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Abstract
A modeling approach to characterize the nonlinear dynamic transformations of the dentate gyrus of
the hippocampus is presented and experimentally validated. The dentate gyrus is the first region of
the hippocampus which receives and integrates sensory information via the perforant path. The
perforant path is composed of two distinct pathways: 1) the lateral path and 2) the medial perforant
path. The proposed approach examines and captures the short-term dynamic characteristics of these
two pathways using a nonparametric, third-order Poisson–Volterra model. The nonlinear
characteristics of the two pathways are represented by Poisson–Volterra kernels, which are
quantitative descriptors of the nonlinear dynamic transformations. The kernels were computed with
experimental data from in vitro hippocampal slices. The electrophysiological activity was measured
with custom-made multielectrode arrays, which allowed selective stimulation with random impulse
trains and simultaneous recordings of extracellular field potential activity. The results demonstrate
that this mathematically rigorous approach is suitable for the multipathway complexity of the
hippocampus and yields interpretable models that have excellent predictive capabilities. The
resulting models not only accurately predict previously reported electrophysiological descriptors,
such as paired pulses, but more important, can be used to predict the electrophysiological activity of
dentate granule cells to arbitrary stimulation patterns at the perforant path.
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I. Introduction
THE hippocampus is one of the most extensively studied neuronal systems in the brain because
it provides a model system to advance our understanding of the mechanisms that underlie
higher cognitive functions, such as learning and memory [1]–[4]. The hippocampus receives
neuronal inputs from multiple brain regions that are involved in processing different modalities
of sensory information, and its primary function is the formation of mnemonic labels that
identify a unified collection of features (e.g., those comprising a person's face) and the creation
of both semantic and temporal relations between multiple collections of features (e.g.,
associating a person's face with a given context) [5]–[7].

The hippocampus is comprised of several subsystems that form a closed loop. The dentate
gyrus is the first hippocampal subsystem receiving the primary input of the hippocampus via
the perforant path that arises from the entorhinal cortex. It plays a pivotal role in understanding
the synaptic integration of the hippocampus because the perforant pathway is the recipient of
most of the sensory input to the hippocampal formation. Moreover, the two pathways of the
perforant pathway (the lateral and medial perforant paths) receive converging sensory
information (e.g., visual, auditory, and olfactory) from other brain regions [8], [9]. The lateral
perforant path (LPP) and the medial perforant path (MPP) can be readily isolated as they are
anatomically and functionally distinct [10]–[12], exhibiting a number of different physiological
[13]–[15] and pharmacological [16]–[19] characteristics. Both pathways converge to a
common population of neurons in the dentate gyrus, the granule cells.

Biologically interpretable models of the hippocampus are essential for understanding how
sensory modalities are functionally processed and integrated. Parametric models, often used
to describe functional properties of cortical areas [20]–[22], are not easy to scale when complex
functions in a multineuron network level are involved, since a very large number of parameters
are required to represent large numbers of complex interconnected elements. Nonparametric
models based on the input–output relationships address the scalability issue successfully
because they are concerned with an accurate representation of the input–output mapping
without explicit regard to the internal complexity of the system. This relieves us from the
burden of specifying the multitude of complex interconnected elements, but also limits our
scope to the aggregate effect of these multiple elements and their complex interconnectivity
on the observed output of the system (in this case, the population spike in the dentate gyrus).
For this reason, nonparametric models can be employed to provide more compact and
comprehensive functional representations of hippocampal circuitry [23]–[28].

In this paper, a nonparametric methodological approach (called the Poisson–Volterra modeling
approach [29]) is presented that yields models capable of characterizing the nonlinear dynamic
characteristics of the manner in which sensory information arriving at the LPP and the MPP
is integrated by the granule cells of the dentate gyrus. The obtained model represents a compact
quantitative representation of the dentate gyrus based on experimentally available datasets
[30], [31], and it is mathematically rigorous and scalable with predictive capabilities [32],
[33]. The predictive accuracy of this model is quantitatively evaluated using the normalized
mean-square prediction error. This model has the ability to represent the effect of the combined
activity of all (known and unknown) neuronal actions and interactions, without explicit
knowledge of the underlying neuronal mechanisms. This ability is due to the Poisson–Volterra
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kernels of the model that are the quantitative descriptors of the full nonlinear neuronal
transformations and are unique representations of the associated functional properties.

