tattini et al., 2004).

Finally, UV-B radiation is not a pre-requisite for flavonoid
biosynthesis (Christie and Jenkins, 1996; Brosché and Strid,
1999; Jenkins et al., 2001; Ibdah et al., 2002). An increase
in the concentration of leaf flavonoids was observed in grape-
vine in response to visible light (Kolb et al., 2001), and the
very same flavonoids increased in Lemma gibba in response
to both natural sunlight and visible light and excess copper
ions (Babu et al., 2003). Bilger et al. (2007) observed an
increase in UV-screening compounds in response to low-
temperature stress in the absence of UV radiation.

These findings lead to the hypothesis that flavonoids may
actually serve a key function to counter UV-induced oxidative
stress (Close and McArthur, 2002; Winkel-Shirley, 2002;
Tattini et al., 2005), as concluded by Landry et al. (1995):
‘Arabidopsis thaliana responds to UV-B as to an oxidative
stress, and sunscreen compounds reduce the oxidative damage
caused by UV-B’. Orthodihydroxy B-ring-substituted* For correspondence. E-mail m.tattini@ivalsa.cnr.it
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flavonoids have the potential to effectively inhibit the gener-
ation of, as well as to quench, reactive oxygen species
(ROS), and structural/antioxidant relationships are well-
established (Saskia et al., 1996; Rice-Evans et al., 1997;
Brown et al., 1998; Nguyen et al., 2006). It has been suggested
previously that metal-chelating and quenching properties, not
just the UV-screening features of flavonoids, need to be con-
sidered to conclusively explain their roles in land-plant evol-
ution (Swain, 1986; Cooper-Driver and Bhattacharya, 1998;
Cockell and Knowland, 1999).

However, it is a matter of fact that flavonoids accumulate
mostly in surface organs and epidermal cells because of high-
light stress (Schnitzler et al., 1996; Fishback et al., 1997;
Tattini et al., 2000, 2007). Yamasaki et al. (1997) proposed
that orthodihydroxy B-ring-substituted flavonoids help
quench hydrogen peroxide freely diffusing from the mesophyll
to enter the vacuoles of the epidermal cells (i.e. serving as sub-
strates for class III peroxidases; Takahama and Oniki, 1997;
Pérez et al., 2002). By contrast, few data are available on light-
induced accumulation of ‘potentially antioxidant’ flavonoids in
chlorophyll-containing tissues, which is a pre-requisite for fla-
vonoids to actually carry out antioxidant functions within the
sites of ROS generation (Gould et al., 2002; Kytridis and
Manetas, 2006; Agati et al., 2007).

To gain new insights on the complex issue of the multiple
functional roles, particularly the antioxidant one, of
‘UV-absorbing’ flavonoids in photoprotection, experiments
were performed aimed at visualizing them in ROS-generating
cells of leaves exposed to different solar irradiances. For this
purpose, ‘new’ techniques of fluorescence microspectroscopy
and multispectral fluorescence microimaging were used.
Leaves of Ligustrum vulgare, acclimated to (a) 20 % or
100 % natural sunlight and (b) to full sunlight irradiance by
cutting or not cutting the UV waveband, were studied. The dis-
tribution of hydroxycinnamates and flavonoids was estimated
in the leaves paying special emphasis to the mesophyll
tissues. Finally, the intracellular distribution of orthodihydroxy
B-ring-substituted flavonoids in mesophyll cells was analysed
using confocal laser scanning microscopy (CLSM) analysis in
intact leaves. As far as is known this is the first report on this
subject.

MATERIALS AND METHODS

Plant material and growth conditions

In the first experiment, Ligustrum vulgare L. plants were
grown outside under 20 % (shade) or 100 % natural sunlight
(sun) over a 5-week period. Plants at the full-sun site received
a daily dose of 12.1 and 1.05 MJ m22 and 19.4 KJ m22 in the
PAR (photosynthetic active radiation over 400–700 nm),
UV-A and UV-B wavebands, respectively. Mean daily doses
of 2.4 and 0.19 MJ m22 and 3.6 KJ m22 in the PAR, UV-A
and UV-B wavebands, respectively, were detected at the
shade site.

