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e Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and indi-
vidual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to
the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk.

e Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of
Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets,
the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the
linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within
each growth phase.

e Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only
defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and
inter-individual heterogeneity and that the individual tree status within the population may change between
phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvi-
cultural interventions impacted inter-individual heterogeneity.

e Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in
relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute
the next steps in this research.

Key words: Growth components, inter-individual heterogeneity, linear mixed model, ontogeny, Pinus nigra

subsp. laricio var. corsicana, Quercus petraea, semi-Markov switching model.

INTRODUCTION

The study of forest tree growth components has long suffered
from the difficulty associated with obtaining biologically
meaningful growth data on the basis of retrospective measure-
ments. In classical forest tree growth study, the retrospective
growth data are either not explicitly related to the years of
growth or the years of growth are unevenly sampled within
the growth data. This is a definitive drawback if one wants
to relate inter-annual growth fluctuations to climatic factors.
For some pine species, the systematic location of a tier of
branches at the top of the shoot greatly facilitates the retrospec-
tive measurement of the length of successive annual shoots
along the trunk (see Cannell er al., 1976). However, for
many conifers and broadleaved trees, this type of retrospective
measurement is far more difficult. The development of exper-
tise in plant morphology and architecture — see Barthélémy
and Caraglio (2007) for a survey — has enabled the retrospec-
tive measurement of annual shoot characteristics along the
trunk of various tree species including cedar (Sabatier et al.,
2003), beech (Nicolini et al., 2001), oak (Heuret et al.,
2003) and walnut (Sabatier and Barthélémy, 2001). This has
opened new perspectives for the study of forest tree growth
components.

* For correspondence. E-mail guedon@cirad.fr

Tree structure development can be reconstructed at a given
observation date from external morphological markers (such as
cataphyll or branching scars) corresponding to past events.
Observed apical growth, as given for instance by the length of
successive annual shoots along a tree trunk, is assumed to be
mainly the result of three components: an ontogenetic com-
ponent, an environmental component and an individual com-
ponent. The ontogenetic component is assumed to be
structured as a succession of roughly stationary phases that are
asynchronous between individuals (Guédon er al., 2007),
while the environmental component is assumed to take the
form of local fluctuations that are synchronous between individ-
uals. This environmental component is thus assumed to be a
‘population’ component as opposed to the individual com-
ponent. The individual component represents the growth level
deviation in each phase of a tree with reference to the average
tree. The key question tackled in Guédon er al. (2007) was
whether the ontogenetic growth component along an axis at
the growth unit or annual shoot scale takes the form of a trend
(i.e. a gradual change in the mean level) or of a succession of
phases. Their results support the assumption of abrupt changes
between roughly stationary phases rather than gradual changes.
These phase changes corresponding to new morphological
events (e.g. root development, branching, flowering; see
Barthélémy and Caraglio, 2007) are probably expressions of
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endogenous equilibriums. Their starting assumption was a
decomposition model in which observed growth is the result of
two components, one ontogenetic and one environmental
(mainly of climatic origin); see Hanson er al. (2001) for the
tree response to rainfall. In their approach, only plant response
variables were considered. In order to characterize the environ-
mental component better, we here propose to incorporate both
plant response variables and climatic explanatory variables in
dedicated statistical models. An interesting consequence of the
assumption of succession of phases is the fact that the phases
identified can be used as an instrumental device to differentiate
the influence of climatic factors (environmental component) and
the inter-individual heterogeneity (individual component)
between phases. The individual component may cover effects
of diverse origins but always includes a genetic effect; see
Bradshaw and Settler (1995) and Danusevicius (2001) for the
effect of genetic factors on annual shoot length and Segura
et al. (2008) for the effect of genetic factors on tree architecture.
Other effects correspond to the local environment of each indi-
vidual; see Waring et al. (1987) and Lefevre et al. (1994) for
the impact of pathogen infestation on leaf photosynthesis and
Robinson et al. (2001), Pinno et al. (2001) and Dolezal et al.
(2004) for the competition between plants for light resources.
These factors are rarely measurable retrospectively for each indi-
vidual (Heuret ef al., 2003) and when accessible, the measure-
ments are time consuming (Jalkanen et al., 1994).

Véra et al. (2004) introduced Markov switching linear
mixed models to jointly model growth phases, the effect of
time-varying climatic factors and inter-individual heterogen-
eity (see also Chaubert et al., 2007). Unlike the approach
based on hidden semi-Markov chains proposed by Guédon
et al. (2007), the length of each growth phase was not expli-
citly modelled in Markov switching linear mixed models.
Here we propose to use semi-Markov switching linear mixed
models that generalize both hidden semi-Markov chains and
Markov switching linear mixed models. In a semi-Markov
switching linear mixed model, the underlying semi-Markov
chain represents both the succession of growth phases and
their lengths, while the linear mixed models attached to each
state of the semi-Markov chain represent both the effect of
time-varying climatic explanatory variables and inter-
individual heterogeneity. The effect of climatic explanatory
variables is modelled as a fixed effect and inter-individual het-
erogeneity as a random effect. Thus, the introduction of
random effects makes it possible to decompose the total varia-
bility into two parts: variability due to inter-individual hetero-
geneity and residual variability.

Semi-Markov switching linear mixed models were applied
to the analysis of successive annual shoots along Corsican
pine and sessile oak trunks previously analysed in Guédon
et al. (2007). We were interested in both population properties
and individual behaviour with regard to tree growth com-
ponents and we therefore investigated how the effect of cli-
matic factors and inter-individual heterogeneity change with
ontogeny, considered here as successive growth phases.

MATERIALS AND METHODS

Growth component analysis is illustrated by examples corre-
sponding to species with contrasted plasticity (monocyclic
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TaBLE 1. Characteristics of the data samples

Corsican pines Sessile oaks

No. of sequences (length range) 103 65
6 years old: 31 15 years old: 45
(6) (10-15)
12 years old: 29 29 years old: 19
9-11) (15-24)
18 years old: 30
(15-17)
23 years old: 13
(20-21)

Annual shoot length (cm) 0-85, 31-82, 20-73  1-148, 38-04, 26-42
range, mean, s.d.
Silvicultural intervention

Origin

none
nursery

thinning
natural regeneration

versus polycyclic species), to different forest stand manage-
ment practices (trees born in the nursery and later transplanted
versus natural regeneration) and sampling protocols (all the
trees versus only the dominant and co-dominant trees). The
characteristics of the two data samples are summarized in
Table 1.

