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Abstract

Participants in longitudinal studies on the effects of drug treatment and criminal justice system
interventions are at high risk for institutionalization (e.g., spending time in an environment where
their freedom to use drugs, commit crimes, or engage in risky behavior may be circumscribed).
Methods used for estimating treatment effects in the presence of institutionalization during follow-
up can be highly sensitive to assumptions that are unlikely to be met in applications and thus likely
to yield misleading inferences. In this paper, we consider the use of principal stratification to control
for institutionalization at follow-up. Principal stratification has been suggested for similar problems
where outcomes are unobservable for samples of study participants because of dropout, death, or
other forms of censoring. The method identifies principal strata within which causal effects are well
defined and potentially estimable. We extend the method of principal stratification to model
institutionalization at follow-up and estimate the effect of residential substance abuse treatment
versus outpatient services in a large scale study of adolescent substance abuse treatment programs.
Additionally, we discuss practical issues in applying the principal stratification model to data. We
show via simulation studies that the model can only recover true effects provided the data meet
strenuous demands and that there must be caution taken when implementing principal stratification
as a technique to control for post-treatment confounders such as institutionalization.
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1. Introduction

Each year almost 1.8 million Americans receive alcohol and other drug treatment services.

Efforts to improve these services through research or provider profiling are hindered by drug
treatment clients’ high rates of post-treatment institutionalization, defined here as spending a
day or more in a controlled environment (e.g., a jail, prison, hospital, residential treatment or
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group home setting) where the possibility of drug use and criminal activity is substantially
diminished. By reducing the potential for substance use, institutionalization masks the potential
effects of substance use treatment programs. For example, outcomes of clients from both
effective and ineffective treatment programs will look the same when they have no access to
drugs or alcohol.

The confounding of treatment effects due to institutionalization can not be ignored when
evaluating substance abuse treatment programs, because institutionalization is so pervasive
among drug treatment clients. For instance, in the Drug Abuse Treatment Outcomes Study
[7], 40% of the 2,966 clients in substance abuse treatment programs interviewed 12-months
after discharge reported being institutionalized for some part of the preceding year [21]. Among
those with any institutionalization, the average number of days institutionalized out of the past
365 was 115 [21]. Similarly, about 52% of the sample from the National Treatment
Improvement Evaluation (NTIES; [22,14]) were institutionalized during the study’s 12-month
post-treatment evaluation, many for the entire length of the evaluation period.

The confounding effects of institutionalization are not, however, limited to substance abuse
treatment programs. Criminal justice system clients are also at great risk for being
institutionalized following an intervention. Moreover, patients involved in many health studies
are at risk for hospitalizations which can limit or suppress the measurement of primary
outcomes of interest in those studies (e.g., daily physical activities for a general population or
falls for geriatric patients). In all of these cases, a post-treatment factor (e.g. institutionalization
or hospitalization) whose value is determined after the start of treatment consequently
determines the potential range of the outcome that can be observed, thereby suppressing or
censoring the outcome of primary interest. In many situations, inferences are further
complicated by the fact that the confounding factor can take on many levels giving rise to
outcomes which are observed at different values of the confounding variable and invalidating
the comparability of outcomes in the treatment and control groups.

In a recent paper, McCaffrey, Morral, Ridgeway, et. al. (2007) [11] developed a statistical
model to describe the different possible estimates of the causal effect of treatment in the
presence of institutionalization and the potential confounding effects of institutionalization on
these estimates. The paper identifies commonly used analytic methods for estimating treatment
effects in the presence of institutionalization and demonstrates that the estimated treatment
effects can vary greatly depending on which method is employed. The paper also identifies
assumptions under which the various approaches yield unbiased estimates of the treatment
effects of interest. Unfortunately many of the assumptions required appear unlikely to hold in
most real world applications.

Institutionalization is similar to the problem of incomplete compliance in drug trials. In both
problems, cases assigned to treatment have multiple potential outcomes that can vary
depending on a variable not controlled by the experimenter: dose of the drug (i.e., level of
compliance) in drug trials or days institutionalized in our example. Hence methods for
estimating the dose-response curve from partial compliance data, such as Efron and Feldman
(1991) [4], might apply to the institutionalization problem. However, these methods make
substantial use of the fact that treatment is a complete dose of the drug, whereas, in our example
institutionalization is not related to the amount or type of treatment received but is an external
event that curtails use censoring the outcomes of interest.

