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Abstract
The 9th annual PhysioNet/Computers in Cardiology challenge invited participants to measure T-
wave alternans (TWA) in a set of 100 two-minute electrocardiograms that included subjects with a
variety of risk factors for sudden cardiac death (including ventricular tachyarrhythmias, transient
myocardial ischemia, and acute myocardial infarctions), healthy controls, and synthetic ECGs with
calibrated amounts of artificial TWA. The participants’ TWA estimates were used to develop a
ranking of the 100 test cases in order of TWA content, and the Kendall rank correlation coefficient
between this reference ranking and each individual participant’s ranking of the 100 cases was
calculated as a score (between −1 and 1; actual scores were between 0.11 and 0.92). The challenge
yielded insights into the strengths and weaknesses of classic and novel TWA analyses, open-source
implementations of a variety of methods, and a set of freely available ECGs with reference rankings
of TWA content.

1. Introduction
One hundred years after it was first reported by Hering [1], T-wave alternans is widely
understood to be an important indicator of risk of sudden cardiac death. Yet for most of that
time TWA was believed to be rare, until 1981, when at Computers in Cardiology, Adam,
Akselrod, and Cohen reported the existence of microvolt-level TWA, too small in amplitude
to be detected visually at standard display scales[2].

T-wave alternans is a pattern in the ECG characterized by two (rarely more) distinct forms of
T-waves appearing in alternation, at or above a patient-specific heart rate generally in the range
of 90 to 120 beats per minute. Although the mechanisms have not been fully elucidated, a large
amount of empirical evidence collected during the past 25 years has demonstrated an
association between the amount of TWA, the heart rate at which it appears, and the risk of
sudden cardiac death (SCD). In particular, the absence of significant TWA in a patient with
congestive heart failure, low ejection fraction, or a recent myocardial infarction is strongly
predictive of a low risk of SCD. A positive finding in such a patient, though less specific, may
indicate that an implantable cardiac defibrillator would be appropriate, an indication that can
be confirmed using invasive testing. A review by Armoundas, Tomaselli, and Esperer discusses
mechanisms that may account for the associations among TWA and other risk factors for SCD,
as well as clinical applications of TWA[3].

Since TWA analysis is performed on the surface ECG, it is an inexpensive and non-invasive
test. In clinical applications, TWA analysis can be done as part of an exercise stress test, but
there is interest in the research community in using conventional long-term (Holter) ECG
recordings to observe TWA in the context of activities of daily living.
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A variety of algorithms for detecting and quantifying TWA have been proposed, employing
techniques from linear and nonlinear signal processing such as spectral analysis, complex
demodulation, counting zero-crossings in a series of correlation coefficients, periodogram and
complex demodulation analysis of T-wave principal components, Capon filtering, Poincaré
maps, periodicity transforms, statistical tests, moving averages, maximum likelihood
estimators and generalized likelihood ratio tests, and more. For a comprehensive and systematic
discussion of methods for TWA detection and analysis, see the review by Martínez and Olmos
[4].

It remains very difficult to validate or to compare any of these algorithms, since no generally
accepted objective criteria exist for measuring TWA, and no generally available set of
validation data exists as a basis for comparison. This Challenge aimed to improve
understanding of the strengths and limitations of classic and novel TWA analysis methods; to
establish a collection of reference ECGs ranked by severity of TWA, as determined by a
preponderance of evidence; and to encourage the development and dissemination of open-
source TWA detectors and estimators in order to support and stimulate further research on the
properties and implications of TWA.