In the second experiment, L. vulgare plants were grown in
greenhouses constructed with the roof and walls made from
plastic foil with specific transmittances, over an 8-week exper-
imental period. The greenhouses were north–south exposed,
with small shielded openings below the front roof at the

north-east and north-west corners to permit air circulation.
Solar UV radiation was excluded by LEE 226 UV foils
(LEE Filters, Andover, UK) in the PAR100 treatment,
whereas in the PAR100 þ UV treatment plants were grown
under a 100-mm ETFE fluoropolymer film (NOWOFLONw

ET-6235; NOWOFLON Kunststoffprodukte GmbH & Co.
KG, Siegsdorf, Germany). Control plants were grown under
25 % PAR irradiance (PAR25), which was obtained by
adding a proper black polyethylene frame to the LEE 226
UV foil. UV irradiance (280–400 nm) and PAR inside the
greenhouses were measured with a SR9910-PC double-
monochromator spectroradiometer (Macam Photometric Ltd,
Livingstone, UK) and a calibrated Li-190 quantum sensor
(Li-Cor Inc., Lincoln, NE, USA), respectively. Total UV irra-
diance was 24.5 or 1.1 W m22 in the PAR100 þ UV and
PAR100 treatments, respectively, at midday on a clear day
(PAR was 1450+ 46 mmol m22 s21 at both sites).

Identification and quantification of phenylpropanoids,
and analysis of their spectral features

Hydroxycinnamates and flavonoids were extracted, identified
and quantified by HPLC-DAD as reported previously in Tattini
et al. (2004, 2005). Hydroxycinnamates were p-coumaric acid
and echinacoside (a caffeic glycoside ester), and flavonoids
were identified as the orthodihydroxy B-ring-substituted querce-
tin 3-O-rutinoside and luteolin 7-O-glucoside, and the monohy-
droxy B-ring-substituted luteolin 40-O-glucoside and apigenin
7-O-glycosides (both glucoside and rutinoside; Tattini et al.,
2004). P-coumaric acid was calibrated at 310 nm, echinacoside
at 330 nm and flavonoids at 350 nm, using calibration curves of
individual compounds operating in the range 0–30 mg.
Echinacoside was isolated with semi-preparative HPLC using
protocols previously reported in Romani et al. (2000, 2002).
The extinction coefficient spectra of 40 mM phenolic solutions
(authentic standards purchased from Extrasynthese, Lyon,
Nord, Genay, France) with or without the addition of 200 mM

of 2-amino ethyl diphenyl boric acid [0.1 %, w/v, Naturstoff
reagent (NR)] in phosphate buffer (pH 6.8) with addition of
1 % NaCl (w/v), were recorded using a diode array spectropho-
tometer (HP8453, Agilent, Les Ulis, France). Fluorescence
spectra of 10 mM solutions (in phosphate buffer, pH 6.8) of echi-
nacoside, luteolin 7-O-glucoside and quercetin 3-O-rutinoside
with the addition of 50 mM NR were recorded under UV-
(lexc ¼ 365+ 5 nm) and blue-light excitation (lexc ¼ 488+
5 nm). A 1 � 1 cm quartz cuvette was horizontally positioned
on the sample-holder of a Diaphot epifluorescence microscope
(Nikon, Japan) equipped with a high-pressure mercury lamp
(HBO 100 W; OSRAM, The Netherlands). Fluorescence
spectra were recorded with a CCD multichannel spectral analy-
ser, described in detail in the next section.