The Poisson–Volterra model presented in this paper was obtained from data recorded from in
vitro hippocampal slices. The electrophysiological activity of the dentate gyrus was measured
experimentally using multielectrode arrays [34]–[37]. Each of the two pathways was stimulated
with a random point process (a Poisson sequence of impulses), called hereafter a random
impulse train (RIT), while the response of a population of granule cells was recorded
simultaneously.

The motivation for this work is provided by the need to establish the appropriate Poisson–
Volterra model for this system through the analysis of actual experimental data obtained under
conditions of random point process stimulation. To validate the obtained results, we performed
a comparison with the widely used method of paired-pulse stimulation and its associated
measurements of paired impulse functions (PIFs). Since the latter is defined only for a single
input, we collected data with an RIT stimulation of each pathway to estimate the requisite
Poisson–Volterra models. The extension to simultaneous stimulation of the two pathways with
an independent RIT will be presented in the near future.

Several researchers have used the PIF as a tool to describe the dynamic characteristics of the
LPP and the MPP [14], [19], [38]. In this paper, we show that the PIF represents only a partial
view of the full functional characteristics of the system—the one defined by pairs of stimulating
impulses but not triplets or more. We confirmed this fact by comparing the experimentally
measured PIF with the PIF computed on the basis of the third-order Poisson–Volterra model
estimated with the data collected under RIT stimulation. The latter model accounts for the
dynamic interactions of up to three stimulating impulses, which have an effect on the granule
cell response (as indicated by the analysis of the data). As more than two impulses appear at
either of the two pathways (LPP or MPP), the PIF fails to predict the granule cell output with
the same accuracy as the third-order Poisson–Volterra model, since the PIF does not account
(by definition) for the interaction among more than two stimulating impulses.

A preliminary version of this work has appeared as a conference poster [39]. The results
presented in this paper show that a third-order Poisson–Volterra model is capable of predicting
accurately the granule cell output at the dentate gyrus in response to arbitrary patterns of
stimulating sequences at the LPP and MPP of the rat hippocampus.

II. Materials and Methods
A. Preparation of Slice and Multielectrode Stimulation

Adult Sprague–Dawley male rats, 7–9 months of age, were used in all experiments. The brain
slices were acquired using the following standard electrophysiological procedures [30].
Hippocampi from both hemispheres were dissected under cold (2 °C) artificial cerebro-spinal
fluid (aCSF) (NaCl, 128 mM; KCl, 5 mM; NaH2PO4, 1.25 mM; NaHCO3, 26 mM; Glucose,
10 mM; MgSO4, 2 mM; ascorbic acid, 2 mM; CaCl2, 2 mM) and aerated with a mixture of
95% O2 and 5% CO2. A standard vibratome (VT1000S, Leika, Germany) was used to cut the
hippocampus transverse to the longitudinal axis in 400-μm-thick slices. Slices then were left
to equilibrate while bathed in cold aCSF for at least 2 h. Subsequently, each slice used for
electrophysiological analysis was carefully positioned on top of a multielectrode array, and
was held down with a nylon mesh. The slice was positioned so that stimulating electrodes
covered the inner blade of the dentate gyrus (see Fig. 1). The positioning of the slice relative
to the array was documented with the aid of an inverted microscope (DML, DMIRB, Leika,
Germany) and a digital camera (Hitachi VK-C370, Spot Model 2.0.0). Throughout all
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experiments, slices were perfused with 1 mM MgSO4 aCSF at a flow rate of 15 ml/min and
constantly heated at 33 °C.

A multielectrode array system was used to simultaneously stimulate and record from multiple
sites in each hippocampal slice. The system consisted of two components: 1) a custom-designed
multisite electrode array to cover the appropriate subregions of the dentate gyrus with 60
microelectrodes in a 3 × 20 configuration [17], [40] and 2) a commercially available multi-
channel stimulation-recording system (MEA60 Multi Channel Systems, Germany) (Fig. 1).
The microelectrodes were appropriately arranged to allow individual stimulation of each
pathway. They were embedded in a planar glass plate, with 28-μm diameter and center-to-
center spacing of 50 μm. The array was positioned over the molecular layer (ML), spanning
from the fissure to the granule cell body layer.

