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Abstract
The pancreatic islets of Langerhans, and especially the insulin-producing beta cells, play a central
role in the maintenance of glucose homeostasis. Alterations in the expression of multiple proteins in
the islets that contribute to the maintenance of islet function are likely to underlie the pathogenesis
of type 2 diabetes. To identify proteins that constitute the islet proteome, we provide the first
comprehensive proteomic characterization of pancreatic islets for mouse, the most commonly used
animal model in diabetes research. Using strong cation exchange fractionation coupled with reversed
phase LC-MS/MS we report the confident identification of 17,350 different tryptic peptides covering
2,612 proteins having at least two unique peptides per protein. The dataset also identified ~60 post-
translationally modified peptides including oxidative modifications and phosphorylation. While
many of the identified phosphorylation sites corroborate those previously known, the oxidative
modifications observed on cysteinyl residues reveal potentially novel information suggesting a role
for oxidative stress in islet function. Comparative analysis with 15 available proteomic datasets from
other mouse tissues and cells revealed a set of 133 proteins predominantly expressed in pancreatic
islets. This unique set of proteins, in addition to those with known functions such as peptide hormones
secreted from the islets, contains several proteins with as yet unknown functions. The mouse islet
protein and peptide database accessible at http://ncrr.pnl.gov, provides an important reference
resource for the research community to facilitate research in the diabetes and metabolism fields.
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INTRODUCTION
The pancreatic islets of Langerhans plays a critical role in the regulation of glucose homeostasis
by secreting insulin and several peptide hormones including glucagon, somatostatin, pancreatic
polypeptide, amylin, peptide YY, prodynorphin, urocortin 3, and ghrelin. Besides insulin-
producing beta-cells (65–80%) 1, other major cell types within the islets of Langerhans include
the glucagon releasing alpha-cells (15–20%) 2, somatostatin producing delta-cells (3–10%)
3, pancreatic polypeptide containing PP cells (1%) 4 and ghrelin containing epsilon cells (<1%)
5. While each of the secreted peptide hormones affect glucose homeostasis either directly or
indirectly, their significance is best exemplified by the deficiency of insulin that leads to the
development of diabetes mellitus. Type 1 diabetes results from autoimmune destruction of
beta-cells and an absolute deficiency of insulin, while type 2 diabetes is commonly
characterized by a failure of the beta-cells to produce sufficient amounts of bioactive insulin
to compensate for insulin resistance in the liver, muscle or adipose tissue 6.

Due to the importance of islets for metabolism and particularly in the pathogenesis of both
types of diabetes, a comprehensive understanding of islet biology is essential for the
development of therapeutic strategies to prevent, manage, and/or cure the diseases. Recent
advances in proteomic technologies offer approaches to comprehensively characterize the
proteome at the global level. Therefore, it is not surprising that comprehensive proteome
analyses of a number of mouse tissues related to diabetes have been recently reported 7–14.
However, the mouse pancreatic islet proteome to date has only been characterized by two-
dimensional electrophoresis (2DE) and only 44 proteins have been identified by this approach
15.

In this work we present the first comprehensive profiling of the mouse islet proteome with the
aim of establishing an extensive peptide/protein database for the pancreatic islet proteome of
rodent models. The extensive coverage was achieved by analyzing a pooled islet sample from
two different states (normal and insulin resistant) applying two-dimensional LC-MS/MS
profiling. Due to the limited dynamic range of detection of LC-MS/MS profiling, we chose to
use a pooled islet sample from both the normal and disease states for this initial profiling so
that a better coverage for those proteins with increased expression in the disease can be achieved
compared to analyzing the normal sample alone; thus, a more complete coverage of the
proteome can be achieved to facilitate future studies using mouse models.

Specifically, strong cation exchange (SCX) fractionation followed by reversed phase LC-MS/
MS was applied for this proteome profiling, resulting in the confident identification of ~4,000
protein groups (2,612 proteins identified with two or more unique peptides). The dataset
includes qualitative relative protein abundance information based upon MS/MS spectral
counts. Additionally, we explored in utilizing the currently reported proteomic datasets on
multiple other mouse tissues and cell types for discovering potential novel tissue-specific
proteins by comparative analyses. In this case, 133 proteins were identified to be either
specifically expressed or predominantly abundant in the pancreatic islets. Finally, the dataset
revealed a number of post-translational modifications (PTMs) present in the islet proteome
including phosphorylation and oxidative modifications. These data will be made available as
a reference resource for the diabetes research community as well as for bioinformatic data
mining to facilitate research in the fields of diabetes and metabolism.

MATERIALS AND METHODS
Islets Isolation and Protein Digestion

Islets were isolated by the intraductal enzyme injection technique using collagenase16. Briefly,
the pancreas was inflated with collagenase following anterograde injection via common bile
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duct, dissected, and incubated at 37°C for 22 min. Following density-gradient centrifugation
using HISTOPAQUE-1077 (Sigma), islets were then washed and hand-picked under a
stereomicroscope (Stereozoom GZ7, Leica). All islets were cultured overnight at physiological
glucose levels (7 mM glucose, 10% FBS and antibiotics) to allow the islets to recover from
the effects of collagenase digestion. Islets were then be transferred to nuclease- and pyrogen-
free tubes and washed with phosphate buffer. Following removal of the buffer, pellets were
frozen at – 80°C prior to proteomic analyses. Islets were isolated from four male control mice
and four littermates with liver-specific insulin receptor knockout at age 6-months. The details
regarding the creation of animal models have been described elsewhere17. All mice have been
back-crossed to the C57BL/6 background for at least 9 generations.