Corsican pines (Pinus nigra subsp. laricio var. corsicana)

The data set comprised four sub-samples of Corsican pines
planted in a forest stand in the ‘Centre’ region (France): 31
6-year-old trees (first year not measured), 29 12-year-old
trees (first year not measured), 30 18-year-old trees (first
year not measured) and 13 23-year-old trees (two first years
not measured). Trees in the first two sub-samples (6 and 12
years old) were selected on the basis of the distribution of
tree height (i.e. dominant, co-dominant and dominated
classes) within the stand while trees in the two other sub-
samples (18 and 23 years old) were selected on the basis of
the distribution of diameter at breast height within the stand.
Trees in the first sub-sample (6 years old) remained in the
nursery in an open location for 2 years before transplantation
while trees in the three other sub-samples remained in the
nursery for 3 years before transplantation. Plantation density
was 1800 stems ha~ ' for the first sub-sample (6 years old)
and 2200 stems ha™' for the three other sub-samples. Tree
trunks were described by annual shoot where two quantitative
variables were recorded for each annual shoot, namely length
(in cm) and number of branches per tier; see Fig. 1 for the
‘length of the annual shoot’ variable. The first non-measured
annual shoots (immediately after germination) were always
very short. The trees were not subject to any silvicultural inter-
ventions. Data for daily rainfall (in mm) were supplied by
Météo France (Chambon-la-Forét, a close meteorological
forest station) for the period from 1975 to 1995 (year of the
last elongated shoot for the four sub-samples).

Sessile oaks (Quercus petraea)

The data set comprised two sub-samples of sessile oaks: 46
15-year-old trees and 19 29-year-old trees (last 24 years
measured). These trees, originating from natural regenerations,
were observed in a private forest near Louppy-le-chateau
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Fic. 1. Four sub-samples of Corsican pines: length of successive annual shoots along trunks of (A) 6-, (B) 12-, (C) 18- and (D) 23-year-old trees.

(north-east France). It should be noted that the silvicultural
practices employed favoured synchronous germination in the
years following mass fruiting; see Heuret et al. (2000) for
more details. Stand density was 2000 stems ha ', Tree
trunks were described by annual shoot where the length (in
cm) was recorded for each annual shoot. Sessile oak is charac-
terized by polycyclic growth, i.e. an annual shoot may be com-
posed of several successive growth units (i.e. portion of the
axis built up between two resting phases), while Corsican
pine is mainly characterized by monocyclic growth with
very little polycyclism in early plant life. Data for daily rainfall
(in mm) were supplied by Météo France (Saint-Dizier meteor-
ological station) for the period from 1973 to 1997 (year of the
last elongated shoot for the two sub-samples).

Methods

This section first introduces Gaussian hidden semi-Markov
chains (GHSMCs) where the observation models are simple
Gaussian distributions. In the present context, the succession
of growth phases and the length of each phase (in number
of years) are both represented by a non-observable
semi-Markov chain while the length of the successive annual
shoots (in cm) in each growth phase is represented by
Gaussian observation distributions attached to each state of
the semi-Markov chain. Hence, each state of the semi-
Markov chain represents a growth phase. A J-state Gaussian
hidden semi-Markov chain is defined by four subsets of
parameters:

(1) Initial probabilities (m;; j=1,..., J) to model which is
the first phase occurring in the sequence measured for a
tree.

(2) Transition probabilities (p;; i, j=1,..., J) to model the
succession of growth phases along a tree trunk.

(3) Occupancy distributions attached to non-absorbing states
(a state is said to be absorbing if, after entering this
state, it is impossible to leave it) to model the growth
phase length in number of years (i.e. the time spent in
each growth phase). As possible parametric state occu-
pancy distributions, binomial distributions B(d, n, p),
Poisson distributions P(d, A) and negative binomial
distributions NB(d, r, p) with an additional shift parameter
d > 1 were used.

(4) Gaussian observation distributions to model annual shoot
length in each growth phase (a Gaussian distribution can
be viewed as a degenerate linear model with just an inter-
cept, and without explanatory variables).

GHSMCs are formally defined in the Appendix. A ‘left—right’
three-state GHSMC composed of two successive transient
states followed by a final absorbing state was estimated on
the basis of the four sub-samples of Corsican pines (from 6
to 23 years old). A state is said to be transient if after
leaving this state, it is impossible to return to it. In a ‘left—
right” model, the states are thus ordered and each state can
be visited at most once. As the last year of measurement is
arbitrary with regard to tree development, the length of the
last growth phase is assumed to be systematically truncated
(or ‘right-censored’) and cannot be modelled. The estimated
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FiG. 2. Eighteen-year-old Corsican pines: optimal segmentations computed using the estimated GHSMC viewed as step functions.

model was used to compute the most probable state sequence
for each observed sequence using the so-called Viterbi algor-
ithm (Guédon, 2003). The restored state sequence can be
viewed as the optimal segmentation of the corresponding
observed sequence into sub-sequences, each corresponding to
a given growth phase. The optimal segmentations of the
18-year-old Corsican pines are represented as step functions
(there are at most three steps corresponding to the three ident-
ified growth phases) in Fig. 2, with the level of each step cor-
responding to the empirical mean estimated on the basis of the
segment extracted from the original sequence. These step func-
tions show the degree of synchronism between individuals for
the successive phases but also, more interestingly, highlight
inter-individual heterogeneity in each phase.

A residual sequence was computed for each individual by
subtracting from the original sequence the step function
deduced from the estimated model. The pointwise means com-
puted from the 18-year-old tree residual sequences were sig-
nificantly >0 for the years 1983, 1992 and 1995 and <0 for
the years 1982, 1986, 1987 and 1991 (Fig. 3A). The pointwise
means computed from the 23-year-old tree residual sequences
were significantly >0 for the years 1983, 1988, 1989, 1992,
1994 and 1995 and <O for the years 1985, 1986, 1987 and
1991 (Fig. 3B). It was assumed that these average residuals
correspond roughly to the synchronous fluctuations between
individuals in response to climatic factors.