The stimulation electrodes were chosen in the outer-ML to stimulate the LPP and in the mid-
ML to stimulate the MPP. The selection of the stimulating electrodes for the perforant path
was confirmed by the following electrophysiological criteria: 1) field excitatory post-synaptic
potentials (fEPSPs) showed pair pulse facilitation when the LPP was stimulated, and paired
pulse depression when the MPP was stimulated [14], [17], [41]; 2) fEPSPs exhibited a dendritic
current sink at the outer ML and a dendritic current source at the middle ML when LPP was
stimulated; accordingly, when the MPP was stimulated, fEPSPs exhibited a dendritic current
sink at the middle ML and a dendritic current source at the outer ML [42]–[44]; 3) stimulation
at the MPP exhibited shorter latencies of the population spike recorded in the granule cell layer
[14], [28]. The electrode positioned right below the granule cell layer was used to record the
electrophysiological response in the form of population spikes which reflect the synchronous
activation of dentate granule cells [45], [46].

B. Experimental Protocol and Data Acquisition
At the beginning of each experiment, input–output (I/O) curves were measured for the LPP
and the MPP separately with a series of biphasic pulses (100 μs duration) having intensities
that varied between 10 μA and 140 μA (in 10-μA increments, without inducing long-term
potentiation). The I/O curve for each pathway was used to determine the stimulation intensity
for the experiment as the value that evoked 50% of the maximum population spike response
in the granule cell layer. Subsequently, five series of paired pulses (PP) with seven different
interpulse intervals (IPI) (50, 100, 200, 300, 500, 750, and 1000 ms) were applied to each
pathway. The resulting PPs were used to compute a paired impulse function (PIF), which is
the ratio of the population spike amplitude evoked by the second pulse over the one evoked by
the first pulse at each IPI (averaged over five PP stimulation series).

Following the PP testing, each pathway was stimulated with an RIT stimuli. Each RIT
contained 400 Poisson-distributed impulses (mean interimpulse interval of 500 ms, covering
the approximate range of 10–4000 ms). The use of Poisson-distributed RITs was motivated by
the desire to employ a class of stimuli capable of testing the system with a wide variety of
interimpulse intervals over a relatively short period. This class of stimuli has been shown to
be suitable for testing the hippocampus and, furthermore, supports efficient modeling of the
nonlinear dynamics of this neuronal system [23], [28]. The parameter of the Poisson
distribution that determines the average firing rate of the RIT is consistent with the known
firing rates of the respective hippocampal neurons [47], [48]. The stimulation intensity used
was the same as for the PP series. The system was tested for stationarity by measuring the I/O
curves before and after RIT stimulation, and only data sets that exhibited changes within ±15%
of the baseline were included in the analysis.

Experimental data were sampled at 25 kHz per channel and the amplitude of each population
spike was extracted for data analysis using a custom interface written in MATLAB (v6.5). This
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amplitude was defined as the segment of the vertical line between the negative peak of the
spike and the tangential straight line connecting the spike onset and offset [49].

C. Volterra Modeling of a Single-Input Single-Output Point-Process System
The data were analyzed using a variant of the general Volterra modeling approach, adapted for
a point-process (i.e., impulse sequence) stimulus and the corresponding output sequence of
population spikes with variable amplitude [39], [50]). This approach considers the input and
the output events/spikes to be contemporaneous (i.e., occurring in the same time bin which is
set to 10 ms so that it exceeds the maximum output latency of 7.4 ms observed in our
experiments). This modeling approach, called the Poisson–Volterra approach, is applicable to
all systems with contemporaneous point-process inputs and outputs. It employs a general model
of the system response y(n) to a point-process stimulus [29], [51]