Islet samples from individual mice were homogenized and digested using a 2,2,2-
trifluoroethanol (TFE)-based protocol18. Briefly, islets were resuspended in 50 µL of 50% TFE
(Sigma-Aldrich, St. Louis, MO) in 50 mM NH4HCO3 (pH 7.8) with 5 mM tributylphosphine
(Sigma-Aldrich) and homogenized in a 5510 Branson ultrasonic water bath (Branson
Ultrasonics, Danbury, CT), followed by incubation at 60°C for 2 h to reduce disulfide bonds.
For tryptic digestion, samples were diluted 5-fold with 50 mM NH4HCO3, supplied with 1
mM CaCl2 and 2 µg of trypsin per sample, and incubated overnight at 37°C with gentle shaking.
After lyophilization, samples were re-dissolved in 70 µL of 25 mM NH4HCO3. Peptide
concentrations were determined with BCA assay (Pierce, Rockford, IL). On average islets from
each mouse yielded 30–60 µg of tryptic peptides. Aliquots of 15 µg peptides were used from
each mouse to form a pooled sample for this initial profiling experiment.

Strong Cation Exchange (SCX) Fractionation
The pooled sample (~120 µg of total peptides pooled from 8 mice) were subjected to LC
fractionation by strong cation exchange (SCX) chromatography on a 200 mm × 2.1 mm
Polysulfoethyl A column (PolyLC, Columbia, MD) preceded by a 10 mm × 2.1 mm guard
column, using a flow rate of 0.2 mL/min. LC separations were performed using an Agilent
1100 series HPLC system (Agilent, Palo Alto, CA). Mobile phase solvents consisted of (A)
10 mM ammonium formate, 25% acetonitrile, pH 3.0 and (B) 500 mM ammonium formate,
25% acetonitrile, pH 6.8. Once loaded, isocratic conditions at 100% A were maintained for 10
min. Peptides were separated by using a gradient from 0–50% B over 40 min, followed by a
gradient of 50–100% B over 10 min. The gradient was then held at 100% solvent B for another
10 min. Following lyophilization, all thirty fractions were dissolved in 25 mM NH4HCO3 and
stored at −80 °C.

Capillary LC-MS/MS analysis
Each SCX fraction was analyzed with an automated custom-built capillary HPLC system
coupled online to an LTQ ion trap mass spectrometer (ThermoElectron, San Jose, CA) by using
an electrospray ionization interface. The reversed phase capillary column was prepared by
slurry packing 3-µm Jupiter C18 particles (Phenomenex, Torrence, CA) into a 150 µm i.d. ×
65 cm fused silica capillary (Polymicro Technologies, Phoenix, AZ). The mobile phase
solvents consisted of (A) 0.2% acetic acid and 0.05% TFA in water and (B) 0.1% TFA in 90%
acetonitrile. An exponential gradient was used for the separation, which started with 100% A,
and gradually increased to 60% B over 100 min. The instrument was operated in a data-
dependent mode with an m/z range of 400–2000. Ten most abundant ions from each MS scan
were selected for further MS/MS analysis by using a normalized collision energy setting of
35%. Dynamic exclusion was applied to avoid repeat analyses of the same abundant precursor
ion.

Petyuk et al. Page 3

J Proteome Res. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Database Search and Data Analysis
The SEQUEST software (ThermoElectron) was used to search the MS/MS data against the
mouse International Protein Index (IPI) database (version 3.19 http://www.ebi.ac.uk/IPI).
Human keratins and porcine trypsin were added into the database as expected contaminants.
No cleavage specificity was defined for database searching. We also considered methionine
oxidation as a dynamic modification. The following criteria were used to filter raw SEQUEST
results: 1) Xcorr ≥ 1.6 for charge state +1 full tryptic peptides; 2) Xcorr ≥ 2.4 for charge state
+2 full tryptic peptides and Xcorr ≥ 4.3 for +2 partial tryptic peptides; and 3) Xcorr ≥ 3.2 for
charge state +3 full tryptic peptides and Xcorr ≥ 4.7 for +3 partial tryptic peptides. The delta
correlation value (ΔCn) > 0.1 was used in all cases.

To estimate the false discovery rate (FDR) of peptide identifications we searched against a
reversed database as previously described 19. In an attempt to remove redundant protein entries,
the software tool ProteinProphet was applied as a clustering tool to group similar or related
protein entries into a “Protein Group” 20. All identified peptides that passed the filtering criteria
were assigned an identical probability score of 1.0, and then entered into the ProteinProphet
program solely for clustering analyses to generate the final non-redundant list of proteins or
protein groups. To further increase the confidence in protein identifications we considered only
proteins identified with at least two peptides.

