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Force-Velocity Relation for Actin-Polymerization-Driven Motility from
Brownian Dynamics Simulations
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ABSTRACT We report numerical simulation results for the force-velocity relation for actin-polymerization-driven motility. We
use Brownian dynamics to solve a physically consistent formulation of the dendritic nucleation model with semiflexible filaments
that self-assemble and push a disk. We find that at small loads, the disk speed is independent of load, whereas at high loads, the
speed decreases and vanishes at a characteristic stall pressure. Our results demonstrate that at small loads, the velocity is
controlled by the reaction rates, whereas at high loads the stall pressure is determined by the mechanical properties of the
branched actin network. The behavior is consistent with experiments and with our recently proposed self-diffusiophoretic mech-
anism for actin-polymerization-driven motility. New in vitro experiments to measure the force-velocity relation are proposed.
INTRODUCTION

Cells crawl by self-assembling dense arrays of branched actin

filament networks near the plasma membrane. The self-

assembly of these networks is carefully orchestrated by

a coterie of proteins that regulate polymerization, depolymer-

ization, branching, capping, and severing of filaments. This

self-assembly process and resultant motility have been repro-

duced in vitro using a variety of moving surfaces in place of

the cell membrane, such as cantilevers (1), beads (2,3), disks

(4), vesicles (5,6), and oil droplets (7). On the theoretical side,

several mechanisms have been advanced for the origin of

motility (8–12). One potential way to distinguish between

these proposed mechanisms is to measure the velocity of a

moving object as a function of the external force applied to

the object. Many experiments have measured the velocity of

crawling cells (13) and of in vitro realizations of actin-based

motility (1,14–19) while varying either the drag coefficient or

an opposing force applied to the moving surface. Although

there is considerable variation in the results, some experi-

ments (1,13,14) seem to indicate that the velocity is indepen-

dent of force at small forces, and decreases rapidly to zero at

the stall force. This leads to velocity-force curve that is

concave downwards in shape, in contradiction to most theo-

retical predictions (8,9,11,15,20–22).

In earlier work, we introduced a physically consistent

model of actin-polymerization-driven motility that we ex-

plored numerically by Brownian dynamics simulations

(12). The results suggested a new view of the mechanism

of motility, in which Arp2/3-mediated growth of actin

behind an object leads to a large increase in actin concentra-

tion there, causing the object to move forward as it is

repelled by actin (12). As discussed in Lee and Liu (12),

this mechanism can be viewed as an example of the phenom-
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enon of self-diffusiophoresis (23,24), in which an object

generates a steady-state concentration gradient that drives

motion of the object. We will therefore refer to this mecha-

nism as the ‘‘self-diffusiophoretic mechanism’’ throughout

this article.

Our simulation model has two features that enable us to

study not only motility, but also force generation. Specifi-

cally, we simulate semiflexible rather than rigid filaments,

and the forces that arise in our model are physical ones

that originate from interactions between constituents. In

this paper, we take advantage of these features to study the

force-velocity relation. We show that the results are consis-

tent with the self-diffusiophoretic mechanism proposed in

Lee and Liu (12). Our simulation results are also consistent

with experiments by Parekh et al. (1), which measured the

force-velocity relation by deflecting an atomic force micro-

scope cantilever with the self-assembled actin network.

There is an additional intriguing feature of the experimen-

tally measured force-velocity relation that any proposed

mechanism must capture. For in vitro experiments on

micron-sized beads, the force needed to drive the bead

through a solution with a viscosity of 2.4 cP (18) at a speed

of 0.2 mm/s (18,19) is of approximately tens of femtoNew-

tons. One might naively expect that an opposing force of

tens of femtoNewtons would therefore suffice to stall the

system; but the actual measured stall force is many orders

of magnitude higher, in the nanoNewton range (1,13,15).

Previously proposed models, such as the elastic Brownian

ratchet model (8,9) and the actin gel model (10), have

proposed resolutions of this discrepancy. Here we show

that our proposed self-diffusiophoretic mechanism also

provides a natural explanation of the discrepancy between

the stall force and the driving force provided by the actin

network at low loads. Finally, further experiments are

proposed to measure the force-velocity relation.
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The details of our simulation model are described in a previous article (12).

Our movable surface is a flat circular disk. Briefly, the disk is aligned normal

to the z axis (see Fig. 1). The model explicitly breaks symmetry by emitting

activated Arp2/3 complex from the back side of the disk (facing the �z
direction). Motion of the disk in the 5x and 5y directions is prohibited

in order to obtain results for motility at system sizes that are not too large;

but the disk is free to move in the 5z directions.

In contrast to previous simulations of actin-polymerization-driven

motility in which actin materializes when it joins a filament and disappears

when it depolymerizes off a filament, our simulation conserves matter. We

explicitly simulate both the G-actin monomer and F-actin monomers as

spheres. F-actin is not modeled as a double helix but as a single strand of

connected monomers. The monomer-monomer and disk-monomer interac-

tions are modeled by a soft repulsive potential (12). In addition, the mono-

mers along a filament also interact with neighboring monomers via bond and

bending potentials.