In cases where climatic explanatory variables are available,
a statistical model for analysing this type of tree growth data
should be able to model jointly:

ey
@)
3)

the succession of roughly stationary growth phases that are
asynchronous between individuals;

the effect of time-varying climatic explanatory variables;
and

inter-individual heterogeneity.
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Fic. 3. Pointwise means and associated confidence intervals computed from
the residual sequences of (A) 18- and (B) 23-year-old trees.
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We therefore chose to build semi-Markov switching linear
mixed models (SMS-LMMs). This family of statistical
models broadens the family of Markov switching models;
see Friithwirth-Schnatter (2006) for an overview of Markov
switching models. A semi-Markov switching linear mixed
model combines:

(1) a non-observable J-state semi-Markov chain which rep-
resents both the succession of growth phases and their
lengths, and

(2) J linear mixed models, each one attached to a state of the
underlying semi-Markov chain. Each linear mixed model
represents, in the corresponding growth phase, both the
effect of time-varying climatic explanatory variables as
fixed effects and inter-individual heterogeneity as a
random effect; see Verbeke and Molenberghs (2000) for
an overview of linear mixed models applied to longitudi-
nal data.

SMS-LMMs are formally defined in the Appendix.

The observed annual shoot length Y, , for tree a being in
state (or growth phase) j at time ¢ is modelled by the following
linear mixed model:

Yor = Bji + BpXe + 78 + €ar

where B;; + B,X; is the contribution of the fixed effects for
state j, B;; the intercept which represents the growth level,
B> the regression parameter and X, the climatic explanatory
variable common to all the trees at time 7. &,; ~ N(0, 1) is
the random effect attached to tree a being in state j and 7;
the standard deviation induced by the inter-individual hetero-
geneity in state j. The random effects are assumed to follow
the standard Gaussian distribution N(O, 1). &,,S.,, =

N(O, o‘2 ) is the error term correspondlng to tree a belng in
state j at time ¢ and 0' the residual variance.

In this statistical model individual tree status is assumed to
be different in each growth phase. For a given individual, the
average shoot length within a phase can be higher than that of
the ‘average tree’ then lower in the following phase, as illus-
trated by the Corsican pine example (Fig. 2). The introduction
of random effects makes it possible to decompose the total
variability F in state j into two parts:

2 2 2
Iy=1j+oaj.
where 1'2 is the variability due to inter-individual heterogeneity
and 0'2 is the residual variability.

SMS LMMs were estimated using a Monte Carlo expec-
tation maximization (MCEM)-like algorithm (McLachlan
and Krishnan, 2008) whose elementary iteration decomposes
into three steps: sampling of state sequences given random
effects, random effect predictions given state sequences and
maximization (Chaubert-Pereira et al., 2008). At convergence
of the iterative estimation algorithm, the median predicted
random effects were computed for each individual based on
the random effects predicted for each state in each sampled
state sequence. The most probable state sequence given the
median predicted random effects was computed for each
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observed sequence using a Viterbi-like algorithm (Guédon,
2003). Statistical methods for SMS-LMMs are implemented
in a module that will be integrated in the OpenAlea software
platform for plant modelling (Pradal ef al., 2008).

Standard errors computed for the regression parameters of
SMS-LMMs are only valid if the underlying semi-Markov
chain is ergodic (i.e. such that each state is visited many
times). In the present case of non-ergodic models, we chose
to compute B, x mad;(X) for each state j where mad;(X) is
the mean absolute deviation of the climatic explanatory vari-
able in state j. This indicator gives empirical evidence of the
significant or non-significant character of the climatic effect.

A 95 % prediction interval can be computed to check
whether the influence of the predicted random effect for
each growth phase is significant. This 95 % prediction interval
(Hulting and Harville, 1991) is given by:

|: fo.975(n — 1) \5‘? fo.o75(n — 1)

sd(é-”j)i|
Jn

where 7 is the number of trees, sd(§;) the empirical standard
deviation of the predicted random effect for growth phase j
and fy.975(n — 1) the 0-975th quantile of the Student ¢ distri-
bution with n — 1 degrees of freedom. If a predicted random
effect does not belong to the 95 % prediction interval, the
influence of this random effect is significant, i.e. there is a
marked difference between this individual and the ‘average
tree’ in the corresponding growth phase.

RESULTS
Corsican pines: length of annual shoots

It was assumed that the ontogenetic component was common
to the four sub-samples. We thus chose to estimate a single
‘left—right’ three-state SMS-LMM, composed of two succes-
sive transient states followed by a final absorbing state, on
the basis of the four sub-samples of Corsican pines (from 6
to 23 years old). Hence, a given ontogenetic phase corresponds
to different ranges of years for the different sub-samples and
the regression parameters 8, for cumulative rainfall are esti-
mated more accurately for each growth phase j (Fig. 1). The
practical approach discussed in Guédon et al. (2007) was
applied to determine the number of phases, i.e. the number
of states of the underlying semi-Markov chain.

Corsican pine is a monocyclic species (with very little poly-
cyclism in early plant life) where the organogenesis period
ranges approximately from early July to late October and the
elongation period from early May to late July (see Lanner,
1976; Fig. 4). In temperate regions, rainfall can have a
one-year-delayed effect (on the number of phytomers) or an
immediate effect (on shoot elongation) depending on
whether it occurs during organogenesis or elongation; see
Cannell et al. (1976). We thus chose to use cumulative rainfall
over a period covering organogenesis and elongation of an
annual shoot and to centre this climatic explanatory variable;
see Fitzmaurice et al. (2004) for discussion of the centring
issue. Because of the centring, the intercept B;; is directly
interpretable as the average length of successive annual
shoots within growth phase j.
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Fic. 4. Corsican pine: organogenesis and elongation periods (based on assumptions from Lanner, 1976). Semi-Markov switching linear models (i.e. without
random effects for modelling inter-individual heterogeneity) were estimated for different periods covering organogenesis and elongation periods. The best
period (in bold) was chosen on the basis of the best observed data log-likelihood (log L).