Fluorescence microspectroscopy and multispectral fluorescence
microimaging

Fluorescence microspectroscopy and multispectral fluor-
escence microimaging were performed on cross-sections
(approx. 100 mm thick) cut from leaves with a vibratory micro-
tome (Vibratome 1100 Plus; St Louis, MO, USA), and stained
with NR. The multispectral fluorescence microscope unit has
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been detailed previously (Tattini et al., 2004; Agati et al., 2007).
Fluorescence spectra were recorded using the 365-nm excitation
wavelength, which was selected using a 10-nm bandwidth inter-
ference filter 365FS10-25 (Andover Corporation, Salem, NH,
USA) and an ND 400 Nikon dichroic mirror. Fluorescence
spectra (over the 400–800-nm waveband) were measured with
a CCD multichannel spectral analyser (PMA 11-C5966;
Hamamatsu, Photonics Italia, Arese, Italy) connected to the
microscope through an optical fibre bundle, with a �40 Plan
Fluor objective. Fluorescence imaging (on a 404 � 404 mm
area) was performed at 580+ 5 nm using both the 365- and
488-nm excitation wavelengths using a �10 objective, as
described previously (Agati et al., 2007).

CLSM analysis was conducted on a leaf-half infiltrated with
approx. 100 mL of NR solution using a plastic syringe without
the needle, through a pinhole (made with a 100 mL pipette tip),
on the upper leaf end. A leaf piece of approx. 5 � 5 mm, was
cut at a distance of 4–5 mm from the pinhole, mounted in the
staining buffer, and observed from the adaxial surface. Images
were recorded using a Leica TCS SP5 confocal microscope
(Leica Microsystems CMS, Wetzlar, Germany) equipped
with an acusto-optical beam splitter, and an upright micro-
scope stand (DMI6000). A 246 � 246 mm area was imaged

using a �63 objective (HCX PL APO lambda blue 63.0 �
1.40 OIL UV), and image spatial calibration was 0.5 mm
pixel21. The pinhole was set to one ‘Airy unit’. A microscope
was used in the sequential scan mode to detect (a) flavonoids:
lexc ¼ 488 nm, lem over the 560–600 nm spectral band; and
(b) chlorophyll: lexc ¼ 514 nm, lem over the 670–750 nm
spectral band. Fluorescence spectra of NR-stained mesophyll
cells were recorded (over the 500–640 nm waveband, using
the Leica LAS-AF software package) through measurements
in the l-scan mode with a detection window of 10 nm.

RESULTS

Spectral features of hydroxycinnamates and flavonoids,
and their tissue-specific localization

UV spectra of p-coumaric acid and apigenin derivatives, which
have a monohydroxy substitution in the benzene ring or in the
B-ring of the flavonoid skeleton, respectively, did not undergo
a bathochromic shift upon treatment with Naturstoff reagent, in
contrast to that observed with the orthodihydroxy structures
(Fig. 1A, B). We propose the adduct formation for echinaco-
side (in blue) and for the orthodihydroxy B-ring-substituted
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luteolin 7-O-glucoside (in red) upon reaction with NR. It is
likely that the same adduct is formed after reaction of querce-
tin 3-O-rutinoside with the fluorescence enhancer.

The fluorescence spectra of the mesophyll, not only those of
the epidermal tissues, greatly differed between UV-excited
cross-sections of L. vulgare leaves acclimated to contrasting
sunlight irradiance (Fig. 2). The fluorescence intensity of the
adaxial epidermis in sun leaves (lem ¼ 573 nm) was three
times greater than the fluorescence intensity in shade leaves
(lem ¼ 559 nm; Fig. 2A). Fluorescence spectra of the abaxial
epidermises differed mostly for the shape, more than for the
intensity, when comparing shade (lem ¼ 470 nm) and sun
leaves (lem ¼ 562 nm). The fluorescence intensity of ‘sunny’
mesophyll tissues (both palisade and spongy parenchyma

tissues) was more than four times greater than the fluorescence
intensity of ‘shade’ mesophyll tissues (Fig. 2B).