Arp2/3 is simulated as a point particle. It is reflected whenever it hits the

disk without imparting momentum to the disk. When it touches a monomer

in a filament, it sticks and tags the monomer for branching. The dynamics of

the monomers, Arp2/3, and the disk are described by Brownian dynamics

(25). We model biochemical processes, such as capping and depolymeriza-

tion, stochastically according to the dendritic nucleation model (26,27). For

example, when a free monomer comes within a capture distance and angle of

the barbed end of a filament, it has some probability of being captured; this

probability sets the polymerization rate. Likewise, if a free monomer comes

into the proximity of a monomer tagged by Arp2/3 complex for branching, it

has some probability of being captured to grow a new branch. A monomer at

a pointed end has some probability of detaching in each time step, which sets

the depolymerization rate, and monomers at the barbed end are assigned

a probability for prohibiting further growth, which sets the capping rate.

For details of the implementation of these biochemical processes, we refer

the reader to Lee and Liu (12).

The advantage of treating both G-actin and F-actin on an equal footing is

that our simulation is physically consistent in its treatment of interactions

and forces. All forces arise as gradients of the potential energy of interaction,

so our model allows calculation of the force exerted on the disk, and the

velocity of the disk arises in direct response to the forces exerted on it.

However, the explicit treatment of G-actin comes with the price of using

FIGURE 1 Schematic of simulation setup. A circular disk is centered in the

simulation box in the x and y directions and is allowed to move in the 5z

directions, where þz is to the right. Activated Arp2/3 complexes (red dots)

are emitted in the form of point particles from the left-hand side of the disk

(facing the�z direction). This causes branched filaments to assemble behind

the disk, pushing it in theþz direction. The green shading indicates the steady-

state actin concentration, with darker shading corresponding to higher actin

concentration. Note that the length scale of the concentration gradient is not

shown to scale, since it corresponds to a scale of 30 nm, which is small

compared to the disk diameter (typically 100 nm in our simulations).
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higher rate constants (e.g., for depolymerization) to reach steady-state

motion on the relatively short timescale of our simulation (see Table 1, re-

produced from Lee and Liu (12)). To compensate, we fix the net fluxes to

be comparable to the experimental values. In Lee and Liu (12), we per-

formed a limited set of runs with somewhat more realistic rate constants

and found that the trends move in the expected direction. In this article,

we restrict our study to the rate constants corresponding to the standard

conditions in Table 1 and Lee and Liu (12). We stress that our goal is not

to reproduce experiments quantitatively, but to understand the phenomenon

of force generation. The model that we have developed is a minimal one that

is physically consistent, generates physical forces, and captures the basic

features of the dendritic nucleation model.

The diameter of the spheres modeling actin monomers is taken to be

s ¼ 5 nm. We assign a monomer diffusion coefficient of D ¼ 36 mm2/s,

corresponding to a characteristic time unit of t h s2/2D ¼ 0.35 ms. The

standard diameter of the disk is 100 nm (20 monomers), which is very small

compared to real bead sizes (typically 1 mm). We have varied the disk diam-

eter over a range from 50 nm to 200 nm. The typical size of the simulation

box is 200 nm � 200 nm � 400 nm; for disk diameters >100 nm, we use a

simulation box of 400 nm� 400 nm� 400 nm. We adopt periodic boundary

conditions in all directions.

We begin each run with 5–10% of the actin monomers in dimer form and

the rest as free monomers. In our model, nucleation of filaments (which

occurs at a very low rate experimentally (26)) is not allowed so the dimers

serve as protofilaments. The results are not sensitive to the fraction of initial

dimers as long as enough dimers are available. At the beginning of each run,

dimers and monomers are distributed randomly in the system. Over time,

filaments elongate and branch, leading to an accumulation of F-actin behind

the disk that eventually pushes it forward with a well-defined average

steady-state velocity (12). Because there are significant fluctuations in the

displacement (28,29), we extract speeds from trajectories that are at least

7000-ms long (several times longer than the time needed to reach steady

state, 1000 ms), and average over the final 3500–4200 ms of the trajectory.

The error bars for the speed in all of our figures were obtained from the stan-

dard deviation calculated over five separate simulation runs under standard

conditions (see Table 1).

There are several ways in which to vary the opposing force on the disk.