In order to define the most significant period, a ‘left—right’
three-state semi-Markov switching linear model (i.e. without
random effects for modelling inter-individual heterogeneity)
was estimated for different periods on the basis of the four sub-
samples of Corsican pines. In this sensitivity analysis, the
period was selected on the basis of observed data log-
likelihood (Fig. 4). Longer periods giving rise to less relevant
results were also tested (results not shown). Centred cumula-
tive rainfall (in mm) from June the previous year to June of
the current year, which covers one organogenesis period and
one elongation period, was finally selected. A ‘left—right’
three-state SMS-LMM was thus estimated with this centred
cumulative rainfall as explanatory variable.

Population properties. The iterative estimation algorithm was
initialized with a ‘left—right” model such that ;> 0 for
each state j, p;; = 0 for j <7 and p; > 0 for j > i for each tran-
sient state 7, p; = 1 and p;; = 0 for j # i for the final absorbing
state. The fact that states 1 and 2 are the only possible initial
states (with 7y = 0-95 and 7, = 0-05 at convergence) and
that state 2 cannot be skipped (i.e. pj3 =0 at convergence)
is the result of the iterative estimation procedure (see Fig. 5).
The estimated transition probability matrix is thus degenerate,
i.e. for each transient state i, p; ;41 = 1 and p;; = O forj # i + 1.
This deterministic succession of states supports the assumption
of a succession of growth phases. It should be noted that the
estimated state occupancy distributions for states 1 and 2
(Fig. 5) are far from geometric distributions in terms of
shape and relative dispersion; see the Appendix for the defi-
nition of the geometric state occupancy distributions of
Markov chains. These estimated state occupancy distributions
have a low dispersion (Table 2), which expresses a strong
structuring in the succession of growth phases along the tree
trunks. This is an a posteriori justification of the
semi-Markovian modelling of growth phases.

The state occupancy distributions estimated for a GHSMC
(i.e. without taking into account the effect of climatic explana-
tory variables and inter-individual heterogeneity) and for a
SMS-LMM were compared. When the effects of climatic
explanatory variables and inter-individual heterogeneity were
taken into account, this rendered the growth phases more syn-
chronous between individuals; see the estimated state occu-
pancy distributions, in particular their standard deviations,
for the two models in Table 2 and Fig. 5.

The optimal segmentation into growth phases was computed
for each observed sequence using a Viterbi-like algorithm. The
optimal segmentations of the observed sequences were used, in
particular, to compute the characteristics of the first year in
each growth phase, the mean centred cumulative rainfall and
the average cumulative rainfall effect in each growth phase
(see below).

The characteristics (median and dispersion) of the first year
in each growth phase were extracted for the four sub-samples
of Corsican pines using either the estimated GHSMC or the
estimated SMS-LMM. The median first year in the second
growth phase for the four sub-samples was similar for the
two models (Table 3). The median first year in the third
growth phase for the 6-year-old Corsican pines was similar
for the two models. A shift of 1 year was noted for the
median first year in the third growth phase between the two
models for 12-, 18- and 23-year-old Corsican pines. The dis-
persion of the first year in the second and third growth
phases was greatly reduced in the SMS-LMM case compared
with the GHSMC case for 18-year-old Corsican pines
(Table 3).

The marginal observation distribution of the linear mixed
model attached to growth phase j is the Gaussian distribution
N(w, I7) with w; = Bj1 + BoE;(X) and I7 = 77 + o7 where
E;(X) is the mean centred cumulative rainfall in growth
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TaBLE 2. Corsican pine: comparison of estimated Gaussian hidden
semi-Markov chain (GHSMC) parameters with estimated semi-
Markov switching linear mixed model (SMS-LMM) parameters

TaBLE 3. Corsican pine: median first year in state 2 and state 3
for each sub-sample deduced from the estimated Gaussian
hidden  semi-Markov chain (GHSMC) and semi-Markov

(state  occupancy distributions and marginal observation  switching linear mixed model (SMS-LMM) (corresponding
distributions) standard deviations are given in parentheses)
State 6 years old 12 years old 18 years old 23 years old
1 2 3 State 2
GHSMC 1993 (0-56) 1988 (0-42) 1982 (1-93) 1978 (1-04)
Occupancy distribution (year), mean, s.d. SMS-LMM 1993 (0-56) 1988 (0-50) 1982 (0-56) 1978 (1-17)
GHSMC P(1, 1-88) NB(l1, 4-36, 0-5) State 3
2-88, 1:37 5-31, 2:93 GHSMC 1995 (0-35) 1993 (1-00) 1988 (2-56) 1981 (0-78)
SMS-LMM B(2, 4,0-37) NB(l, 73-29, 0-94) SMS-LMM 1995 (0-38) 1992 (0-87) 1989 (1-27) 1982 (0-77)
273, 0-68 5-56, 220
Regression parameters
Intercept (B;;) (cm) 7-09 25-79 50-25
Cumulative rainfall . . .
Parameter B (cm mm™') 27 x 1073 165 x 1073 30.9 x 103 Well. separated (little ove.rlap between margmaliobservatlon
Average cumulative rainfall effect distributions corresponding to two successive states);
Bi» x mad;(X) (cm) 023 171 376 compare the mean difference w;; — u; between consecutive
Bjp x mad(X)/B;y 3210 6:6 x 10 7-5 % 10 states with the standard deviations I and I, in Table 2.
Variability decomposition . . .
. The fixed part of the three observation linear mixed models
Random variance 712 579 49-89 69-39 R . .
Residual variance o7 474 39.95 76.86 (i.e. Bj1 + Bj» x centred cumulative rainfall for each growth
Total variance 7 1053 89-84 14625 phase j) for 18- and 23-year-old trees is shown in Fig. 6.
Proportion of inter-individual This confirms that the growth phases are well separated with
heterogeneity (%) 5499 5553 4745 little overlap and correspond to a growth increase. This consti-
Marginal observation distribution (u;, 1) (cm) tut th lidati f th ti £ R £
GHSMC 697,336~ 26:30,9-12 5435, 1130  tutes another validation of the assumption of a succession o
SMS-LMM 699, 3.24 25.88, 9.48 5032, 12.09  growth phases; see Guédon et al. (2007) for a more in-depth

For each observation linear mixed model, the intercept, the regression
parameter for cumulative rainfall, the average cumulative rainfall effect and
the variability decomposition are given.

phase j. The marginal observation distribution represents the
length of the annual shoots in growth phase j. The marginal
observation distributions for the different growth phases are

analysis of the marginal observation distributions.