To find peptides with post-translational modifications (PTM) we used X!Tandem software
21 and applied the following strategy. For the first pass we searched only for fully tryptic
peptides with no dynamic modifications. Proteins that were identified with a peptide
expectation value less than −2 were carried over for the second round of database searching
where we considered only fully tryptic peptides and a set of dynamic PTMs including:
oxidation of cysteine to sulfinic acid +31.9898 Da (Csulfinic), oxidation of cysteine to sulfonic
acid +47.9847 Da (Csulfonic), serine and threonine phosphorylation +79.966331 Da (STphos).
Each modification was searched independently. To estimate the confidence of those PTM
peptide identifications we searched for similar modifications but with masses shifted by ± 10
Da (pseudo-PTMs). The ratio of the number of peptides identified carrying pseudo-PTM to
the number of peptides carrying normal PTM was used an estimation of the FDR for PTM
peptide identifications. In particular the FDR estimate for a given PTM modification with mass
M at amino acid X was calculated as a ratio of the average of the number of peptides with
modification mass M−10 and M+10 at the same amino acid type X to the number of peptides
carrying modification M with original un-shifted mass. To achieve acceptable FDR rates, we
require the peptides with E-values less than −3 for Csulfonic PTM and less than −4 for Csulfinic
and STphospho PTMs and the non-modified peptide having the E-value passing the same
threshold.

In addition to oxidation of cysteines and phosphorylation of serine and threonine residues we
also searched for acetylation, methylation and ubiquitination of lysine, nitration and
phosphorylation of tyrosine, carbonylation of arginine and proline and S-(2-succinyl) cysteine.
However, we failed to identify a significant number of peptides with acceptable FDRs for these
PTMs.

Compiling the Set of Proteomic Databases from Other Mouse Tissues
To compare the murine islet proteome with other mouse tissue proteomes, we considered the
following mouse tissues and derived cell cultures characterized by LC-MS/MS and currently
available proteomic datasets: mouse brain 7, 8, cortical neurons cell culture 9, heart 8, 22, muscle
22, kidney 9, lung 9, 10, placenta 8, liver 8, 11, 12, adipocyte cell culture 13, and islet alpha-cell
culture 14. If the information on individual peptides was available the peptides were remapped
to the mouse International Protein Index database v3.19. The probabilities of correct peptide
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assignment were then set to 1 and the remapped peptide lists were analyzed by Protein Prophet
to derive a likely set of proteins and homologous protein groups. For subsequent steps we
considered IPI annotations from the protein groups having a probability equal to or more than
0.95. Finally, the IPI indexes were mapped to Entrez Gene Symbols using the mouse IPI v 3.19
database. If the information about individual peptides was not readily available, the identifiers
(e.g. UniProt 8 or IPI v3.07 annotations 13) were mapped directly to IPI v 3.19 to obtain the
corresponding Entrez gene symbols.

As the peptide spectral count information was not readily available for a number of datasets,
we used the number of unique peptides of the protein normalized for protein length 23, 24 as a
measure of protein abundance. To compare protein abundance levels between the organs and
cell-types, we used their assigned ranks within the datasets. The most abundant protein was
ranked as No. 1. Missing values, in cases where a protein was not detected in a given dataset,
were assigned with an arbitrarily high rank value, which was considered to have lower
abundance than the detected least abundant protein within the given dataset. For example, if
we have a total 9000 proteins for this tissue expression comparison, the least abundant protein
for a given dataset is ranked as 2500, and we will have 5500 proteins are not being detected.
To be consistency, we assign a high rank value of these missing proteins as the least abundant
rank plus half of the total number of missing proteins, i.e., 2500 + 5500/2 =5250 for the rank.
When two or more proteins had exactly the same abundance value, they were resolved by
assigning the average rank to those proteins. The highest abundance value within the dataset
corresponds to rank number one.

Annotation of the database
The InterPro protein family (http://www.ebi.ac.uk/interpro/), GO gene ontology
(http://www.geneontology.org), KEGG pathways
(http://www.genome.ad.jp/kegg/pathway.html), PIR protein information resource
(http://pir.georgetown.edu/) and SMART simple modular architecture research tool
(http://smart.embl-heidelberg.de/) annotations for the entire mouse genome were obtained
using the DAVID web-based tool and parsed with ad hoc written Python script prior to
importing into relational Microsoft Access database. The significance of over- or under-
representation of a certain annotation term was computed using Fisher exact test using
hypergeometric distribution with ad hoc R script utilizing phyper() function. The P-values
were adjusted for multiplicity of testing using Benjamini-Hochberg method.

RESULTS
Islet Proteome Coverage

To obtain extensive proteomic characterization of mouse islet tissue, we utilized a bottom-up
proteomics approach, which first entails detecting and identifying peptide sequences via
tandem mass spectrometry and subsequently linking those peptide sequences to their respective
proteins during downstream data analysis. Since our aim is to establish an islet proteome
database as a reference resource for future diabetes and metabolism research using normal and
diseased mouse models, we chose to analyze a pooled pancreatic islet sample isolated from
both control mice and mice from a insulin resistance model that exhibits marked islet
hyperplasia17 to achieve a more complete coverage of the proteome based on the understanding
that proteins with increased expression in the insulin resistance model will be more detectable
in the pooled sample compared to the normal. In the LC-MS/MS analyses of a total of 30 SCX
fractions and 3 replicated analyses of the unfractionated global sample, 519,992 MS/MS
spectra were collected. The results led to a total of 43,654 MS/MS spectra being confidently
identified as peptides based on the SEQUEST custom filtering criteria. These spectra
correspond to 17,350 unique peptide identifications (Supplementary Table 1) with a FDR of
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0.9% based on reversed database searching. Following ProteinProphet analysis, this dataset
contains 4,024 protein groups overall with 2,612 protein groups having two or more unique
peptide identifications (Supplementary Table 2). Although we report the complete list of
identifications, we considered only proteins with two or more peptide identifications for
downstream comparative analyses.