(1)

where ni denotes the time of a stimulus event (impulse), y(ni) is the amplitude of the population
spike at the same discrete time, and nj is the time of occurrence of any jth stimulus event within
the time window of μ (system memory) prior to ni. The functions k1, k2, and k3 are the first-,
second-, and third-order Poisson–Volterra kernels and represent the key descriptors of the
nonlinear dynamics of this third-order system. Note that the output at all other times is zero.
The first-order kernel represents the amplitude of the population spike attributed to each
stimulating impulse alone (i.e., in the absence of any other input impulses within the memory
extent μ, which was found to be about 1 s for this system). The second-order kernel represents
the change(s) in the population spike amplitude caused by interactions between the present
stimulus impulse and each of the past stimulus impulses within the memory extent μ. Finally,
the third-order kernel represents the change(s) in the population spike amplitude caused by
interactions between the present stimulus impulse and any two preceding stimulus impulses
within the memory extent μ, not accounted for by the second-order model.

In order to reduce the number of free parameters required for kernel representation and
estimation, the kernels were expanded on a Laguerre basis (i.e., they were approximated with
linear combinations of exponentially decaying Laguerre functions [32]). The unknown
Laguerre expansion coefficients were estimated from the data using least-squares fitting
methods, as detailed in [32]. The kernels can be reconstructed using the respective estimated
expansion coefficients.

The predictive accuracy of the obtained Poisson–Volterra model (that contains the estimated
kernels) was evaluated using the normalized mean square error (NMSE) of the model
prediction versus the system actual output, defined as

(2)

where Ypr is the predicted amplitude of the population spikes and Ydata is the recorded amplitude
of the population spikes. The value of the NMSE cannot become zero, even for a perfect model,
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due to the inevitable presence of measurement errors and noise in the data. Therefore,
interpretation of the numerical values of the computed NMSE must be made in the context of
the noise conditions and possible measurement errors in each case. Typically, NMSE values
of less than 0.1 are deemed to indicate satisfactory predictive capability of the model that
validates its specific form.

The kernel estimation procedure and the nonlinear modeling/analysis of the LPP and MPP
systems were performed with the use of a specialized software package (LYSIS) that has been
developed by the Biomedical Simulations Resource at the University of Southern California
and is distributed to the biomedical community free of charge [52]. The statistical significance
of the obtained estimates of the Laguerre expansion coefficients (from which the kernels and
the Poisson–Volterra model predictions are constructed) was evaluated by applying the
Student's t-test at the significance level of p < 0.01.

D. Comparison Between PP and RIT Analysis
The descriptor widely used for PP characterization/evaluation has been the paired impulse
function (PIF) [14], [19], [42]. The measured PIF is defined as the ratio of the amplitude Y2 of
the second pulse (test response) over the amplitude Y1 of the first pulse (conditioning) resulting
from stimulation with paired pulses with a given interpulse interval (IPI) Δn = n2 – n1, where
n1 is the time of occurrence of the first pulse and n2 is the time of occurrence of the second
pulse

(3)

Note that the PIF values are non-negative and depend on the IPI. For a given IPI, PIF values
of greater than 1 indicate PP facilitation, while PIF values of less than 1 indicate PP depression.
In the context of the proposed approach, the estimated kernels can be used to compute the first
and second responses due to a PP stimulus with any IPI, equivalent to the one measured in the
PP experiments. For instance, the test response Y2 can be computed by use of the Poisson–
Volterra model of (1) as follows:

(4)

where Δn is the IPI between the two stimulus impulses. Since the first-order kernel represents
the amplitude of the population spike attributed to an isolated impulse stimulus, it defines the
conditioning response and we can obtain an estimate PÎF of the PIF from a series of PP
experiments as

(5)

The estimated PÎF will be a close approximation of the measured PIF if, and only if, the
employed third-order Poisson–Volterra model is an adequate model for the subject system. To
examine the adequacy of the employed model, we compared the measured PIFs with the
estimated PÎFs for all experimental preparations, and quantified the degree of agreement by
computing their correlation.
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III. Results
In this study, five experiments with RIT stimulation were performed in vitro for each of the
two pathways—LPP and MPP—selected according to standard electrophysiological criteria
[14], [17], [25], [41], [42], [44]. A third-order Poisson–Volterra model was used to analyze the
RIT data [29], [30], [39], [50], [51]. Three Laguerre basis functions were found to be
appropriate as a tradeoff between model complexity and prediction accuracy. The optimal
values of the Laguerre parameter α were found to vary slightly among experiments: α = 0.994
±0.003 for the LPP, and α = 0.992±0.002 for the MPP. Note that there are ten free parameters
in each estimated third-order Poisson–Volterra model.