The average cumulative rainfall effect (i.e. the average
amplitude of the climatic fluctuations) was computed as
Bj> x mad;(X) for each growth phase j where mad;(X) is the
mean absolute deviation of the centred cumulative rainfall in
growth phase j. The effect of cumulative rainfall was weak
in the first growth phase (of slowest growth) whereas it was
stronger in the last two growth phases (less in the second
than in the third phase; see Table 2).
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F1G. 6. Corsican pine: fixed part of the three observation linear mixed models (i.e. 8;; 4 B> x centred cumulative rainfall for each state j) represented by lines,
and observed annual shoot lengths for state 1, state 2, and state 3, as indicated; (A) 18- and (B) 23-year-old trees.

TaBLE 4. Classification of Corsican pine behaviour between

growth phases

Behaviour
Group  State 1 State 2 State 3 No. of Corsican pines
Gl * = * = * 29
G2 * — * # * 6
G3 * #* * = * 13
n.s. * = * 11
n.s. * #* * 4
* = n.s. = * 1
* #* n.s #* * 5
* = * n.s 9
* #* * n.s 10
n.s n.s. * 4
n.s * n.s. 2
* n.s. n.s. 7

A 95 % prediction interval was computed for each state. If the random
effects do not belong to this 95 % prediction interval, they were assumed to
be significant (*). If the random effects belong to this 95 % prediction
interval, they were assumed to be non-significant (n.s.). The behaviour
between two growth phases can be identical (=) or different (). This
classification was established on the basis of the predicted random effects.

The proportion of inter-individual heterogeneity, defined by
the ratio between the random effect variance 7; and the total
variance Ff, was greater in early plant life (first two growth
phases, approx. 55 %) and decreased slightly in the last
growth phase (approx. 47 %). This large proportion of hetero-
geneity can be explained by the transplantation effect, the lack
of thinning and the sampling strategy (trees chosen to cover the
entire range of behaviours).

Individual behaviour. The correlation coefficient between the
predicted random effect in state 1 and the predicted random
effect in state 2 was 0-28 while the correlation coefficient
between the predicted random effect in state 2 and the pre-
dicted random effect in state 3 was 0-61. Hence, the behaviour
of an individual is more strongly related between the last two
growth phases than between the first two growth phases.

The 95 % prediction interval was computed using the
random effect predicted for each tree in each growth phase.
Of the 103 Corsican pines, 50 had a significant random
effect in each growth phase (Gl + G2+ G3+ G4 in
Table 4) and of these 50 individuals, 29 showed a common be-
haviour over all growth phases (i.e. growing either more
rapidly or more slowly than the ‘average tree’ in all growth
phases) but 21 showed different behaviours between growth
phases. This is an a posteriori justification of the assumption
of a random effect attached to each growth phase. The
average tree profile (i.e. B, 1+ Bs, 2 X centred cumulative
rainfall for each year t) and the predicted tree profile (i.e.
average tree profile value + 7, &, for each year t) can be
computed for each Corsican pine a on the basis of the
optimal segmentation of the observed sequence and the pre-
dicted random effects computed using the estimated
SMS-LMM. The regression parameters §;; and S, describe
patterns of change in the mean response over year (and their
relation to explanatory variables) in the Corsican pine popu-
lation, while 7;¢,; describes the deviation in growth phase j
of the ath tree profile with reference to the average tree
profile; see Fig. 7 for the predicted tree profiles of four
Corsican pines. The tree status with reference to the average
tree can be common to all growth phases but modulated in
terms of deviation between growth phases; see Corsican pine
26 and Corsican pine 13 in Fig. 7. The tree status can also
be different in each growth phase; see Corsican pine 3 and
Corsican pine 4 in Fig. 7. However, most of the Corsican
pines had a common behaviour over the two last growth
phases (Table 4). The more general assumption of a random
effect attached to each growth phase is thus more representa-
tive of Corsican pine behaviour than the assumption of a
random effect common to all the growth phases.

Corsican pines: number of branches per tier

In Guédon er al. (2007), a hidden semi-Markov chain was
built on the basis of bivariate sequences, the two observed
variables being the length of the annual shoot and the
number of branches per tier. Instead of considering these
two observed variables on an equal footing, we chose here
to investigate an alternative assumption in which the length
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F16. 7. Four selected 18-year-old Corsican pines: average tree profile (i.e. By 1 + B, » x centred cumulative rainfall for each year 7) represented by squares and

solid line, predicted tree profile (i.e. average tree profile value +, &, for each year t) represented by circles and dotted lines, and observed annual shoot lengths

(i.e. y,, for each year t) represented by closed circles. The average and predicted tree profiles were computed for each selected Corsican pine on the basis of the
optimal segmentation of the observed sequence computed using the estimated SMS-LMM.

of the annual shoot influences the number of branches located
at its top. The number of branches per tier is strongly corre-
lated with annual shoot length (r = 0-66). Hence, when intro-
ducing annual shoot length as an explanatory variable, it is no
longer necessary to model explicitly the phases for the
‘number of branches per tier’ response variable. A simple
linear mixed model was thus estimated where both annual
shoot length and centred cumulative rainfall were taken into
account as explanatory variables (and their influences mod-
elled as fixed effects). As climatic explanatory variable, the
centred cumulative rainfall (in mm) from August to
December of the current year was selected, this covering the
organogenesis period of offspring shoots (following Lanner,
1976). This climatic explanatory variable was found to be
not correlated with the annual shoot length explanatory vari-
able (r = 0-07). The influence of cumulative rainfall was not
significant (P ~ 0-79) while, as expected, annual shoot
length had a marked effect. As most of the inter-individual
heterogeneity was already taken into account in the annual
shoot length explanatory variable, the proportion of inter-
individual heterogeneity was less than 14 %.