The LC-MS/MS profiling can also provide qualitative estimates of the relative protein
abundance based on the spectral count information (Supplementary Table 2) 25, 26. To account
for the protein length difference, the observed spectral counts were normalized by the number
of amino acid residues per protein for estimating the relative abundances within the islet
proteome. The dynamic range of estimated abundances spanned approximately four orders of
magnitude.

The extent of islet proteome coverage was also examined by mapping the dataset to different
canonical signaling pathways. 72 KEGG and 62 Ingenuity Pathway Analysis pathways were
revealed to be covered with at least 10 genes in this dataset. Insulin receptor signaling pathway
is shown as an example of the receptor tyroine kinase signaling since this pathway plays a key
regulating role in islet function and compensatory islet growth response to insulin resistance
(reviewed in 27–31). Figure 1 shows coverage of the canonical insulin receptor signaling
pathway. Out of 45 proteins in this pathway, 20 proteins were identified with at least two
peptides and 7 more with one peptide, together accounting for approximately 60% of the known
proteins in this pathway.

Post-translational Protein Modifications
We have also explored the LC-MS/MS datasets for the presence of post-translational protein
modifications including oxidative modifications and phosphorylation. Oxidative stress has
been suggested to be linked with beta-cell dysfunction and insulin resistance 32. Thus,
identification of a list of oxidative protein modifications may be useful in revealing primary
hot spots of oxidation and for future quantitative proteomic studies regarding the roles of
oxidative stress in islet biology.

The methionine (Met) oxidation is known to be a frequent modification and quite commonly
included as a dynamic modification in routine peptide identification searches for MS/MS data.
Indeed, for this islet dataset the number of peptides containing oxidized Met (1093) constitutes
approximately 20% of all Met-containing peptides (1093 out of 5784). It has been controversial
whether the detected Met oxidation in LC-MS experiments reflects endogenous oxidation
events induced by reactive oxygen species or biologically irrelevant artifacts such as oxidation
during sample preparation or electrospray ionization. However, we observed that peptides with
oxidized forms of methionine clearly elute earlier during LC separation compared to their
unmodified counterparts for a majority of the identified peptides (Figure 2). This suggests that
the majority of oxidation is not occurring during the electrospray ionization, which would
otherwise produce identical elution times. The observation in elution time differences is in
good agreement with the notion that oxidized methionine is less hydrophobic than normal
methionine33. On the average, oxidation caused peptides to elute earlier by 4.3% on the
normalized elution time scale. Although this observation suggests that the majority of
methionine oxidation events occur prior to electrospray ionization, the data do not conclusively
prove the biological origin since oxidation resulting from sample processing remains as a
potential source of artifact. Regardless of the origin, it may be informative to track the
abundances between different biological conditions quantitatively for these modified peptides,
which would aid in identification of the major protein targets in oxidative stress.

Unlike oxidized methionine, other PTMs were observed in fewer number and the estimated
FDR values were quite high after applying the initial filtering criteria optimized for regular
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peptide identifications. To improve the FDR, we applied an additional filtering criterion that
requires the presence of unmodified form of the peptide in addition to the modified form in
order to be considered as a ‘true’ identification. However, such filtering criterion is not
compatible with the common approach for assessing FDR, which use reversed or scrambled
protein sequences. The peptide identifications from reversed database are random matches in
nature, and it is unlikely to include modified peptides and unmodified peptides with the same
sequences identified from the reversed database at the same time. Although they may have
some cases with non-modified counterparts among peptides from reversed sequence search,
this will significantly underestimate the FDR since the percentage of peptides existing in both
modified and non-modified peptides among reversed database searches are significantly fewer
than that from forward searches. To address this issue, we introduced an alternative strategy
to assess the FDR for peptide identifications with PTMs. We propose that the estimate of the
number of false hits for a given PTM can be made based on a search for non-existing PTMs
with similar properties such as the same amino acid specificity and a similar, but distinct mass.
In practice we performed searches for modification on the same amino acid residue with the
intended modification mass shifted with ±10 Da. For example, we found 23 peptides with
cysteines oxidized into sulfonic acid (Supplemental Table 3) which corresponds to +47.9847
Da. Searching for dynamic cysteine modification with the masses +37.9847 Da and +57.9847
Da gave zero and one peptide, respectively. Thus, our FDR estimate of the identification of
the peptides having sulfonic acid PTM is 2%. We also identified 5 peptides bearing sulfinic
acid, another oxidative modification of cysteine and no peptides with shifted PTM masses were
detected, suggesting a relatively low FDR. Interestingly, all 5 sites identified as cysteine
sulfinic acid were also identified as cysteine sulfonic acid, which agrees well with the notion
that sulfinic acid is an intermediate product of oxidation of cysteine residues to sulfonic acid.
All of the proteins bearing oxidized cysteine residues seem to be quite abundant: aspartate
aminotransferase, actin, glyceraldehyde-3-phosphate dehydrogenase, elongation factors 2 and
acetyl-CoA acetyltransferase with all ranked within top 300 out of the 4024 proteins.