The problem of institutionalization is more similar to the problems addressed by the methods
of principal stratification. Developed by Frangakis and Rubin (2002) [5] for problems where
outcomes are unobservable for samples of study participants because of dropout, death, or other
forms of censoring (e.g., failure to find employment in a jobs program), the method identifies
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principal strata within which causal effects are well defined and potentially estimable. Roughly
speaking, Frangakis and Rubin (2002) [5] noted that in data with censoring, cases that receive
treatment and have observed outcomes are a mix of cases that would have observed outcomes
under control and those that would not. Similarly cases that receive the control condition and
have observed outcomes are a mix of cases that would have observed outcomes under treatment
and those that would not. A study participant’s censoring statuses under the treatment and
control conditions define the strata within the population, called principal strata. Analyses that
condition on cases in the strata where participants would be observed under both treatment and
control can provide unbiased treatment effect estimates assuming no other biasing factors. The
key innovation to the work of principal stratification is the recognition that conditioning on
censoring statuses under treatment and control is sufficient to allow for unbiased estimation of
treatment effects.

Principal strata notions extend to the problem of institutionalization at follow-up with only
slight modifications to the methods for censored data. In particular, modifications are necessary
because institutionalization can take on more than the two levels of censored and uncensored.
Also, outcomes are observed at all levels of institutionalization and treatment effects at various
levels may be of interest.

Using data from the Adolescent Treatment Models (ATM) study, fielded between 1998 and
2002 by the Substance Abuse and Mental Health Services Administration, Center for Substance
Abuse Treatment, we aim to examine the effects of treatment modality (residential versus
outpatient) on the 12-month substance use outcomes for adolescents who participated in the
ATM using principal stratification. In the ATM, high rates of institutionalization clearly
confound the effects of treatment modality. Adolescents in residential treatment have
significantly higher rates of institutionalization and lower mean drug use frequency outcomes
at the 12-month follow-up. Given that institutionalization in the sample can be shown to yield
lower drug use outcomes ([11]), it is unclear whether adolescents in residential treatment truly
have lower mean values of the outcome because the treatment is more effective than outpatient
treatment or because they tend to be institutionalized more often.

The goal of this paper is to extend principal stratification to control for the confounding effects
of institutionalization and to evaluate the sensitivity of the extended model to various
assumptions about the data. Section 2 describes the data from the ATM study and illustrates
the confounding effects institutionalization is likely to have when examining treatment effects
in this study. Section 3 describes the method of principal stratification and its extension in more
detail and applies the method to the ATM data to examine the effects of substance use treatment
modality (residential versus outpatient) on drug use outcomes for adolescents in the study.
Section 4 evaluates the principal stratification method presented using a series of simulation
studies and Section 5 provides a discussion of our findings and recommendations for practice
and future research.

2. Adolescent Treatment Models Study and the Institutionalization Confound

The number of adolescents receiving substance abuse treatment has increased by over 65% in
the last 10 or so years and policy makers, clinicians, and parents want to know if treatment is
effective and for whom it is effective as well as what treatment modalities are best. We address
these questions through a study of the effects of treatment modality (residential versus
outpatient) on the 12-month substance use outcomes for adolescents who participated in the
ATM study. The ATM study collected treatment admission and 12-month outcomes data for
new admissions to 10 community-based treatment programs in the United States, including
six residential programs and four outpatient programs (for details of the ATM study and
treatment programs, see [20]).
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The sample used in the present analysis includes all new admissions to the 10 programs in the
main ATM analytic dataset, which was produced in March of 2002. Of these 1,384 cases, 1,256
(90.75%) completed a 12-month follow-up survey and provided data on the outcomes of
interest. Only cases with follow-up data are included in the analysis presented below.

For purposes of the illustrations presented in this report, we examine the effects of treatment
modality on the Substance Frequency Scale (SFS), a widely used scale from the Global
Appraisal of Individual Needs (GAIN; [3]), the survey instrument used at every site for baseline
and 12-month outcome assessments. The SFS averages responses to a series of questions on
the frequency of recent drug use, intoxication, and drug problems in the 90 days prior to the
12 month follow-up.? It is scaled so that higher values indicate greater substance use and more
drug problems. Days of institutionalization at follow-up is assessed with the maximum number
of days—in the past 90—which the respondent reports being in any of several different types of
controlled environments (e.g., inpatient psychiatric or medical hospitals, residential treatment
facilities, juvenile halls or other criminal justice detention facilities, etc.).

Figure 1 on page 6 shows a scatter plot and smooth of mean SFS versus the number of days
institutionalized for adolescents enrolled in residential and outpatient care treatment modalities
in the ATM. As shown, more adolescents in residential treatment have days of
institutionalization greater than 0. In fact, 52% of adolescents in residential care were
institutionalized for at least one day in the past 90 at the 12-month follow-up while only 38%
of adolescents in outpatient care were institutionalized at follow-up (see Table 1 on page 7).
Figure 1 on page 6 also reveals the suppression effect that institutionalization can have on SFS.
As the number of days institutionalized increases, the observed values of SFS in the ATM data
appear to decrease. This relationship can be seen more clearly in the smooth of SFS versus
days institutionalized also shown in the figure.