These findings are consistent with the concentration and
composition of the ‘soluble’ phenylpropanoid pool detected
in shade or sun L. vulgare leaves. Indeed, the concentration
of the ‘highly fluorescent’ (NR-treated) orthodihydroxy-
substituted compounds (Fig. 3A), i.e. echinacoside (þ75 %),
and particularly luteolin 7-O-glucoside (þ275 %) and querce-
tin 3-O-rutinoside (þ520 %), mostly varied because of high
sunlight (Table 1). In contrast, the concentrations of
p-coumaric, apigenin 7-O-glycosides and luteolin
40-O-glucoside, which have negligible fluorescence yields
upon staining with NR (Agati et al., 2002), decreased on
average by 20 % passing from shade to sun leaves (Table 1).
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However, note that changes in tissue anatomy and in the
tissue-specific content in wall-bound phenolics may contribute
considerably to tissue fluorescence signatures under UV-light
excitation. Furthermore, the phenolic content varies consider-
ably among different leaf tissues (Fig. 4) and, hence, the
whole-leaf phenolic concentration is unlikely to relate to
tissue-specific fluorescence signatures.

The mesophyll distribution of UV-responsive phenylpropa-
noids, i.e. quercetin 3-O-rutinoside, luteolin 7-O-glucoside
and echinacoside, was visualized by exciting cross-sections
with UV- (lexc ¼ 365+ 5 nm; Fig. 4B) or blue-light (lexc ¼
488+ 5 nm; Fig. 4A), and recording fluorescence at 580 nm
(F580). First, note that only orthodihydroxy B-ring-substituted
flavonoids have detectable fluorescence yields when treated
with the fluorescence enhancer (NR) and excited with far blue-
light (Fig. 3B), as previously reported (Sheahan and Rechnitz,
1993; Sheahan et al., 1998). It is assumed that flavonoids are
dissolved in the cellular milieu. Indeed, the monohydroxy
B-ring-substituted kaempferol 3-O-glucoside (astragalin) is
autofluorescent when conjugated to the epidermal cell walls
or ‘dissolved’ in lipid bilayers, and quercetin non-covalently
bound to proteins emits in the green-yellow waveband under

the 488-nm excitation wavelength (Strack et al., 1988;
Bondar et al., 1998; Nifli et al., 2007; Tattini et al., 2007).

Flavonoids largely occurred in the adaxial cells of the pali-
sade parenchyma of sun leaves, and their tissue-specific distri-
bution did not markedly differ between UV-excited (lexc ¼
365+ 5 nm; Fig. 4B) and blue light-excited cross-sections
(lexc ¼ 488+ 5 nm; Fig. 4A). These data are consistent with
a preferential accumulation of quercetin and luteolin deriva-
tives in the adaxial palisade cells, as echinacoside, if present
in appreciable amounts, would have enhanced greatly F580

emitted from those cells (fluorescence intensity of echinaco-
side is greater than that of luteolin 7-O-glucoside and above
all of quercetin 3-O-rutinoside, under UV-excitation;
Fig. 3A). Changes in the relative intensities of the 365- and
488-nm excitation wavelengths may have partially contributed
to slight variations in F580 between UV- and blue light-excited
cross-sections (Tattini et al., 2004). Finally, it is noted that flu-
orescence quenching, as a consequence of re-absorption and
dimer annhiliation processes (Ferrer et al., 2003; Rodrı́guez
et al., 2004), which is of increasing significance as tissue fla-
vonoid concentration increases, is more likely to have underes-
timated, rather than enhanced, light-induced increase in F580.

TABLE 1. The concentration of soluble individual phenylpropanoids in Ligustrum vulgare leaves exposed to 20 % or 100 % natural
sunlight irradiance over a 5-week period

Phenylpropanoid (mmol g21 d. wt)

% Sunlight p-coumaric echinacoside que 3-O-rut lut 7-O-glc lut 40-O-glc api 7-O-gly

20 12.7+1.6 a 10.8+1.2 b 2.4+0.2 b 3.2+0.3 b 3.9+0.5 3.5+0.4
100 9.8+1.5 b 18.9+2.0 a 14.9+2.3 a 12.1+2.1 a 3.3+0.4 ns 3.0+0.4 ns