In addition, we identified 26 peptides having phosphorylated serine or threonine with 6%
estimated FDR. Interestingly, 11 of these sites have been previously reported or predicted based
on homology, and are listed in the Swiss-Prot database. Because no specific enrichment of
phosphopeptides was performed, this list of the phosphopeptides most likely reflects only very
top abundant phosphoproteins. Since an important function of islets is hormone secretion, it is
not surprising that we identified relatively abundant secretion-regulatory proteins including
chromogranin A (rank 54) and secretogranin-2 (rank 29) proteins 34 that were detected with
four phosphopeptides and two phosphopeptides, respectively.

Over and Under-Represented Annotations of the Islet Protein Database
The relatively extensive coverage of the islet proteome led us to examine what pathways or
biologically important entities are enriched in the pancreatic islets. The most common approach
for such analyses has been comparing the obtained proteomic dataset to the entire genome as
a reference. However, such analysis using the annotations of the entire mouse genome as a
reference often captures the biases of the experimental approach. For example, the global
bottom-up LC-MS/MS proteomic profiling is biased towards the detection of high-abundant
proteins. Thus the comparison of such a dataset against the entire genome usually will indicate
overrepresentation of GO terms that involves mostly high-abundant proteins (e.g.
mitochondria, ribosome and/or main methabolic pathways). Such overrepresentations usually
are not resulted from the biology, but rather from the biases of the experimental approach. To
overcome this issue, we generated an “average” proteomic database for the mouse based on
the available proteomic data from different tissues or cells created with the same or a similar
LC-MS/MS experimental approach. A number of studies describing the proteomes of different
mouse organs, tissues and derived cell cultures, including mouse brain 7, 8, cortical neuron cell
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culture 9, heart 8, 22, muscle 22, kidney 8, lung 8, 10, placenta 8, liver 8, 11, 12, adipocyte cell
culture 13, and islet alpha-cell culture 14 have been included in compiling such reference
database. To approximate the protein set of an “average” LC-MS/MS mouse tissue analysis,
we assembled available datasets (including the current one derived from pancreatic islets), but
only those derived from adult mouse samples were considered in the final combined database.
If a gene was observed in multiple different studies, we retained redundant entries in the
combined dataset. This approach has the advantage of maintaining the approximate distribution
of genes belonging to a given biological annotation between the data obtained from a single
profiling study and the combined dataset of multiple profiling studies. As expected, some
annotations are no longer statistically significantly over- or under-represented when analyzed
against the combined proteomic database as compared to the entire genome as a reference. For
example, it is typical to achieve significant coverage of the proteins involved in oxidative
phosphorylation, so it appeared significantly over-represented when compared against the
entire mouse genome. However, because other proteomic datasets also have an extensive
coverage of oxidative phosphorylation pathways, when compared with the pooled proteomic
dataset, it is not any longer significantly over-represented, as the p-value equals 0.084 even
before the correction for multiplicity of testing (Table 1). Overall, when compared to the pooled
proteomic dataset instead of the entire genome, only 9, instead of 255 GO “biological
processes” terms, appeared to be significantly over-represented, and none (instead of 76)
significantly under-represented (i.e., having adjusted p-values < 0.05). Even so, all the 9 over-
represented terms (Table 2) relate to protein transport and secretion, thus likely reflecting
insulin and other peptides related to hormone secretion as the main constituents of the
pancreatic islets. To determine which protein complexes or sub-networks related to protein
transport and exocytosis might contribute to over-representation of corresponding GO terms
(Table 2), we collected evidence for protein-protein interactions from multiple sources for the
protein list covered by those GO terms and analyzed them using Cytoscape35 plug-ins
CABIN36 and MCODE37. We found a number of protein complexes involved in vesicular
trafficking and exocytosis, such as the SNARE complex that is involved in fusing the vesicular
membrane with endosomes, ARF proteins which are G-proteins responsible for regulation of
trafficking, adaptor proteins involved in formation of clathrin-coated vesicles, proteins in the
exocytotic complex responsible for fusion of protein-carrying vesicles to the plasma membrane
to enable exocytosis, components of oligomeric Golgi complex and others (Figure 3). Notably
29 proteins related to vesicular secretion are regulated by XBP-1 transcription factor, indicating
XBP-1 as the dominant regulator. Indeed, it has been shown that XBP-1 is a crucial
transcription factor involved in the development and function of exocrine glands 38.