2. Methods
Interested researchers were invited to nominate ECG recordings for use in the Challenge. On
the basis of the nominations, the Challenge data set of 100 two-minute ECGs[5] was posted
on PhysioNet[6]. Of these, 56 were ECGs obtained from 26 subjects with known risk factors
for sudden cardiac death, including 24 from subjects in the PTB Diagnostic ECG Database
[7] who had myocardial infarctions; 12 from subjects in the Long-Term ST Database[8] who
had coronary artery disease and transient myocardial ischemia; 10 from subjects in the St.
Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database[9], including
subjects with myocardial ischemia, ventricular tachycardia, and myocardial infarction; and 10
from subjects in the Sudden Cardiac Death Holter Database[10] who experienced sustained
ventricular arrhythmias and cardiac arrest within minutes to a few hours after the segments
selected for the Challenge data set. In most cases, the Challenge data set contains two or more
ECGs per subject to permit followup studies of the evolution of TWA in individuals over time.

The 44 remaining ECGs in the Challenge data include 12 ECGs of healthy subjects (6 from
the PTB Database and 6 from the MIT-BIH Normal Sinus Rhythm Database[11]), and a group
of 32 synthetic ECGs[12]. Thirty of this final group contained artificial TWA in calibrated
amounts (the last two contained small amounts of added noise rather than TWA). The artificial
TWA was created by modulating the T-wave loop of the synthetic vectorcardiogram (VCG),
then projecting the VCG onto 12 scalar ECG leads using one of 5 individual Dower transform
(IDT) matrices derived from 5 subjects in the PTB Database. In this way, the artificial TWA
is distributed across the scalar ECG leads. Each IDT was used to produce 6 ECGs for one
“subject”, with varying TWA amplitudes chosen from 2, 4, 6, 8, 10, 13, 15, 17, 30, 45, and 60
microvolts. The TWA amplitudes were defined as the maximum vector difference between the
forms of the T-wave loop in the VCG.

For each record in the challenge data set, participants were asked to detect TWA, or to estimate
its peak magnitude, using a fully-automated method. Two participants detected but did not
quantify TWA, reporting 1 as the estimate for each record in which TWA was detected, and 0
as the estimate for the remaining records. The remaining participants submitted quantitative
estimates of TWA peak magnitude, in varying units.

Nearly thirty participants analyzed part or all of the challenge data set, and 23 participants
submitted complete sets of 100 estimates of TWA. Since the various analyses produce
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incommensurate measurements, they cannot be compared numerically across participants.
Within a set of measurements from a single participant, however, they can be used to arrange
the ECGs in order, from least to most amount of TWA as estimated by that participant, and
this is the basis of the scoring that was used in the Challenge:

1. For each entry, the ECGs are ranked by the magnitudes of the associated TWA
estimates. Thus the ECG with the lowest TWA estimate in a given entry receives the
rank of 1 for that entry, the ECG with the second-lowest TWA estimate gets a rank
of 2, etc.

2. For each participant who is able to distinguish between the synthetic ECGs with high
and low amounts of TWA, one entry is selected for the next step. At the conclusion
of the Challenge, 19 participants met this criterion.

3. Each ECG receives a median rank, which is the median of the ranks assigned it by
the selected entries, and a reference ranking is made by sorting the median ranks (i.e.,
the ECG with the lowest median rank gets a reference rank of 1, etc.).

4. The score for each entry is the Kendall (τ) rank correlation coefficient between the
entry ranking and the reference ranking, where 1 is perfect agreement and −1 is perfect
disagreement[13].

Participants were allowed to revise their entries in order to explore other methods or to improve
their scores. The number of entries was limited to reduce the likelihood of obtaining a superior
result by chance. Throughout the challenge, preliminary scores, calculated on the basis of
preliminary reference rankings, were provided as feedback to participants.

3. Results
The final scores of the top 5 participants were 0.911 (Jubair Sieed), 0.890 (Giovanni Bortolan),
0.881 (Alexander Khaustov), 0.827 (Dingchang Zheng), and 0.779 (Philip Langley). The first-
and third-place results were obtained by participants in the open-source division of the
Challenge, who contributed the software they developed for the challenge in source form for
further study by the research community. These sources, the Challenge data set, the final
reference ranking, and final scores for the 19 participants whose entries were used to derive
the final reference ranking, are all available at http://physionet.org/-challenge/2008/.