Sessile oaks

Sessile oak is a polycyclic species for which the organogen-
esis periods for all cycles, except the first, and the elongation
periods range approximately from March to September and the
organogenesis period for the next-year first cycle ranges
approximately from August to October (Lavarenne et al.,
1971; Champagnat et al., 1986; Fontaine et al., 1999).
Centred cumulative rainfall (in mm) from August the previous

year to August of the current year was selected as climatic
explanatory variable on the basis of a sensitivity analysis com-
paring various periods covering annual shoot organogenesis
and elongation.

A ‘left—right’ two-state SMS-LMM composed of a transient
state followed by a final absorbing state was estimated on the
basis of the two sub-samples of sessile oaks. The optimal seg-
mentation into growth phases was computed for each observed
sequence using a Viterbi-like algorithm. As in the Corsican
pine case, the growth phases were more synchronous
between trees than with a GHSMC (Table 5). Nevertheless,
the gain in synchronism was less marked than in the
Corsican pine case; see the characteristics of the state occu-
pancy distributions in Tables 2 and 5.

The marginal observation distributions for the two growth
phases were well separated (little overlap between the two
marginal observation distributions); compare the mean differ-
ence M, — my with the standard deviations Iy and I3 in
Table 5. The fixed part of the two observation linear mixed
models (i.e. B;; + Bj» x centred cumulative rainfall for each
growth phase j) for 15- and 29-year-old trees is shown in
Fig. 8. It should be noted that only the second phase of
fastest growth is represented in the 29-year-old sessile oaks.
This confirms that the two growth phases are well separated
with little overlap. This constitutes a validation of the assump-
tion of a succession of growth phases.

The effect of cumulative rainfall was weak in the first
growth phase but far stronger in the second (Table 5). As in
the Corsican pine case, the effect of the climatic explanatory
variable was roughly proportional to the growth level; see
the joint variations of the intercept $;; and the cumulative
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TABLE 5. Sessile oak: comparison of estimated Gaussian hidden
semi-Markov chain (GHSMC) parameters with estimated semi-
Markov switching linear mixed model (SMS-LMM) parameters

(state  occupancy distributions and marginal observation
distributions)
State

1 2
Occupancy distribution (year) mean, s.d.
GHSMC B(l, 8, 0-52)

4-64, 132
SMS-LMM B(l1, 7, 0-63)

477, 1-18
Regression parameters
Intercept B;; (mm) 6-07 4598
Cumulative rainfall
Parameter 3, (cm mm™ ) 115 x 1073 739 x 1073
Average cumulative rainfall effect
Bj>» x mad;(X) (cm) 1.57 9.7
B> x mad;(X)/B;, 259 x 1072 21 x 1072
Variability decomposition
Random variance 2.02 33.45
Residual variance 02 10-64 41633
Total variance F 12-66 449.78
Proportion of mter individual 15-96 7-4
heterogeneity (%)
Marginal observation distribution (u;, I5) (cm)
GHSMC 6-35, 379 45-18, 24-18
SMS-LMM 6-32, 3-56 4598, 21-21

For each observation linear mixed model, the intercept, the regression
parameter for cumulative rainfall, the average cumulative rainfall effect and
the variability decomposition are given.

rainfall parameter 3, with growth phase j in Tables 2 and 5.
The relative effect of cumulative rainfall was far stronger for
the sessile oaks than for the Corsican pines; see the B, x
mad;(X)/B3;, ratios in Table 5, which are more than 3-1 times
the corresponding ratios in Table 2.

Unlike for the Corsican pines, total variability was
roughly proportional to growth level (see w; and I in
Tables 2 and 5). Inter-individual heterogeneity was
greater in early plant life (first growth phase). However,
the proportion of the variability due to inter-individual het-
erogeneity was around 16 % in the first growth phase (of
slowest growth) and less than 8 % in the second growth
phase (of fastest growth). The small proportion of variabil-
ity due to inter-individual heterogeneity can be explained
by the fact that the individuals were selected from among
dominant or co-dominant trees (not from among all the
possible tree statuses as in the Corsican pine case), by thin-
ning and by synchronous natural regeneration for each
sub-sample.

The behaviour of the 15-year-old trees between the two
growth phases was compared. In the same manner as for the
Corsican pines, a 95 % prediction interval was computed for
each individual and each growth phase. Of the 20 sessile
oaks that had a significant random effect for each growth
phase, 12 showed a common behaviour over the two growth
phases. Again, in the same manner as in the Corsican pine
case, the assumption of a random effect attached to each
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Fic. 8. Sessile oak: fixed part of the two observation linear mixed models
(i.e. Bj; + Bj» x centred cumulative rainfall for each state j) represented by
lines, and observed annual shoot lengths for state 1 and state 2, as indicated;
(A) 15- and (B) 29-year-old trees: all trees are in the second growth phase.

growth phase was thus more realistic than the assumption of
a random effect common to all the growth phases.

DISCUSSION

Our starting assumption was a decomposition model in which
observed apical growth is the result of three components: an
ontogenetic component, an environmental ‘population’ com-
ponent and an individual component. For both Corsican pine
and sessile oak, the ontogenetic component takes the form of
a succession of growth phases. Each phase corresponds to a
set of potentialities related to annual shoot organization (see
Sabatier and Barthélémy, 1999; Barthélémy and Caraglio,
2007). The local growth conditions (competition between
trees, light availability) modulate the shoot length and conse-
quently the branching process (Nicolini et al., 2000).
Therefore, individual tree status can change with growth
phase, as highlighted by the estimated SMS-LMMs. For
instance, a tree can grow more slowly in the first phase than
the average tree, then more rapidly in the second phase. In for-
estry, it is often assumed that a ‘dominant’ tree (i.e. chosen
among the largest diameter trees at the mature stage) is domi-
nant throughout its development. This sometimes entails diffi-
culties in result interpretations (Fantin and Morin, 2002). The
statistical models introduced here enabled us to highlight
changes of social status between phases. This type of behav-
iour should be integrated in future forest stand production
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models in order to predict more accurately tree production.
More generally, the proper characterization of population prop-
erties and individual properties should be helpful in building
future forest stand models integrating individual characteriz-
ations (Goreaud et al., 2002).