Over the five experiments analyzed for both inputs, the mean and standard deviation of the
first-order kernel (k1) were 127.79 μV ±20.3 μV for the LPP and 244.27 μV ±56.2 μV for the
MPP. The mean values of the estimated second (k2)- and third (k3)-order kernels over the five
experiments are shown in Fig. 2 for the LPP and in Fig. 3 for the MPP, after normalization
(division) by k1.

In Fig. 2(A), the mean values of the estimated k2 exhibit a gradually declining inhibitory
characteristic up to 500 ms. Fig. 2(B) shows the mean values of the estimated k3 that exhibit
an early facilitatory phase, rapidly declining and crossing into a shallow inhibitory phase
shortly after 50 ms. The latter relaxes to zero values around 400 ms. Fig. 2(C) shows the mean
values of k3 plus one standard deviation, and Fig. 2(D) shows the mean values of k3 minus one
standard deviation. The results in the MPP case are shown in Fig. 3 in the same sequence. Fig.
3(A) shows the mean k2 to exhibit an early facilitatory phase, rapidly declining and crossing
into an inhibitory phase around 100 ms that relaxes back to zero values around 1000 ms. Fig.
3(B) shows the mean k3 to exhibit an early inhibitory phase, rapidly declining to a slower
inhibitory phase around 100 ms. The latter relaxes back to zero around 500 ms. Fig. 3(C) and
(D) show the mean values of k3 plus and minus one standard deviation, respectively.

A. Comparison Between the Paired Pulse (PP) and RIT Analysis
In order to compare the two main approaches of stimulation and analysis for the study of
neuronal nonlinearities (facilitation and depression), we use the measured and the estimated
PIF for the two pathways, following the methodology described in the previous section. These
measurements can be used to assess the ability of the advocated Poisson–Volterra model to
reproduce the functional characteristics (i.e., the PIF) studied through the PP approach. Note
that a PIF value of greater than 1 indicates that the population spike amplitude due to the second
pulse is greater than the one due to the first pulse (facilitation), while the reverse is true for PIF
less than 1 (depression). The results are compared in Fig. 4 (averages over five experiments
with PP and RIT stimulation applied the same preparation).

We see that the estimated PÎF from the RIT data closely tracks the measured PIF from the PP
data. The only slight deviation is observed in the MPP case for IPI > 200 ms. We surmise that
this is due to the third-order dynamics of the system in this case (see Discussion). These findings
indicate that the proposed third-order Poisson-Volterra model is adequate for representing the
PP results and, in fact, reveals additional information about the system dynamics of order higher
than second (when they exist, as in the MPP case for IPI > 200 ms) that is not obtainable with
PP stimulation. To examine this point further, we compared the estimated PÎF using a second-
order Poisson–Volterra model with the measured PIF. As shown in Fig. 4(C) and (D), the
estimated PIF using the second-order model fails to closely track the measured PIF using PP
stimulation, demonstrating the inadequacy of the second-order model or, in other words,
demonstrating the fact that there are significant third-order interactions in the system.
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B. Predictive Capabilities Using the PP and RIT Analysis
In addition to providing a quantitative description of the nonlinear characteristics in the form
of kernels or PIF, the proposed Poisson–Volterra model has predictive capabilities for arbitrary
stimulus patterns, as illustrated in Fig. 5 for the LPP case and in Fig. 6 for the MPP case. A
comparison between the predicted responses using the third-order Poisson–Volterra model and
using the measured PIF suggests that the Poisson–Volterra model can predict the population
spike amplitudes evoked by RITs better than the measured PIF. The NMSE value for the model
prediction was 4.87%±0.47% in the LPP case, and 4.13%±0.38% in the MPP case. Using the
measured PIF, the associated prediction NMSE value was 7.86%±0.62% in the LPP case and
6.93%±0.59% in the MPP case. The NMSE values for both the LPP and the MPP cases were
significantly lower (p < .01) for the Poisson–Volterra model than the respective measured PIF
model. This is probably due to the fact that our model takes into consideration the entire history
of the stimulus impulses and third-order interactions, whereas the PIF model uses the current
and only one previous stimulus impulse.