The median score for a set of random measurements, given the final reference ranking, was
0.358; a score above 0.436, achieved by 21 participants, is significant (p > 0.99).

Notably, although the top-scoring entries that included T-wave measurements were able to
rank the synthetic ECGs for a single “subject” in the correct order by amount of artificial TWA
(see figure 1), the final reference ranking contains a small number of incorrectly ordered
synthetic ECGs (see figure 2). Furthermore, the estimated TWA amplitudes in synthetic ECGs
differ systematically across “subjects”.

These observations reflect both the difficulty of measuring TWA and the limitations of the
scoring method. Since the scores indicate how well each participant’s assessments match those
of the group, if a group ranking of a given ECG is incorrect, then a correct ranking of that ECG
by an individual diminishes that individual’s score. In the context of this challenge, errors in
the reference ranking of the synthetic ECGs did not alter the order of the final scores, as shown
by an experiment in which scores were recalculated using an altermate reference ranking that
was adjusted to correct these errors.
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4. Discussion and conclusions
A possible objection to the scoring algorithm is that the inclusion of a given entry in the
determination of the median introduces a bias in favor of that entry. Given a sufficiently large
number of entries, such a bias will be insignificant, but in any case, the scores were recalculated
using ten alternative reference rankings that excluded each of the top ten entries, as well as
rankings that excluded various combinations of these top-ranked entries. The scores obtained
varied slightly but the order of scores of the top ten participants was unaffected by the choice
of reference ranking, except that the removal of either of the top two entries reverses the order
of the second and third entries.

Another concern is the effect of including the “detector” entries among those used to determine
the median rankings, since they do not contain information needed to distinguish low from
moderate from high amplitude TWA, and their inclusion may tend to diminish the influence
of other entries that do contain such information. Again, however, an experiment showed that
exclusion of “detector” entries had only minimal effects on the reference ranking and the final
scores, most likely because only 2 of 19 participants submitted such entries.

Interestingly, the top score is only the second-best score achieved by its owner, who received
a score of 0.919 for his initial entry. (The substitution did not affect the order of scores.) In all
other cases, the final scores are the highest achieved by their owners.

For details of the algorithms used by the participants in this challenge, see their papers in this
volume of Computers in Cardiology. They employed a wide variety of time- and frequency-
domain approaches, including methods previously described in the literature as well as novel
methods developed specifically for this Challenge. It is clear that many of these methods are
in general agreement with respect to a subset of ECGs in the Challenge data set that were judged
to have high amounts of TWA, but the TWA in some of the high-TWA cases was missed or
significantly underestimated in some entries, suggesting that an algorithm making use of
multiple approaches is likely to yield better sensitivity even for high-amplitude TWA than
simpler approaches. The top-scoring algorithms were able to rank the synthetic ECGs with
low-amplitude TWA with many fewer errors than in most entries, suggesting that the best
algorithms can detect TWA with an amplitude of as little as 4 microvolts.
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Figure 1.
Estimated vs. known TWA amplitudes in the synthetic subset of the Challenge data set, from
a top-scoring entry. Data for ECGs generated using the same “subject” (see text) are connected.
Ideally, connected sets would lie along coincident straight lines. Any line segments with
negative or zero slopes reflect estimates that are inconsistent with known TWA amplitudes.
Differences in slope between connected sets reflect systematic inter-subject differences in
TWA estimation.
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Figure 2.
Reference rank vs. known TWA amplitudes in the synthetic subset. As in figure 1, data for
ECGs of the same “subject” are connected. Negative slopes reflect estimation inconsistencies
that are shared across a majority of the 19 entries used to determine the reference ranks. Since
the ordinates are ranks rather than measurements, non-linearity reflects the non-uniform
distribution of TWA amplitudes across the entire challenge data set.
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