In addition to the suppression effect of institutionalization, Figure 1 on page 6 also clearly
reveals the potential selection effects that exists in this data between adolescents with and
without any days of institutionalization. The mean value of SFS for adolescents who are not
institutionalized at follow-up (represented by the black X above 0 days institutionalized in
Figure 1 on page 6) is markedly lower than the mean values for adolescents with only a few
days of institutionalization (shown along the smoothed line in Figure 1 on page 6). The
difference in mean SFS between these adolescents suggests that adolescents who were
institutionalized in the 90 days prior to the 12 month follow-up tended to be more difficult
cases with higher levels of drug use than those adolescents not entering institutional settings.

Both the suppression and selection effects of institutionalization in the ATM data could distort
inferences about the effects of treatment on SFS. Table 1 on page 7 provides weighted
descriptive statistics (see below for more details on weighting) for SFS and institutionalization
at follow-up by treatment modality. As shown, adolescents in residential treatment have higher
rates of institutionalization and lower mean SFS. Given that institutionalization appears to
suppress substance use in this sample, it is unclear whether adolescents in residential treatment
have lower mean values of SFS because they have decreased their substance use in response
to residential treatment or because they tend to be institutionalized more often.

Unfortunately, as described in McCaffrey et al. (2007) [11], current methods for handling
institutionalization are not adequate and require strong assumptions which are unlikely to hold
in practice. In light of these findings, we propose the use of principal stratification to obtain
policy-relevant treatment effects on this data which appropriately control for the suppression
and selection effects institutionalization can have on SFS.

Lin this illustration we multiplied SFS by 90 to make it scale with use in the past 90 days rather than use per day.
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3. Principal Stratification

Principal stratification was developed by Frangakis and Rubin (2002) [5] as a method for
accounting for post-treatment confounds within the context of the Neyman-Rubin causal
model. Hence, we begin by extending the Neyman-Rubin causal model to account for
institutionalization and then turn to describe the specific innovations of the principal
stratification approach.

3.1. A Causal Model for Treatment Effects in the Presence of Institutionalization

We start by considering the treatment effect of a single intervention versus a control in the
simple case without any institutionalization. In this case, the Neyman-Rubin causal model
([6,15]) considers two potential outcomes and one random variable for each case in the study.
The potential outcomes are Yy, the outcome after receiving the control condition, and Y4, the
outcome after receiving the treatment condition. Throughout we assume that Stable Unit
Treatment Value Assumption (SUTVA) holds so that for each case the potential outcomes are
unique and well defined. See [17] for details on SUTVA.

The treatment effect for each individual is Y1 —Yg. Typically this is summarized by its mean
across study participants. However, we cannot directly estimate the treatment effect for
individual cases or the mean across cases because cases cannot be observed under both the
treatment and the control conditions. The condition under which each case is observed is
determined by the random treatment assignment variable T, which equals 1 for treatment and
0 for control. When T = 1, we observe Y1, otherwise Yg is observed. This results in the random
variable Ygps = Y.

Unbiased estimation of the average treatment effect is possible if cases with T = 1 have the
same expected values of their potential outcomes as cases with T = 0. Under this assumption,
E(Yops|T = 1) = E(Y1) and E(Yqps| T = 0) = E(Yp), where expectation is over the participating
cases. Hence, the difference in the observed treatment and control means yields an unbiased
estimate of the average causal effect of treatment.

Consistent estimation is also possible in situations where treatment assignment might depend
on observable characteristics, such as observational studies where study participants self-select
into the treatment programs being studied. In such circumstances, consistent estimates can be
obtained by comparing the means for cases with the same probability of treatment and using
propensity score weights to adjust for selection effects into a particular treatment [16].

In the presence of institutionalization, the Neyman-Rubin causal model described above must
be expanded to allow for cases to have potential levels of institutionalization, which we denote
by Zy and Z4 for the control and treatment conditions, respectively. The model must also allow
for different potential outcomes at each level of institutionalization. For example, a case might
have a different potential outcome when institutionalized 0 days, compared to 1, 2 or 3 or more
days. We let Zihax equal the maximum possible value for institutionalization. Then, for
treatment, T = 1, we label the potential outcomes for a case as Y1[z], z = 0,...,Znax SO that
Y,[0] is the potential outcome if assigned to treatment and not institutionalized during the
follow-up period and Y1[1] is the potential outcome if assigned to treatment and had 1 day of
institutionalization, and so on to Zy,a«. The potential outcomes for control are Yg[z], z=0,

o Zimax-

Now, for each case, we can define different treatment effects for each of the different levels
of institutionalization, e.g., D[z] = Y1[z]-Yo[z] such that D[z] might change with z. While there
are multiple causal effects that might be of interest, not all may be estimable from the data
without strong assumptions. We might, for example, be interested in the average causal effect
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of D[0], e.g., the average causal effect had no one been institutionalized, which McCaffrey et
al. 2007 [11] refer to as the “unsuppressed treatment effect.” Additionally, we might also want
to estimate the average causal effect for cases at each of the observed values of
institutionalization as considered by Frangakis and Rubin (2002) [5] when they derived the
notion of principal stratification. We now turn to that concept.