The predictive power of the Poisson–Volterra model can be further validated using out-of-
sample predictions, where the system output is predicted for an arbitrary stimulus using kernels
obtained from a different input–output dataset (segment shown in Fig. 7). Visual assessment
and the computed NMSE values demonstrate the out-of-sample predictive power of the
Poisson–Volterra model. For the example of Fig. 7, the insample NMSE is 5.22% and the out-
of-sample NMSE is 6.37% for the LPP case, while the respective NMSE values for the MPP
case are 3.54% and 4.34%.

IV. Discussion
We have presented and experimentally validated a nonparametric, third-order Poisson–
Volterra model that describes the dynamic characteristics of the LPP and the MPP of the dentate
gyrus of the rat hippocampus. Experimental data were obtained by stimulating the afferents of
each pathway with RITs and simultaneously recording the activity of the granule cells at the
dentate gyrus (population spikes). In the advocated approach, the functional properties of the
two pathways are fully represented by Poisson–Volterra kernels. The performance of this
modeling approach was compared with the widely used method of paired pulses (PP) in terms
of predictive capability to arbitrary stimulus patterns and the corresponding paired impulse
functions (PIFs) obtained with the two approaches.

The results of this study show that the proposed Poisson–Volterra model has superior predictive
capabilities and its kernels exhibit consistent waveforms across all experiments that are
distinctive for each pathway and describe uniquely the LPP and the MPP neuronal
transformations. This model exhibits better predictive capabilities than the predictions
provided by the measured PIF of the widely used PP approach, as illustrated in Figs. 5 and 6.
The superior predictive capability of the Poisson–Volterra model is probably due to the fact
that this model takes the interactions among multiple stimulus impulses into consideration (i.e.,
triplets in this case, including the current/reference impulse) possibly found within the memory
epoch of the system (about 1 s) in the course of the random stimulation of the system with an
RIT. This is, of course, in addition to the effects of single stimulus impulses found within the
memory epoch of the system (i.e., pairs of stimulus impulses when the current/reference
impulse is included). These two types of nonlinear dynamic interaction of the current impulse
with a single preceding impulse (second-order interactions) and with a pair of preceding
impulses (third-order interactions) are quantified separately by the second-order and third-
order Poisson-Volterra kernels, respectively. On the other hand, the PIF measurement of the
PP approach is based only on the effects of a single preceding stimulus impulse (i.e., only
second-order interactions). The predictive power of the proposed model was demonstrated
using insample predictions (Figs. 5 and 6) and out-of-sample predictions (Fig. 7).

Dimoka et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although second-order Poisson–Volterra models have been used previously to model the
dentate gyrus [25], [39] and the CA1 area of the hippocampus [30], a third-order model was
found to be necessary in this study in order to fully characterize the nonlinear dynamics of the
LPP and the MPP neuronal transformations. Specifically, the NMSE value dropped to 4.88
±0.47% for the third-order model relative to the NMSE value of 6.71±0.75% when the second-
order model was used, a drop that was found to be statistically significant (p < 0.01). The fact
that the inclusion of the third-order term enhances the capability of the model to closely track
the recorded response (i.e., the population spike amplitudes) is further illustrated in Fig. 8 for
an arbitrary dataset in the LPP case. Another piece of evidence that corroborates the validity
of the third-order model is the fact that the computed PÎF using the second-order model fails
to closely track the measured PIF using PP stimulation, while the PÎF computed from the third-
order model follows the measured PIF closely (see Fig. 4).

One issue not addressed by the presented model is in reference to the possible dynamic
interactions between the LPP and MPP in influencing the neuronal activity at the dentate gyrus
during simultaneous stimulation of both pathways. Future research will extend the model to
include a quantitative representation of these dynamic (and nonlinear) interactions and will
evaluate their combined effect in improving model prediction accuracy.