When the effect of climatic explanatory variables and inter-
individual heterogeneity were taken into account, this rendered
the growth phases more synchronous between individuals than
with a simple GHSMC. The growth phases identified by the
estimated SMS-LMMs were not defined only by the average
length of annual shoots but also by the amplitude of synchro-
nous fluctuations between individuals due to climatic factors
and by the proportion of inter-individual heterogeneity; see
Bj1, Bj» x mad;(X) and 712/1'}2 respectively in Tables 2 and 5.
This is an a posteriori justification of the building of an inte-
grative statistical model representing both the ontogenetic,
environmental and individual components.

The environmental and individual components had very
different weights for Corsican pine and sessile oak:

(1) The influence of cumulative rainfall was far weaker in
Corsican pine than in sessile oak. The greater sensitivity
of sessile oak to this climatic factor may be explained
by its plasticity due to its capacity to produce more than
one growth unit in a growing season (Barthélémy and
Caraglio, 2007), the production of supplementary growth
units being partly monitored by environmental conditions;
see Sabatier et al. (2003) for an illustration in Atlas cedar.

(2) The proportion of inter-individual heterogeneity was far
greater for Corsican pine than for sessile oak.

Despite these greatly contrasted weights of environmental and
individual components, the changes with growth phase were
similar. The influence of the climatic explanatory variable
(i.e. cumulative rainfall over a period covering organogenesis
and elongation) was weak in the first growth phase (corre-
sponding to early plant life), then increased markedly with
growth phase while the proportion of inter-individual hetero-
geneity decreased more slightly. This contrasted sensitivity
to climatic factors in different growth phases can be explained
by (1) root establishment, which strongly competes with shoot
elongation and herbaceous competition in the first growth
phase (Rose and Rosner, 2005; Balandier et al., 2006), and
(2) larger leaf area in the subsequent phases, which broadens
response possibilities (Sterck et al., 1999).

The far smaller proportion of inter-individual heterogeneity
in sessile oak compared with Corsican pine may be explained
by the tree origin (natural regeneration for sessile oak versus
nursery for Corsican pine with the effects of transplantation
and variable root volume; Jacobs et al., 2005), silvicultural
interventions (thinning for sessile oak) and sampling strategy
(sessile oaks selected from among the dominant or
co-dominant trees and Corsican pines chosen to cover the
entire range of behaviours). It would be very useful in future
studies to evaluate the proportion of inter-individual hetero-
geneity for various species under similar conditions or for a
given species under various conditions such as different plan-
tation densities.

Information is available concerning the organogenesis
period of many northern temperate conifers (Sucoff, 1971;
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Cannell er al., 1976) and other forest trees (see MacDonald
et al., 1984; Puntieri et al., 2002). In the present study,
assumptions were made based on the sketchy information
related to the ‘Resinosa pattern’ (Lanner, 1976) for the Pinus
nigra group. Studies on the scheduling of organogenesis and
elongation of annual shoots could be helpful in establishing
more accurately the climatic period to be considered in statisti-
cal models. It would be also interesting to study the effect of
other climatic variables such as temperature (Owens et al.,
1977; Pensa et al., 2005; Salminen and Jalkanen, 2005;
Gordon et al., 2006).

In the present particular context, all data were collected ret-
rospectively, i.e. plant development was reconstituted at a
given observation date from morphological markers corre-
sponding to past events. As cambial growth and bark
changes obliterate morphological markers, direct observation
is restricted to the most recent entities. Hence, sub-samples
of trees corresponding to different age classes and growing
under similar conditions should be observed with particular
care regarding the overlapping of ontogenetic phases
between the different sub-samples in order to reconstitute
tree ontogenesis. The environmental component can be esti-
mated accurately only if the sample of years corresponding
to a given growth phase is of sufficient size. This requirement
can be met by observing sub-samples of trees corresponding to
different age classes, and growing under similar conditions. In
this way, a given growth phase corresponds to different ranges
of years for the different sub-samples and the regression par-
ameters 3, are estimated more accurately. Finally, sample
size should be sufficiently large to estimate the proportion of
inter-individual heterogeneity accurately.

The linear mixed model associated with the third growth
phase underestimated the observed mean length of successive
annual shoots in this phase for the 23-year-old Corsican pines
(Fig. 6B). This behaviour highlights a sub-sample or group
effect. A possible extension of the observation linear mixed
model would be to incorporate a group-wise random effect
in addition to the individual-wise random effect and the
fixed effect. The difference between individual groups (i.e.
inter-group heterogeneity) may have various origins, for
instance genetic (Segura et al., 2008), local environment
(e.g. density; Uzoh and Oliver, 2006) or soil properties
(Meng et al., 2007).

Segura et al. (2008) applied linear mixed models to longi-
tudinal apple tree data. Their models combine an age fixed
effect (ontogenetic component), a year fixed effect (environ-
mental component), a genotype random effect with several
random interactions. As the number of measurements per
apple tree was small (2—4), no structure was imposed on the
component of the mean response over time corresponding to
the age effect (non-parametric approach corresponding to a
saturated model component). This approach is much less
appealing when the number of measurements per tree
increases (Fitzmaurice et al., 2004). In the present case, it
was assumed that the mean response over time of the trees
can be considered as the result of an underlying ontogenetic
process for which a parsimonious parametric model can be
proposed (‘left—right’ semi-Markov chain). In our case the cli-
matic fixed effect plays the role of the year fixed effect of the
Segura et al. (2008) approach.
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The proposed statistical modelling approach relies on the
availability of climatic data. In the case where climatic data
are not available, a possibility would be to introduce a year
random effect common to all the trees to model the synchro-
nous part of the growth fluctuations; see Picard ef al. (2007)
for the introduction of this type of random effect in multiple
change-point models and David et al. (2007) for the introduc-
tion of this type of random effect in linear mixed models.

With SMS-LMMs, the response variable is constrained to be
approximately normally distributed. It would be very useful to
develop the statistical methodology for semi-Markov switch-
ing generalized linear mixed models to take into account
categorical or count response variables (e.g. apex death/life,
non-flowering/flowering character, number of growth units);
see McCulloch et al. (2008) for an introduction to generalized
linear mixed models.

The focus of the present study was apical growth. It would be
interesting to transpose the proposed integrative statistical mod-
elling approach to cambial growth and thus to study tree rings in
relation to climatic factors taking into account inter-individual
heterogeneity. It should be noted that this type of approach
requires an accurate retrospective dating of tree rings. An
avenue for future work would also be to revisit on this new
basis the relationship between apical and cambial growth.
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APPENDIX

Let {S;} be a discrete-time Markovian model with finite state
space {1, ..., J}; see Kulkarni (1995) for a general reference
regarding Markov and semi-Markov models.