None of the KEGG, InterPro, GO molecular function and SMART annotations appeared to be
statistically significantly over- or under-represented. Nonetheless, we detected two GO
“cellular component” terms, one PIR super family and five PIR keywords as over-represented
annotations in the pancreatic islet dataset. The two GO “cellular component” terms and one
PIR keyword highlight the over-representation of the Golgi apparatus, which is indeed
extensively involved in secretion of insulin and other peptide hormones. PIR super family
SF001135:trypsin are often typical contaminants from exocrine pancreatic tissue of the islet
isolates 39, 40. Secreted peptide hormones and their precursors produced by alpha- (Gcg,
Pyy,), beta- (Chga, Iapp, Ucn3) or PP cells (Ppy) constitute the over-represented PIR keyword
annotation “amidation”, referring to C-terminal amidation, which is essential for the biological
activity of many peptide hormones. Both hormones from endocrine islet tissue (Gcg, Ins1,
Ins2, Ppy) and contaminants from adjacent exocrine pancreatic tissue (Amy2, Cell) annotated
PIR keyword as exclusively expressed in the pancreas. Cleavage on pair of basic residues is a
common post-translational modification in the maturation process of peptide hormones from
precursors (Chgb, Gcg, Iapp, Pdyn, Ppy, Ppy, Scg2, Scg3, Sst). Notably, all enriched
annotations, except trypsin-like proteases potentially from adjacent exocrine tissue, precisely
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point toward the intracellular transport and secretion of peptide hormones as the major function
of pancreatic islets.

Proteins specifically expressed in pancreatic islets
Although analyses of over-representation of annotations expectedly highlighted the biological
role of the pancreatic islets in the secretion of peptide hormones, it is unlikely that this
information will provide novel information regarding the biological role of the islet and the
functions of individual proteins. An alternative approach would be to identify the set of proteins
specifically expressed in the islets. To this end, we compared our dataset with all the proteomic
datasets obtained from different mouse tissues as described above. As a measure of protein
abundance, we used the number of unique peptides or spectral count (if available) belonging
to the protein normalized by the protein length. However, due to the qualitative nature of LC-
MS/MS profiling, along with different experimental and instrumental setups and different types
of search engines used to interpret the MS/MS spectra, direct comparison of the estimated
protein abundances among the datasets obtained from different laboratories should be
interpreted with caution. We reasoned that the rank of the abundance rather than the estimated
abundance itself should be a more robust measure for comparison among such datasets (Figure
4), since highly abundant proteins should always have low rank values while low abundant
proteins should always have high rank values, although their absolute abundance estimates
may significantly differ between different datasets. The complete dataset used for analysis is
available in Supplementary Table 4. With the qualitative abundance rank information available,
we focused on identifying relatively islet-specific proteins, i.e., proteins expressed at high
levels (with low ranking values) in pancreatic islets but not present or present at very low levels
in other tissues. Figure 4 shows results of hierarchical clustering as a heatmap with a color
gradient for ranks of protein abundance levels. In this analysis, it is important to note that to
ensure confidence in the proteins identified in all datasets we considered only those having at
least two peptide hits. To compare the islet proteome with proteomes in other tissues we
considered all the datasets except the pancreatic islet alpha-cell dataset because the alpha-cells
are part of pancreatic islet tissue. We found a cluster of 133 proteins that are almost exclusively
present in the pancreatic islet dataset having two or more peptides per protein (Supplementary
Table 5).

As shown in Figure 5, most enzymes involved in the citric acid cycle are present in most of
the samples with relatively high abundance. Conversely, proteins involved in regulation of
secretion (Chga, Chgb, Scg2, Scg3, Scg5), and moreover islet-specific peptide hormones (Gcg,
Iapp, Ins1, Ins2, Pdyn, Ppy, Pyy, Sst, Ucn3) are among the top abundant proteins in the
pancreatic islets, but with very low abundance in other organs and tissues. A notable exception
is glucagon, which is expressed high in the pancreatic islet dataset as well as in the alpha cell
dataset as expected.

This subset of islet-cell specific proteins covers the entire range of abundances with a slight
shift towards low abundance proteins (Figure 6). Of these 133 proteins, 68 were not identified
in other measurements even by a single peptide, and thus are highly likely specific to pancreatic
islets. These 133 proteins were classified into the following annotation groups: (1) secreted
protein hormones, (2) proteases and protease inhibitors, (3) proteins involved in transport,
secretion and associated with the Golgi apparatus, (4) ribosome and translation, (5) regulation
of transcription, (6) proteasome and ubiquitin, (7) glycolysis and oxidative phosphorylation,
(8) lipases, (9) lysosome, (10) helicases, (11) proteins with other functional annotations and
(12) proteins without any functional annotations. Table 3 lists several novel unannotated islet-
specific proteins that do not contain any putative domains with known biological functions
(Table 3). These unknown proteins may play an important role in islet function and are potential
candidates for further detailed investigation.
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DISCUSSION
The availability of complete genome sequences has greatly accelerated the establishment of
genomic and proteomic technologies as powerful tool for studying tissue or cell-specific gene
expressions at the system-level and for delineating novel pathways involved in metabolic
diseases such as diabetes41, 42. In particular, mass spectrometry-based proteomics has become
an important tool for molecular and cellular biology research and for systems biology studies
by providing large scale measurements of relative protein abundances including post-
translational protein modifications43. The importance of studying biological systems at the
protein level is further emphasized by recent studies that clearly indicate that mRNA levels do
not necessarily correlate with protein abundances 44–46.