3.2. Principal Stratification

To estimate the causal effects of treatment using the notions of principal stratification, we need
a model for both the outcomes and institutionalization. Specifically, we assume that
institutionalization can take on only a discrete set of values 0, 1,...,Zmax for both treatment and
control. For example, if the follow-up interval for observing outcomes is 90 days then Z; and
Zgy can only take on a value from 0 to 90.

Under this assumption, we can in turn define Znnax * Zmax pPrincipal strata as shown in Table 2
on page 9. We define the probability that an individual falls into stratum (zo, z1) by p;0,1 = Pr
{Zp = 29,Z1 = 71} and define a density function for the potential outcome Yi[z]|Zo = 29,Z1 =
z; if a person falls into this stratum by f(y; 0, ;4 1) for zg, z; = 1,...,Zmax Where 0, ,, + denotes
the parameter vector for the assumed underlying density function f and t denotes whether or
not an individual received treatment (t = 1) or control (t = 0). We note that the probabilities,
Pzg,21, do not depend on treatment status because Zg and Z; are potential outcomes and a case’s
principal stratum remains the same regardless of which treatment he/she receives; treatment
only determines which value is observed. Conversely, the distribution of the potential
outcomes, f, is determined by the principal strata and treatment status of an individual. For
example, if we can assume the potential outcomes are normally distributed, then we might have
separate means and variances in 0, ,, + for each possible pair of values of (zg, z;) for both
treatment and control.

The primary treatment effects of interest in this model are E[D][z]|Zg = z, Z1 = Z], i.e., the
treatment effects for individuals with the same level of institutionalization under both treatment
and control. These treatment effects do not confound changes in institutionalization with other
effects of treatment and allow policy-makers, stake holders, and care givers to evaluate
treatment independent of the potentially costly and undesirable effects on institutionalization.
Each average effect is restricted to cases from a principal stratum. Generalizations to other
strata require additional assumptions.

We let S;; ¢ denote the set of all cases in condition t whose observed value of institutionalization
equals z. Then if y; denotes the observed outcome for the ith case, the likelihood for the
observed data is given by

LY,Z,T,0)= l_[ l—[ Zf'(yf;am,:l_l)p:o:lx
21 €51 20
[T 1080000z

20 €S0 2 (3.1)

This mixture distribution results from the fact that only Z4 or Zj is observed for each case.
Zhang, Rubin, and Mealli (2005) [23] presented a similar likelihood for their application of
principal stratification methods for estimating the causal effect of a jobs program. In their
model, Zmax Was 1 and the potential outcomes Y did not exist when Z; = 1. In our case, outcomes
can exist at every level of institutionalization.

Weights can be easily incorporated into the likelihood function in equation 3.1 allowing for
maximization of a weighted likelihood function. A natural application of such a weighted
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likelihood includes the maximization of the likelihood when comparing propensity score
weighted clients in one treatment program to unweighted clients in another as will be illustrated
in section 3.3 below.

For many common distributions, mixture likelihoods like 3.1 can be optimized using the EM
algorithm. Theoretically, we can use the EM algorithm to estimate causal effects with any set
of data. However, in practice the solution is unlikely to be so simple. First, if there are many
levels of Zto model, e.g., there will be many possible levels of institutionalization, then, without
any additional structure, there will be a very large number of parameters to estimate. To
diminish the dimensionality of the problem, one can consider modeling 6, ;; t as low order
polynomials in zg and z;. For example, we might assume E(Y1|Z1 = 27,20 =2g) = + B121 +
Bozo +yz12p. Second, it is well known that the convergence of likelihood optimizers for mixture
models can be sensitive to the starting values ([1,9,12,18]). Given the large numbers of mixtures
involved in this likelihood and the fact that identification of the parameters will depend on
matching the mixing proportions/probabilities across groups, sensitivity to starting values is
likely and careful consideration of these values will be required. We examine these issues more
carefully in Section 4.

3.3. Application of Principal Stratification to Estimating Modality Effects SFS in the ATM

To tease out the effect of treatment modality on SFS in the presence of institutionalization, we
fit a four strata principal stratification model to our data from the ATM study where Zy and
Z1 can only take on two values, namely 0 and 1. Thus, we dichotomized days institutionalized
such that Z; = 0 if an individual had O days of institutionalization and Z; = 1 otherwise for t =
0, 1. We let t = 1 and = 0 denote residential and outpatient care treatment modalities,
respectively. This model allows us to compute treatment effects among adolescents who would
not be institutionalized under both treatment and control and among adolescents who would
be institutionalized under both treatment and control.