Markov chains

A J-state Markov chain {S,} is defined by the following
parameters:

(1) initial probabilities 7; = P(S, = j) with Xm = 1;
(2) transition probabilities p; = P(S; =j|S;—1 = i)

with

One drawback with Markov chains is the inflexibility in
describing the time spent in a given state as the implicit occu-

pancy (or sojourn time) distribution of a non-absorbing state j
is the ‘1-shifted’ geometric distribution with parameter 1 — ﬁij
~ -l

diw) =(1-FF5 " u=12..

This geometric distribution assumption (the shorter the sojourn

time, the higher its probability) is rarely realistic for the mod-
elling of the length of growth phases.

Semi-Markov chains

A useful generalization of Markov chains lies in the class of
semi-Markov chains, in which the process moves out of a
given state according to an embedded Markov chain with self-
transition probability in non-absorbing states p;; = 0 and where
the time spent in a given non-absorbing state is modelled by an
explicit occupancy distribution.

A J-state semi-Markov chain {S,} is defined by the following
parameters:

(1) initial probabilities 7; = P(S; = j) with X;m = 1;
(2) transition probabilities:

(i) non-absorbing state i: for each j # i, p; = P(S, = jIS, # i,
Stfl = l) with 2j7ﬁipij =1 and Dii = O,
(ii) absorbing state i: p; = P(S; = i|S,—; = i) = 1 and for each

An explicit occupancy distribution is attached to each non-
absorbing state:

dj(u) = P(Si+u+1 # J, Sevu—y =J,v =0, ..., u = 2|81 =/,
S[#j), u=1,2,...

As t =1 is assumed to correspond to a state entering, the fol-
lowing relation is verified:

P(Sii1 # .S =jiv=0,....t—1)=d}(0)m

In the following, we define as possible parametric state
occupancy distributions binomial distributions, Poisson distri-
butions and negative binomial distributions with an additional
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shift parameter d (d > 1) which defines the minimum sojourn
time in a given state.

The binomial distribution with parameters d, n and p (¢ =
1 — p), B(d, n, p) where 0 < p < 1, is defined by

n—d u—d n—u
dj(u)=<u_d)p A,

The Poisson distribution with parameters d and A, P(d, A),
where A is a real number (A > 0), is defined by

u=d,d+1,....n

—)‘Au—d
(u—d)\’
The negative binomial distribution with parameters d, » and p,

NB(d, r, p), where ris a real number (r > 0) and 0 < p < 1, is
defined by

di(u) = u=d,d+1,...

d+r—1

d_,‘(u):<u_r_1 )p’q"_d, u=d,d+1,...

Hidden semi-Markov chains

A hidden semi-Markov chain can be viewed as a pair of
stochastic processes {S;, Y;} where the ‘output’ process {Y;}
is related to the ‘state’ process {S;}, which is a finite-state
semi-Markov chain, by a probabilistic function or mapping
denoted by f [hence Y, =f(S)]. As the mapping f is such
that f(j) = f(k) may be satisfied for some different j, k, i.e.
a given output may be observed in different states, the state
process {S,} is not observable directly but only indirectly
through the output process {Y;}. This output process {Y;} is
related to the semi-Markov chain {S,} by the observation
(or emission) probabilities

bj(y) = P(Y, = yIS; =)
h > ,bi(y) =1, discrete output process,
wit ’
[ bj(y)dy =1, continuous output process.

The definition of observation probabilities expresses the
assumption that the output process at time ¢ depends only
on the underlying semi-Markov chain at time f.

Gaussian hidden semi-Markov chains

Let Y, , be the observed variable and let S,, be the non-
observable state for individual a (a=1,..., n), at time ¢
(t=1,..., T,). In the particular case of GHSMCs, the obser-
vation distribution attached to state j is assumed to be the
Gaussian distribution N(u;, I'7). The observation probabilities
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are defined as follows:

bj(ya,) = ( al—yaz|Saz—])

_ (ya,t - /J’j)2
217 '

Semi-Markov switching linear mixed models

1
= ex
I'iv/2m p{

In the same manner as for a GHSMC, the output process
{Y,,;} of the SMS-LMM for individual a is related to the
state process {S,,, which is a finite-state semi-Markov
chain, by a linear mixed model (a linear mixed model can
be viewed as an extension of a classical linear model
where random effects are added to fixed effects; see
Verbeke and Molenberghs, 2000). It assumes that the
vector of repeated measurements on each individual
follows, in each state, a linear regression model where
some of the regression parameters are population-specific
(i.e. the same for all individuals), whereas other parameters
are individual-specific. In our case, the individual status
(compared with the average individual) is assumed to be
different in each state:

Given state S;; = Sa.r

ga,sm ~ N(Oa 1)’

Ya,t - )(a,t,B.y(u + Tsas fa.sé,_, + Eats
Sa,t = Sa,t ™~ N(O, 0?[{_,)'

€at

The observed probabilities are defined as follows:

b(ya,)— ( ar—yazlsat—] gaj)

(ya,t - a,tBj
20

2
- T]'ga,j)

1
expl —
o/ 2m p{

In this definition, X,, is the Q-dimensional row vector of
explanatory variables for individual a at time 7. Given the
state S, =S4 Bs,, is the Q-dimensional fixed effect par-
ameter vector, §m is the individual a random effect, L T
is the standard deviation for the random effect and (rY is
the residual variance. The individuals are assumed to be
independent. For convenience, random effects are assumed
to follow the standard Gaussian distribution. The random
effects for an individual @ are assumed to be mutually
independent (cov(&,;, &,;,)=0; i # j). Observations in
different states for an individual a are assumed to be con-
ditionally independent given states (for t # ¢, cov(Y,,,

Yar ‘S = s D=0 if s, # s.r cov(Yas, Yar

a,l —

T, u

Sa1:s 1) ’Tfa if Sar = Sar WhereS 1—(Sals a23-~-sSa,T,1)
denotes the T ,dimensional vector of non-observable states for

individual a).

and