The use of RIT experimental stimuli in the context of the Poisson–Volterra modeling approach
is premised on the requirement of employing the correct model order (third, in this case).
Therefore, if any comparison of performance is attempted with other approaches (e.g., PP
stimulation), it has to be with the correct model order. Any comparisons with a truncated
Poisson–Volterra model (e.g., of second order) are not appropriate or meaningful. The
comparison with the PP approach (which is confined by the definition of second-order
interactions) is made in this paper only because the latter has been widely used, and not because
it is necessarily appropriate for this system that has been shown to exhibit third-order
interactions as well. Thus, the main point conveyed by this comparison is that this system
exhibits third-order interactions and, consequently, the proper tool to study its full dynamics
is a third-order Poisson–Volterra model (not the PP approach which is confined by definition
to second-order interactions).

The application of the RIT stimulation in the context of Poisson–Volterra modeling requires
greater computational effort. However, this incremental difference in computational effort is
gradually diminishing as the computational means improve. In our opinion, the level of
computational effort (within reason) should not be a critical determinant when the validity of
the obtained results is at stake.

We now turn to the important (and perennial) question of the physiological significance of
these findings and the interpretation of the shapes of the obtained Poisson–Volterra kernels in
a manner that advances our scientific understanding of the system. Let us begin by making the
semantic distinction between the terms “inhibition” and “depression.” The former denotes an
action that results in a negative electrophysiological effect (e.g., hyperpolarization) and the
latter denotes a modulatory action that results in the reduction of a variable of interest. In this
sense, when the effect of a preceding pulse is to reduce the response to the current pulse (relative
to what it would have been in the absence of the preceding pulse) then we consider this to be
depressive. The opposite of a depressive action is called “facilitatory,” while the opposite of
inhibitory is termed excitatory. With regard to the granule cells, three regions of lags (i.e., the
time difference between the preceding pulse and the present) with distinctive response
characteristics have been reported in the literature: an early depressive region (less than 40
ms), a middle facilitatory region (from 40 ms to about 200 ms), and a late depressive region
(from about 200 ms to about 2 000 ms). These depressive regions are often called inhibitory
in the early literature.
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Specifically, the early depressive characteristics of the granule cells (for lags less than 40 ms)
have been attributed to GABA-mediated IPSPs [53] and a GABA-mediated increase in
chlorium conductance that reduces the excitability of granule cells [54]. Also, early negative
values indicating depressive characteristics (up to lags of 100 ms) have been attributed to the
recurrent (feedback) activation of the GABAergic basket cells [28], [46], [55]–[57]. Other
studies have reported that this early depressive phase may be regulated by presynaptic
metabotropic receptors [58], [59].

Such early negative values (representing depressive effects) are seen in the LPP second-order
kernel and in the MPP third-order kernel (see Figs. 2 and 3). The ability to estimate reliable
kernels that quantify these characteristics offers the attractive prospect of measuring the precise
quantitative effects of chemical blocking in order to delineate the individual protagonists in
this regard. Note that the third-order LPP kernel and the second-order MPP kernel exhibit
positive values in these early lags (up to 100 ms), indicative of facilitation that may be attributed
to NMDA-mediated synaptic events. Similar facilitation characteristics are observed at
intermediate lags of the third-order LPP kernel and may be attributed to augmentation of
excitatory transmitter release [60], [61] or presynaptic inhibition of GABA release [62]–[64].
This is consistent with the reported facilitation in the region of intermediate lags. This is also
evident in the PIF values measured through PP stimulation or computed from the third-order
Poisson–Volterra model of the LPP, but it is not seen in the PIF values of the MPP (see Fig.
4).

At longer lags (200–1000 ms), the obtained kernels have negative values in agreement with
the depressive characteristics of granule cells reported previously [28], [38], [65], which may
be due to a voltage-dependent and/or calcium-activated potassium conductance [66]–[68].
These effects are quantitatively reflected on the estimated kernel values and the measured PIF
values for both pathways. However, we note that the PIF does not provide satisfactory
predictions for triple-pulse stimulation (i.e., it does not capture the third-order interactions that
have been shown to exist in this system) and does not separate the second-order from the third-
order effects that are clearly delineated by the opposite polarity (facilitation versus depression)
of the second- and third-order kernels for both pathways. This initial interpretation of the
obtained kernels is only a small first step and a far greater effort will be required before a
complete physiological interpretation can be achieved and the full scientific benefit of this
analysis can be realized. We plan to exert this effort in our future work and hope that others
will join us to accelerate this process.