Because SFS has a very skewed distribution with many observed zeros (see Figure 1 on page
6), we assumed the underlying distribution for Y within each stratum was tobit [10] (e.g.,

1(y<0) 1(y>0
JOibz0.2.0 = GOttt D) =0 % gttt &) 09 \where G(y: 1, €2) and g(y; n, ¢2) denote
the distribution and density functions, respectively, for a normal random variable with mean

n and variance (2). The parameters 1., and % depend on treatment to allow for treatment

effects. As parameterized, 77, ., and ¢7 are not the mean (1;) and variance (o) of the tobit
distribution but of the truncated normal which defines the tobit.

Because the ATM is an observational study, there were observable differences in the
pretreatment characteristics of youths entering residential and outpatient care. Given these
pretreatment differences, any observed differences in treatment group outcomes could result
either from differential effectiveness of the treatment modalities, or because of differences in
how hard their respective populations are to treat. In order to isolate just the treatment effects
of interest, we must compare treatments on equivalent cases. Thus, for the case study, we
compare the effectiveness of the two modalities on cases like those in the ATM sample who
entered the residential modality. We achieve this comparison by weighting the outpatient
sample so that it closely matches the residential sample in terms of the distribution of 86
pretreatment variables expected to be related to substance use and treatment assignment [13].
Details on the weighting and comparison of the weighted groups can be found in [11].

In the remainder of the analysis reported in this example, we compare the unweighted

residential sample (n=770) to the weighted outpatient sample (n=486, effective sample size =
125), a comparison designed to examine whether the residential modality produces better 12-
month outcomes than outpatient care for cases with pretreatment characteristics like those of
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clients who usually enter residential care. We maximize the weighted likelihood in 3.1 using
the EM algorithm. Preliminary results suggested that estimates could be very sensitive to
starting values used with the EM algorithm. Consequently, we developed the following
approach for selecting starting values.

First, among the residential cases observed to have Z; =0, we fit a mixture model of two normal
distributions using a simple EM algorithm [2] to obtain estimates of the two means and their

corresponding mixing proportions for this group. We labeled the two means ﬁi‘ and ﬁ;_ﬂ. Under
our model, we know that the observed means for residential cases with Z; = 0 is a mixture of

o and 14, 0 ﬁéd is an estimate of one of these means and ﬁ;.,, is an estimate of the other;
however, we do not know which is which. We thus used starting values which allow for both
possible mappings in this group.

We repeated this procedure for residential cases with Z; = 1 and outpatient cases for both Z,
equal to 0 and 1. These steps, in turn, yielded preliminary estimates of the eight mean
parameters of the model and their associated mixing proportions. All that remained was to
determine how the eight means mapped to the model parameters. There are 16 possible
mappings from the preliminary estimates of the simple mixture models to the parameters of
the model. For example, one mapping assumes that

1 =1 =1 =1 =0 =<0 =0 -0 \..¢matec(yyl ,1% ,1 ,1 ,0 O O 0O
OIOA’#043’#1.;&’#I.B’#ALO’#RO’IJA.I’/JB.I) estimates (/J().O’MO.I"ul.O’#l.l’MO.O’rulAO’#O.l’#l.l)- The

remaining 15 mappings are obtained by switching the mapping of A and B for each observed
value of Z; and Zy to 0 and 1 exhaustively.

To obtain the final parameter estimates of the model, we ran the EM algorithm to maximize
3.1 separately for each of the 16 possible mappings of the estimates from the simple mixture
models and used as final estimates the solution that maximized the log likelihood among all
16 runs. Simulations described below suggested that this procedure can successfully recover
the global maximum from the many local maxima.

It is critical that multiple starting values are utilized when applying principal stratification to
data. Figure 2 on page 13 shows the sensitivity of resulting estimates from the 16 different
starting values used in our analysis. The results from each set of starting values are plotted as
horizontal bands and denoted by a number from 1 to 16. Each of the 8 estimated model means
is denoted by a column and the resulting values for each mean are plotted for each set of starting
values. The first column plots the percentage increase in the negative log-likelihood for each
estimate compared to the value that minimized it across all sets of starting values (estimate 11
in Figure 2 on page 13). Each set of starting values leads to a different possible solution, all of
which represent a local minimum of the negative log-likelihood in the data. Although the
resulting log-likelihood values are very similar (differing by no more than 2 percent), each
solution gives very different inferences about the estimated strata means and treatment effects
that exist within each stratum. As shown, the solution which gives the minimum negative log
likelihood value (denoted by estimate 11 in Figure 2 on page 13) is distinctly different even
from the next best estimate of the model parameters (estimate 6 in Figure 2 on page 13) which
assigns the estimated values of the means for

phoand 1.t} o and pf 1,40 o and p1f o, and i) and 1 | in reverse of how they are assigned in
the solution. More generally, it is clear that the alternative solutions tend to find similar values
for the various mean values but “flip” the strata labels associated with those labels.