Data are means+ s.d., n ¼ 6.
Values in a column not accompanied by the same letter are significantly different at P , 0.05 based on a least significant difference (LSD) test. ns, Not

significant
Abbreviations: que 3-O-rut, quercetin 3-O-rutinoside; lut 7-O-glc, luteolin 7-O-glucoside; lut 40-O-glc, luteolin 40-O-glucoside; api 7-O-gly includes

apigenin 7-O-glucoside and apigenin 7-O-rutinoside.
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FI G. 4. Distribution of the fluorescence at 580 nm, F580, as false-colour surface plots, in leaves of Ligustrum vulgare acclimated to full-sunlight irradiance.
Cross-sections were stained with NR and excited with (A) far blue- (lexc ¼ 488+5 nm) or (B) UV light (lexc ¼ 365+5 nm).
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Distribution of ‘antioxidant’ flavonoids in mesophyll cells

Quercetin and luteolin glycosides did not accumulate in
the mesophyll of leaves acclimated to 25 % natural sunlight
in the absence of UV wavelengths (PAR25; Fig. 5C).
Noticeably, the green-yellow fluorescence due to these ortho-
dihydroxy flavonoids did not vary substantially in intensity
when comparing the adaxial palisade cells of leaves
exposed to 100 % natural sunlight in presence (PAR100 þ
UV; Fig. 5A) or absence (PAR100; Fig. 5B) of UV radiation.
These findings are consistent with the leaf concentrations of
quercetin 3-O-rutinoside and luteolin 7-O-glucoside that
increased from 1.1+ 0.17 mmol g21 d. wt under PAR25

(means+ s.d., n ¼ 4) to 8.6+ 0.8 and 11.3+
1.9 mmol g21 d. wt, under PAR100 or PAR100 þ UV treat-
ments, respectively. The fluorescence spectrum of blue-light
excited (lexc ¼ 488 nm) adaxial palisade cells in PAR100
leaves, which peaked at 565 nm (Fig. 5D), conclusively con-
firmed the occurrence of these orthodihydroxy B-ring-
substituted flavonoids in the cell vacuole (Fig. 5A, B).
Chlorophyll-induced attenuation of the excitation wavelength
is unlikely to have affected the imaging of flavonoid distri-
bution, as chlorophyll fluorescence did not differ in the
adaxial palisade cells of leaves exposed to contrasting sun-
light irradiance (Fig. 5A–C).
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DISCUSSION

In the present experiments, the ‘new’ techniques of fluor-
escence micro-spectroscopy and multispectral fluorescence
microimaging, aimed to visualize leaf flavonoids at inter-
and intracellular levels, were used to give new insights on
their antioxidant functions in photoprotective mechanisms.

It is shown that antioxidant flavonoids occurred to a great
extent in the adaxial (both epidermal and mesophyll) cells of
leaves acclimated to high sunlight. This finding, taken together
with the preferential distribution of hydroxycinnamates
(potentially, the best UV-B screening compounds; Landry
et al., 1995; Sheahan, 1996; Harborne and Williams, 2000)
in deeper leaf tissues (Fig. 4; Ollson et al., 1999; Tattini
et al., 2004), suggest that the functional roles of flavonoids
in photoprotective mechanisms, do not depend merely on
their UV-absorbing features (Markham et al., 1998; Gould
et al., 2000).