Mass spectrometry-based proteomic tissue profiling has been extensively applied recently for
establishing the proteome composition and protein expression patterns, in different mouse
tissues, organs, and cell lines7–14. Such proteome profiling of mammalian tissues or organs is
especially valuable for elucidating the diversity in protein composition and expression patterns
among mammalian tissues. The proteome database will also serve as a reference resource for
more focused hypothesis- driven biological studies and/or for more detailed systems biology
studies. For example, one or more of the proteins can serve as potential biomarkers for tissue-
specific pathologies. The present study represents the first extensive proteomic characterization
of mouse pancreatic islets of Langerhans with the aim of establishing a reference database for
mouse islet proteome for future metabolic research using rodent models. We performed this
initial survey experiment using a pooled sample from both normal (control) mice and an insulin
resistant model with the aim of gaining increased coverage for those proteins that are potentially
expressed at higher levels in either of the two conditions. This strategy is advantageous
compared to the analysis of islets from the normal state alone because many detectable proteins
with increased expression in the disease state could be below the limit of detection if only the
normal sample is analyzed. Also, since the database is a qualitative catalog, nearly all proteins
identified from the pooled sample will be present in both the normal and disease states but at
different abundance levels in the two states. Therefore, the increased coverage achievable for
this database should serve as a more useful resource for future studies using both normal and
disease mouse models 47.

The resulting islet proteome database from this study covers ~4,000 proteins. One utility of
the database will be mapping different canonical pathways and functional processes to identify
which islet proteins are linked with specific metabolic and signaling pathways (Figure 1) since
traditional pathway knowledgebases are often non-tissue specific. This database will also be
a suitable complement other proteomes that have been characterized for liver, adipocyte,
muscle, and brain7–14. Furthermore, we have provided estimated protein-abundances within
the islet proteome based on the normalized spectral counts. While it has been reported that
spectral counts can provide an estimate on relative protein abundances within the
proteome25, 48, such estimates should only be used as a qualitative measure to query whether
the protein is either highly abundant or of relatively low abundance. This is because several
other factors can influence the spectral count including protein solubility, protein digestion
efficiency and peptide ionization efficiency for a given protein.

The extensiveness of the islet proteomic datasets enabled us to compare the results with other
available datasets from a number of mouse organs and tissues. We were able to identify a set
of 133 proteins that were specific to islets but not detectable or detected with very low
abundances in other tissues (Supplemental Table 5). Indeed the subset of 133 proteins contains
well-known islet specific secreted hormones, including: glucagon, islet amyloid polypeptide,
insulin, prodynorpin, pancreatic polypeptide, peptide YY and urocortin 3. Besides secreted
peptide hormones, the subset includes proteins known to be specific to islets, for example:
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G6pc2, Reg1 and Sytl4, which are islet specific glucose-6-phosphatase49, regenerating islet
derived 1 50 and synaptotagmin-like 4 also know as granuphilin51, respectively. Although some
proteins are indeed known and expected to be islet-specific, the majority of proteins were not
known to be restricted to islets. In particular, several hypothetical or unknown proteins were
confidently identified as islet-specific i.e. proteins not containing domains with known or
reasonably specific functions. These islet-specific proteins, including the unknown proteins,
may be important for islet function and are suitable candidates for future studies. An interesting
example is the novel transmembrane protein, TMEM27, that was recently demonstrated to
stimulate pancreatic beta-cell proliferation52. We should note that those 133 proteins are
relatively specific to islets based on our data because we only used 8 other organ and tissue
types for this comparative analysis: placenta, muscle, heart, kidney, lung, adipocytes, liver and
brain. Potentially, those proteins could be expressed in the tissues not yet profiled by LC-MS/
MS proteomics.

In addition to protein identification, there is a significant need in identifying potential post-
translational protein modifications in a global proteome profiling study since many
modifications are known to regulate cell signaling and can also serve as markers of disease
progression. Unfortunately, due to the low-abundant nature of most modifications, it has been
a challenge to identify protein modifications in global profiling experiments without
enrichment. In this work we explored the use of an alternative informatics strategy for
identification of modified peptides from LC-MS/MS analyses of a global non-enriched sample.
We based our analyses on the notion that post-translational modifications are usually
substoichiometric, therefore, the true modified peptides should be present along with
unmodified forms. By applying this criterion and an alternative FDR estimation approach using
shifted-mass approach (details described in methods), we identifed a total of 54 modified
peptides including oxidative modifications on cysteine and phosphorylation on serine and
threonine with the FDR <5%. Our approach for controlling the FDR of the peptides with PTMs
is important for identifying modified peptides within global profiling data, especially for those
PTMs that cannot be specifically enriched such as cysteinyl oxidation.

While we realize that the number of identified modified peptides is very limited due to the
nature of the global profiling experiment without specific enrichment, the identification of
these modifications provides additional value to protein identities or abundances for this initial
characterization of the islet proteome. One example is oxidative modifications since oxidative
stress has been linked with diabetes 32, 53. To our knowledge, the specific oxidative
modification in islets have never been identified, presumably due to the limitations in
technology. The observed oxidative modifications in this study could potentially provide a list
of novel targets that may play a role in oxidative stress response and may also serve as markers
of disease progression. An specific example is the oxidation of Cys-244 in glyceraldehyde-3-
phosphate dehydrogenase (G3PDH). There are reports showing that Cys-244 is one of the
strongest nucleophilic residues and is susceptible to modifications by 4-hydroxy-2-nonenal
54, a major lipid peroxidation-derived reactive aldehyde, or by normal endogenous metabolites
like acyl-CoA 55 and fumarate 56. All three modifications result in strong inhibition of the
G3PDH enzyme activity. The fact that the oxidation on Cys-244 was detected in both sulfonic
and intermediate sulfinic acid forms further supports the confidence of the identifications.
However, it remains to be proven that the oxidation of Cys-244 residue indeed inhibits the
enzymatic activity of G3PDH.