The mixture of tobit models appears to fit the data well as shown in Figure 3 on page 14 which
plots the histogram of fitted probabilities for each observed condition in our data. Goodness
of fitcan be noted by the grouping of fitted probabilities at 0 and 1 for the cases of each observed
condition. These groupings imply that the majority of our cases have a high probability of
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falling into one of the two strata of which their observed condition is a mixture. If there had
been a more even spread of these values, we would worry about the goodness of fit of the
model. Moreover, Table 3 on page 14 shows that the principal stratification model maintains
the marginal means and probabilities of this model.

The estimated treatment effects from the mixture model are shown in Table 4 on page 15. In
contrast to the patterns shown in Table 1 on page 7, when we control for the confounding effects
of institutionalization using principal stratification, residential treatment leads to significantly
worse outcomes among adolescents who experience the same level of institutionalization under
both treatment modalities. The effect of residential treatment is larger among adolescents who
are not institutionalized under both treatment modalities.

The standard errors for treatment effects within each stratum can be adjusted for the effects of
clustering (e.g., here adolescents are clustered within treatment sites) by using a Huber-White
sandwich estimate of the variance-covariance matrix for the parameters in the likelihood
function [19]. When we control for clustering within the ATM data, the treatment effects are
no longer significant within the two strata with the same levels of institutionalization under
both treatment modalities.

4. Evaluation of Principal Stratification

4.1. Methods

4.2. Results

Estimating the treatment effects of treatment modality via principal stratification requires
identification of latent variables from complex mixture data using mixture proportions. In
particular, means for cases from different principal strata are identified from the mixing
proportions within observed groups. Given that our exploration of starting values suggested
that the identification of strata is potentially weak and the label swapping might be possible,
we felt it important to explore the properties of the principal stratification method before
interpreting our findings on substance abuse treatment. To our knowledge, there have been
very few studies using either real or simulated data sets to explore the convergence of the
estimation algorithms, the identification of desired parameters, and the precision of the
estimates with varying sample sizes for treatment effects from mixture models like model 3.1.

To evaluate the method of principal stratification, we began by examining the performance of
the four strata model where Zyand Z; can only take on two values, namely 0 and 1. Additionally,
we assumed that the underlying distribution of the outcome, f(y; 85 ,; 1), within each strata is

normal with mean 4/ . and variance o7, where the means and variances can depend on
treatment so that treatment effects can exist. We conducted a simulation study of the properties
of parameters estimated by maximizing 3.1 under this assumed parametric model.

First, data was simulated under this model and the impact of sample size, the value of the
principal strata probabilities, and the dispersion of the means within each level of t and Z; on
model performance was examined. Second, data was simulated under heavy tailed and skewed
distributions and analyzed using the normal model to examine the sensitivity of the normal
model to model misspecification. In each case, we maximized the likelihood using the methods
described above and compared the resulting estimates to the values used in generating the data.

First, we examined the performance of the estimators for the four strata model under various
assumptions about the sample size per treatment arm (N), the strata probabilities, and the

dispersion of the means between strata within the same level of t and Z. Figure 4,Figure 5 and
Figure 6 on pages 17, 18 and 19, respectively, plot the estimated means for the control group,
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the estimated means for the treatment group, and the estimated probabilities for each strata
versus their true values under the various cases considered. As shown, the method did not begin
to perform well until the means within a given level of t and Z; were at least 1.6 standard
deviations away from each other and the sample size within each treatment arm was at least
N = 1000 (see supplementary material for tabulated results).

The performance of the estimators was relatively invariant to the true strata probabilities unless
the probabilities were uniform as shown in the third column of Figure 4 and Figure 5 on pages
17 and 18. Specifically, we examined three cases for strata probabilities, one in which all four
strata had reasonably large probabilities, another in which one strata had a particularly small
probability of 0.05, and a third in which the probabilities were equal. Performance was similar
in the two cases where the probabilities were not all equal as shown in the first and second
columns of Figure 4 and Figure 5 on pages 17 and 18. When the probabilities were equal, the
method could not identify the correct mapping of the mixture components to the principal strata
values because the model was under-identified. Consequently the maximum likelihood
estimation was unable to recover the model parameters.

We also examined the sensitivity of the four strata model to model misspecification (see
supplementary materials for more details). As expected, the method was sensitive to extremely
heavy tailed and skewed distributions. The algorithm appeared to perform well when the data
had only moderately heavy tails or moderate skew.

Unfortunately, our simulation study results suggest that our results for the ATM study must
be interpreted with caution. While the dispersion of means within each level of
institutionalization in the ATM data is 3.04, the effective sample size in the weighted control
group is quite small, only 125, drawing into question the ability of this model to converge to
the correct solution if the principal stratification model holds in our data.