Conclusive evidence is offered on the mesophyll distri-
bution of the ‘antioxidant’ quercetin 3-O-rutinoside and luteo-
lin 7-O-glucoside in leaves of L. vulgare exposed to natural
sunlight in the presence or absence of UV irradiance. These
compounds are vacuolar, which conforms to the findings of
Neill et al. (2002) and of Kytridis and Manetas (2006) on
the vacuolar compartmentation of ‘flavonoid anthocyanins’
in the mesophyll cells of Elatostema rugosum and Cistus
creticus, respectively. It is suggested that mechanical pressure
on the tonoplast membrane, using the present infiltration tech-
nique, allowed NR to enter the vacuole of mesophyll cells,
although the pH gradient across the tonoplast would drive its
exclusion from the vacuole (Sheahan et al., 1998). Our fluor-
escence imaging avoided the generation of artefacts during
cross-sectioning (Hutzler et al., 1998), and conclusively loca-
lized the flavonoids in ROS-generating cells (Gould et al.,
2002; Kytridis and Manetas, 2006). Hence, major criticisms
on the localization/functional relationship of flavonoids in
photoprotection, which mostly concerns their almost exclusive
occurrence in epidermal cells (Yamasaki et al., 1997), have
been addressed in the present experiment. With the multispec-
tral fluorescence micro-imaging it was not possible to visualize
the distribution of flavonoids in other cellular compartments
(e.g. the cytoplasm and the chloroplasts; Sheahan et al.,
1998; Agati et al., 2007), probably due to the relatively low
resolution of fluorescence imaging.

We hypothesize that flavonoids with a catechol group in the
B-ring may quench free radicals and hydrogen peroxide (i.e.
serving as substrates for class III peroxidases; Yamasaki
et al., 1997; Pérez et al., 2002; Pourcel et al., 2006) in meso-
phyll cells suffering from severe high-light stress, not only to
help scavenge H2O2 freely diffusing from them to enter the
vacuole of the epidermal ones. These scavenger activities
against H2O2 have been previously reported to be effectively
served by orthodihydroxy substituted hydroxycinnamates,
like echinacoside (Grace et al., 1998; Tattini et al., 2004).
As a consequence, the differential tissue-specific distribution
of orthodihydroxy B-ring-substituted flavonoids and echinaco-
side in high-light exposed leaves may merit a deep comment.
Here it is highlighted that the flavonoid skeleton, and not only
the presence of the catechol group in the B-ring, confers to fla-
vonoids a greater ability to inhibit the generation of free

radicals as compared with other phenylpropanoids.
Metal-chelating properties are enhanced by the presence of
the C ¼ O group in the C-ring of the flavonoid skeleton, and
metal-flavonoid complexes mimic superoxide dismutase
activity (Morel et al., 1998; Kostyuk et al., 2004). As a conse-
quence, the overall scavenger activity of ‘antioxidant’ flavo-
noids may exceed that of ‘antioxidant’ hydroxycinnamates.
Also it is not excluded that the light-induced biosynthesis of
caffeic derivatives from p-coumaric acid, as observed in the
present experiment, may have enhanced lignin biosynthesis,
more than increasing the concentration of soluble hydroxycin-
namic intermediates in highly irradiated cells. This process
may be of key significance in cells suffering from high light-
induced oxidative damage, i.e. the adaxial palisade parench-
yma cells. In wounded tissues of Arabidopsis thaliana, the
unusual substrate used by CYP98A3, a 30-hydroxylase of phe-
nolic esters, which synthesizes caffeic from p-coumaric acid,
was to give priority to the synthesis of flavonoids (Schoch
et al., 2001), which further corroborates the idea of an involve-
ment of flavonoids in both preventing and repairing light-
induced oxidative damage. Nevertheless, the present
experimental data do not allow the issue of tissue-specific
accumulation of different phenylpropanoid classes because
of high sunlight to be conclusively addressed. This matter
has, however, great physiological and biochemical signifi-
cance, and merits further and in-depth investigation.

The accumulation of mesophyll orthodihydroxy
B-ring-substituted flavonoids in leaves acclimated to natural
sunlight in the absence of UV radiation, adds further evidence
for an important role of flavonoids in countering the oxidative
stress generated under excess-light conditions, not only to
attenuate the highly energetic UV wavelengths from reaching
ROS-generating cells. We hypothesize that UV stress
(Gerhardt et al., 2008) does not differ from other stressful
agents, of both biotic and abiotic origin (Wojtaszek, 1997;
Schoch et al., 2001; Roberts and Paul, 2006; Agati et al.,
2007; Lillo et al., 2008), in up-regulating the phenylpropanoid
branch pathway leading to the biosynthesis of antioxidant
flavonoids.
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