In summary, the resulting mouse islet proteome database contains the identified peptide
sequences, the protein identifications and spectral count information for each protein as
information reflecting their relative abundances, and the identified PTMs. The database
represents an important reference resource for further data mining and for islet biological
studies focused on diabetes. For example, this database will provide a foundation for future
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quantitative proteomic studies applying the accurate mass and time tag approach where both
accurately measured masses and elution times are utilized for peptide identifications57. The
available peptide sequences and islet-specific proteins will also be useful for selecting and
devising specific targeted proteomic experiments. The database is included as Supplemental
Material and available at the NCRR Center for Integrative Biology website
(http://ncrr.pnl.gov) for access by the research community.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Coverage of the insulin receptor signaling pathway. Proteins detected with one and at least two
peptides are colored with green and red, respectively. Undetected proteins and low molecular
weight chemical compounds are shown in white.
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Figure 2.
Elution time of peptides containing oxidized methionine compared to peptides with the same
sequences with normal non-oxidized methionine. Peptides bearing oxidized methionine tended
to elute earlier by 4.3% on the average than their non-modified counterparts.
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Figure 3.
Interaction network of the proteins and protein complexes involved into protein transport and
exocytosis in the islet cells. Proteins from overrepresented GO terms (Table 2) were analyzed
using Cytoscape plug-in CABIN to build the protein-protein interaction network, followed by
analysis with MCODE plug-in to find clusters of highly interconnected sub-networks. The
eight clusters are oligomeric Golgi complex (green), coatomer complex (red), cluster
containing vacuolar protein sorting proteins and syntaxins 8 and 12 (light blue), cluster of Rab
GTPases (orange), exocyst complex (light pink), SNARE comples (turquoise), cluster mostly
consisting of proteins involved in the transport via the nuclear membrane (blue) and cluster of
adaptor proteins such as VCP (bright pink). Several of the highly representative functional
categories were labeled with distinct shapes other than the default round node shape. GTPases
such as Rab and Arf involved in the regulation of trafficking are shown with triangles and
parallelograms, respectively. Syntaxins involved in fusion of synaptic vesicles with plasma
membrane are shown as hexagon shape. Vacuolar protein sorting proteins are shown as
diamonds.
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Figure 4.
Hierarchical clustering results showing heatmap display with color gradient for gene
abundance ranks within the corresponding datasets. Ranks above 5000, that is genes not in top
5000 most abundant, colored with black. The distance function is based on Euclidean distance
between the ranks and computed as average linkage. The cluster of the genes predominantly
abundant in the pancreatic islets highlighted with magenta. The dataset names refer to the
organs or cell types followed by the PubMed unique identifier of the corresponding publication.
Asterisk refers to the submitted publication of Knyushko et al. 22.
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Figure 5.
Examples of heatmaps with color gradient for protein abundance ranks for citric acid cycle and
islet secreted proteins. The members of citric acid cycle present across most of the datasets and
at high abundance ranks. Islet secretory peptide hormones and co-secreted granin proteins are
predominantly abundant in the pancreatic islets. The datasets names refer to the organs or cell
types followed by the PubMed unique identifier of the corresponding publication. Asterisk
refers to a submitted publication (Knyushko et al. 22.)
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Figure 6.
Distribution of log transformed normalized spectral count as a measure of abundance for the
entire pancreatic islet dataset (blue) and the subset of proteins unique to the pancreatic islets
(red). The abundances of proteins unique to pancreatic islets span across the entire range and
on the average slightly shifted to the left part of the histogram.

Petyuk et al. Page 21

J Proteome Res. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Petyuk et al. Page 22

Table 1
Contingency tables used for testing of over- or under-representation of annotations using the example of oxidative
phosphorylation GO:0006119.

A) The reference is the entire mouse genome

observed in pancreatic
islets

Remained* annotations in the
entire genome

Oxidative phosphorylation 43 24 67

Other 2010 11792 13802

Total 2053 11816 13869

B) The reference is the pooled proteomic datasets of multiple mouse tissues and derivative cell cultures

observed in pancreatic
islets

Remained annotations in the
combined dataset

oxidative phosphorylation 43 421 464

other 2010 25015 27025

total 2053 25436 27489

*
The remained column indicates the total number in the entire genome minus the number observed in pancreatic islets. The observed 4.34-fold enrichment

compared to the entire genome is statistically significant. The p-value is 3.5E-20 before and 2.4E-18 after Benjamini-Hochberg correction.

The observed 1.24-fold enrichment compared to the combined dataset is not statistically significant. The p-value is 0.084 before and 1 after Benjamini-
Hochberg correction.
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