Our simulation study analysis was repeated for a nine strata model in which Z; can take on
three values, namely 0, 1, and 2. However, a number of problems were encountered. First, the
number of possible sets of starting values, e.g., mappings between the parameters of the full
model to estimates from simple mixture models fit to data, increased significantly, leading to
2192 possible sets of starting values. Given the computational demands of such a large number
of starting values, we did not run the EM algorithm for all possible mappings. Instead we
calculated the likelihood at each possible mapping and then tried two techniques for selecting
reasonable starting values: (i) choosing the 30 starting values which gave the 30 greatest values
of the log-likelihood and (ii) choosing the 30 starting values which represented a spread of the
log-likelihood surface. We found that option (i) yielded the best solution (i.e., the solution
which gave the highest value of the log likelihood). However, even with a dispersion of means
equal to 2.5 and N = 5000 per treatment arm, the best solution from option (i) was unable to
recover the model parameters used to simulate the data (results available upon request).

It is likely that adding more parametric assumptions into the nine strata model would help
improve the fit of the model. For example, one could consider modeling the means within each
stratum and treatment group as a linear function of the value of Z; and/or Zy. However, as the
number of strata increases, more assumptions will be required which may or may not be likely
to hold in practice. Inevitably, extending principal stratification to more strata becomes
intractable and unidentifiable beyond the simple four strata model.

5. Discussion

Institutionalization during the follow-up poses serious challenges to estimating treatment
effects on outcomes following substance abuse treatment because it restricts opportunities to
use drugs or partake in other problem behaviors (e.g., criminal activity or risky sexual activity).
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If unaccounted for, it can confound treatment effects and lead to incorrect inferences about the
ability of treatment to produce desirable outcomes. Similar problems can occur in many other
settings such as criminal justice and mental health outcomes studies where study participants
are also at high risk for institutionalization during the follow-up period.

Because institutionalization occurs post-treatment, treating it as a covariate in analyses can
lead to biased results since cases with various levels of institutionalization might differ in terms
of their potential outcomes [11]. Most common approaches to the problem require strong
assumptions and the results can be very sensitive to which assumptions are made and which
methods are used [11]. For example, use of a joint or composite outcome which looks at the
effects of treatment on institutionalization and SFS together conflates the effects that treatment
has on institutionalization with the effects it has on SFS. Principal stratification allows us to
directly model how the treatment effects on SFS may vary within different levels of
institutionalization.

Principal stratification provides a framework for developing causal effects on outcomes in the
presence of post-treatment institutionalization. The key idea is that causal effects can be
obtained by conditioning on cases with equal values for the observed level of
institutionalization for the observed treatment status and the unobserved level of
institutionalization for the unobserved treatment status. In situations where institutionalization
can take on discrete values, the latent principal strata result in finite mixture models and the
parameters of interest can potentially be estimated. When applied to adolescent substance abuse
treatment data in the ATM study, the method suggests that residential treatment may be less
effective for youth who are likely to experience the same level of institutionalization under
both conditions (residential and outpatient). However, the effect is strongest among those youth
who are unlikely to be institutionalized following treatment - i.e., the least problematic users.
Alternative analyses [11] found a similar result which improves our confidence in these
findings, despite the challenges of the method cited above.

As discussed in the introduction, stakeholders, like parents, want to know if treatment is
effective and for whom it is effective. The principal stratification approach estimates causal
effects for youth in different principal strata. Thus, we aim to know if treatment is effective
for youth within each principal stratum where institutionalization is constant across treatment
conditions. However, the principal strata do not necessarily provide meaningful classification
of adolescents to stakeholders. An important follow-up to our analysis is to determine if
principal strata membership can be described using measurable and meaningful baseline
variables so that stakeholders might have a better idea about which youths will be best served
by treatment or different treatment modalities.

Beyond this application, our investigation of principal stratification suggests that the potential
of principal stratification may be impossible to realize in many empirical studies. Our study
shows that the differences in outcome means among the principal strata must be quite large
(1.6 standard deviation units or larger) and that the sample sizes must also be very large (N >
1000) for estimated effects to correctly identify which means belong to each principal strata.
Unfortunately, such dispersion of means and sample sizes are much greater than those that are
likely to arise in many applications. With smaller samples sizes and less dispersed means, group
labels are often switched; for instance, the means of the Z; = Zy = 0 strata might be incorrectly
labeled as the means for the Z; = 1 and Zg = 0, yielding incorrect inferences about treatment
effects. Additionally, the switched mean values may be very plausible so that there would be
no indication of misleading results. The limitations of principal stratification must be
considered carefully before using the method in all but the most ideal settings.
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As the possible values for institutionalization grow, the problem quickly becomes more
unmanageable. The number of parameters for the principal strata and the number of mixtures
that need to be identified grow rapidly; even finding starting values becomes an extremely
challenging task as the possible values for institutionalization grow. Estimation in these
contexts will require additional assumptions about the relationship between outcome and
institutionalization (e.g., outcomes decline linearly with increased institutionalization) and
assumptions about the joint distribution of institutionalization under treatment and control to
make the problem more tractable.