We finally note that the neuronal dynamics in the brain are generally nonstationary. The
specific form of nonstationarity varies widely depending on the context and timing of each
type of electrophysiological activity. In many cases of interest, one may find intervals of time
within which the nonstationarity is small and approximate stationarity can be assumed in order
to facilitate the analysis of the data. Although our group has pioneered several methods of
nonstationary analysis, the stationary analysis still offers significant practical advantages and
remains as more accessible to the peer community. This is the rationale for selecting the
“stationary data records” in this study and employing stationary analysis as an initial step. The
next step may be to extend our study to the nonstationary analysis of this system. For similar
practical reasons of facilitating the analysis of the data for the nonlinear modeling of this
system, we have “synchronized” the input/ouput point processes (by suppressing the short-
response latency and introducing the “reduced form” of the Poisson–Volterra kernels).
Obviously, both of these conditions limit the general applicability of this approach in the
aforementioned cases.

To summarize, the modeling approach presented in this paper defines a general framework
that can be used to advance our understanding of how distinct sensory modalities are being
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processed and integrated within different regions of the hippocampus. In this sense, its potential
extends beyond the specific results and the effect of LPP and MPP stimulation on the granule
cell output is presented herein and can be readily applied to modeling other parts of the nervous
system.
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Fig. 1.
(a) Experimental setup. (b) Slice of the rat hippocampus and the multielectrode array.
Abbreviations: PP: perforant path, DG: dentate gyrus, ML: molecular layer, GCL: granule cell
layer. Electrodes positioned at the outer one-third of the molecular layer were chosen as
candidates to stimulate the LPP and at the middle one-third of the molecular layer to stimulate
the MPP.
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Fig. 2.
(A) Mean values of the normalized second-order kernels (k2) over five different experiments
in the LPP case. The dotted lines mark ± one standard deviation. This kernel exhibits a gradually
declining inhibitory characteristic up to about 500 ms. (B) The mean values of the normalized
third-order kernels (k3) over the five experiments. This third-order kernel exhibits an early
facilitatory phase that rapidly declines and crosses into a shallow inhibitory phase shortly after
50 ms, relaxing back to zero values around 400 ms. (C) The mean values of k3 plus one standard
deviation. (D) The mean values of k3 minus one standard deviation.

Dimoka et al. Page 21

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
(A) The mean values of the normalized second-order kernels (k2) over five different
experiments in the MPP case. The dotted lines mark ± one standard deviation. This kernel
exhibits an early facilitatory phase, rapidly declining and crossing into an inhibitory phase
around 100 ms that relaxes back to zero values around 1000 ms. (B) The mean values of the
normalized third-order kernels (k3) over the five MPP experiments. This third-order kernel
exhibits an early inhibitory phase that rapidly declines into a slower inhibitory phase around
100 ms and relaxes back to zero values around 500 ms. (C) The mean values of k3 plus one
standard deviation. (D) The mean values of k3 minus one standard deviation.
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Fig. 4.
The measured PIF (obtained through PP stimulation) and the estimated PÎF (obtained through
RIT stimulation and Poisson–Volterra analysis) for LPP (A) and MPP (B) using a third-order
Poisson-Volterra model, and for LPP (C) and MPP (D) using a second-order Poisson–Volterra
model. The dotted lines show ± one standard deviation for the RIT case and the bars show the
standard deviation range for the PP case.

Dimoka et al. Page 23

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2009 September 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Actual response (A) and model predictions using the measured PIF model. (B) Third-order
Poisson-Volterra model (C) in the LPP case.
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Fig. 6.
Actual response (A) and model predictions using the measured PIF model (B) and the third
order Poisson-Volterra model (C) in the MPP case.
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Fig. 7.
Actual system responses [panels (a)] and the Poisson–Volterra model predictions [panels (b)]
for an out-of-sample dataset in the LPP case (A), and the MPP case (B).
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Fig. 8.
Actual system response (A) and the predicted responses using the second-order (B) and the
third-order (C) Poisson–Volterra model in the LPP case. It is evident that the population spike
amplitudes are predicted better by the third-order model than by the second-order model.
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