Given the challenges of principal stratification when we consider many values for
institutionalization, a possible option may be to ignore the outcomes from institutionalized
cases and try to estimate an unsuppressed treatment effect restricted to cases that would not be
institutionalized under either treatment or control. Our approach to starting values could be
used and trustworthy estimates might be obtained in some real world settings. The limitation
of this approach would be the inability to generalize the estimates beyond cases that are likely
never to be institutionalized. That is, we could not estimate the unsuppressed effect for all cases
nor could we determine treatment effects on institutionalized youth.

Using a Bayesian approach might address some of the computational problems with
maximizing the likelihood since integrating over a prior helps to reduce sensitivity to the
starting values. However, special care would be needed when using Markov chain Monte Carlo
methods to sample the posterior to avoid label switching of the mixtures within the observed
values of institutionalization [8]. Strata label switching will occur because the data provide
only very indirect information about the joint distribution of potential institutionalization. Use
of an informative prior would be one means of overcoming this limitation of the data via
Bayesian analysis. However, this approach is unappealing because analysts are unlikely to be
able to make good informed guesses about the joint distribution so that informed priors would
be difficult to choose.

Obtaining sufficient information about the joint distribution of the potential institutionalization
outcomes is a clear challenge to using the framework of principal stratification to provide useful
estimates of treatment effects. One approach to obtaining more information about this
distribution would be to collect data at baseline that might be strongly related to the principal
strata and use the information as covariates in the model for the strata probabilities. For
institutionalization following substance use treatment this information might include criminal
activity, detailed information about involvement with the criminal justice system, history with
substance abuse treatment, the availability of various types of substance about treatment, and
sources of payment for the that treatment.

Another approach for increasing the information about the principal strata is to jointly model
multiple outcomes such as multiple indicators of substance use and criminal activity. Because
principal strata are defined by institutionalization and not by other outcomes, principal strata
designation should not depend on which outcome is modeled. Combining multiple outcomes
can therefore provide more information about the latent principal strata membership and should
improve estimation of treatment effects for every outcome. A downside of this approach is the
necessity of specifying the joint distribution for multiple outcomes, but the additional modeling
might be very beneficial for identifying the principal strata and the accuracy of the resulting
treatment effect estimates.

We might consider simply using the principal stratification framework for sensitivity analyses.
For example, rather than trying to model the joint distribution of Zg and Z;, we might specify
the joint distribution in terms of the parameters of the marginal distributions of Z5 and Z; and
a parameter specifying their correlation. The value of the correlation parameter could be
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manipulated to study the sensitivity of the treatment effect estimates to different assumptions
about the principal strata. For example, when institutionalization can take on just two values
we could specify the correlation by the interaction from a log-linear model. For continuous
institutionalization, we could specify the correlation parameter.

Principal stratification is an important tool for approaching the problem of institutionalization
during the follow-up, because it provides a framework for defining estimates of interest and
possible methods for estimating them. However, it is also clear that it is not a panacea to the
problem because the model parameters are at best weakly identified and it does not extend
easily to problems with many possible values for institutionalization. The extensions described
above provide useful areas for future research that may significantly improve the application
of principal stratification in real world settings.
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Fig. 1.

Scatter plot of SFS values by number of months institutionalized for adolescents in both
residential and outpatient treatment modalities with smooth of mean SFS by months
institutionalized overlayed. The black X denotes the mean SFS value among adolescents with

0 days of institutionalization.
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Histogram of fitted probabilities for each observed condition.
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Table 1
Weighted mean rate of institutionalization and SFS at 12-month follow-up by treatment modality.
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Percent Institutionalized at follow-up Mean SFS
Residential Treatment 52% 9.0
Outpatient Treatment 38% 9.7
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Table 3
Observed versus predicted marginal means for residential and outpatient care cases.

Residential Care Outpatient Care
Predicted Observed Predicted Observed
Mean SFS for Z =0 11.8 9.8 9.9 10.2
Mean SFS for Z =1 8.1 8.2 7.8 8.1
Proportion Institutionalized 51% 52% 43% 38%
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Table 4
Treatment effect estimates and standard errors comparing residential to outpatient treatment using the four-strata
principal stratification model.

Z,=0 Z,>0
z,=0 4117)" 1.3(0.9)
2,50 -1.1(0.9) 33(18)"

*
Significant treatment effect are denoted by and standard errors are unadjusted for clustering.
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