Several experiments (14,16–19,28,30) have varied the opposing drag force

Fdrag ¼ zDV f hDVRD, where hD is the viscosity felt by the moving object,

V is the velocity, and RD is the size of the moving object. We examine the

drag force dependence by varying the disk radius, RD, and viscosity, hD,

TABLE 1 Values of the parameters used in the simulations

compared to those in experiments

Parameter In vitro exp. (Ref.) Simulated

lp 0.5–17.7 mm (44–48) 0.1 mm

lave 0.1–1 mm (49,50)* 0.1 mm

Typical bead diameter 0.2–2 mm (18) 0.1 mm

Viscosity (h) 2.4 cP (18) 2.4 cP

D ¼ kBT/3phs 36 mm2/s 36 mm2/s

Kþ 11.6 mM�1 s�1 (26) 504 mM�1 s�1

K� 0.3 s�1 (26) 28,600 s�1

[G-actin] 7 mM (38) 625 mM

Kþ[G-actin]/K� 270 11

Ka — ~Kþ
Kd 0.002 s�1 (51) 28,600 s�1

[Arp2/3] 0.1 mM (38) 2.1 mM

Ka[Arp2/3]/Kd N/A 0.037

KCþ 8 mM�1 s�1 (52) —

KC� 0.00042 s�1 (52) 0 s�1

[Cap] 0.1 mM (38) —

kCþ ¼ KCþ[Cap] 0.8 s�1 14,300 s�1

*Unlike all other values in this column, this was not taken from an in vitro

experiment.
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and define the drag coefficient of the disk to be zD ¼ 2hDRD. In the exper-

iments, the viscosity is normally modified by adding a polymer, methylcel-

lulose, to the system (14,17). This affects the viscosity felt by the movable

object (a micron-sized plastic bead in the case of the experiments), but prob-

ably does not substantially affect the reaction rates or the diffusion of the free

monomers, which are much smaller than the mesh size of the methylcellu-

lose polymer solution. In our simulation, we therefore vary the viscosity

felt by the disk (by varying the drag coefficient of the disk) while leaving

fixed the viscosity felt by the monomers (determined by the drag coefficient

for monomers).

An alternate way to measure the force-velocity relation is to apply an

opposing force to the moving surface. Experimentally, this has been done

via flexible cantilevers (1,13,15). We study the response to an applied

opposing force on the disk by including this additional force in the equation

of motion for the disk.

RESULTS

Velocity versus load

We first vary the viscosity felt by the disk, hD, and the disk

radius, RD, at small loads (up to 0.3 pN). If the system had a

fixed driving force, then the speed would vary as 1/hDRD. If

the system had a fixed driving pressure, then the speed would

vary as RD/hD. Fig. 2 shows that the velocity, V, is indepen-

FIGURE 2 Velocity of disk as a function of (a) viscosity at fixed disk

radius (RD ¼ 50 nm) and (b) the disk radius at fixed viscosity (hD ¼
2.4cP). The velocity is independent of both viscosity and disk radius, and

is therefore independent of the drag force, over the indicated ranges.
dent of both hD and RD. In Fig. 2 a, hD is varied at fixed RD,

and in Fig. 2 b, RD is varied at fixed hD. The fact that V is

independent of hD and RD shows that the driving force

adjusts to maintain a fixed speed at small loads.

In Fig. 3, we plot the velocity as a function of viscosity,

hD, over the full range of hD studied. The standard viscosity

used in our simulation runs is shown by the dashed vertical

line. At low hD, the velocity is constant, as shown in Fig. 2 as

well as Fig. 3. Above a critical viscosity hD* z 20 cP, cor-

responding to a load force of ~0.3 pN, the velocity decreases

approximately as 1/hD (solid line fit).
Fig. 4 a shows the velocity as a function of load force,

where we have applied the load in two different ways. The

open symbols correspond to the drag force, varied by

changing hD, the viscosity of the disk. The closed symbols

correspond to an external opposing force applied to the

disk for the standard conditions listed in Table 1. Note that

these two sets of data fall on the same curve, suggesting

that the structure of the actin comet tail does not depend

on how the load force is applied.

In Fig. 4 b, we have superimposed our data for velocity

versus load force for different disk radii, RD, on the experi-

mental data of Parekh et al. (1) by scaling V by its small

load value, V0, and Fload by its value when V/V0 reaches 1/2,

namely F1/2. We find reasonable agreement with experiment

with no adjustable parameters. The force F*, indicated by an

arrow in Fig. 4 b, is the maximum load force that the system

can sustain while maintaining a speed of V0, the zero-load

value. Above F*, the speed begins to decrease with

increasing F. From the scaling collapse observed by Parekh

et al. (1) and the collapse of our own data for different disk

sizes, it is evident that F* is simply proportional to the stall

force, so that F* z 0.5Fstall.

Note that it is not possible to determine the functional

form of the velocity versus load force curve from our data,

FIGURE 3 Velocity of disk as a function of viscosity for the full range

studied. The velocity is constant up to hD z 20 cP, and decreases at high

viscosities. The solid line is a fit of the high viscosity data to the form

V ¼ A/hD, where the fit parameter is A ¼ 0.22 pN/mm.
Biophysical Journal 97(5) 1295–1304
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due to the rather large error bars. In particular, it is difficult to

tell whether the velocity drops smoothly with increasing

force, or whether there is a second plateau in the velocity

at higher loads. All we can conclude is that the velocity is

constant at small loads, but then decreases to zero between

F* and Fstall.

Stall force versus stall pressure

Fig. 4 a shows that the stall force for our system is ~1 pN, far

smaller than the experimentally measured value. The reason

for this discrepancy is the size of our disk, which is much

smaller than the moving objects studied experimentally.

Fig. 5 shows that the stall pressure Pstall is independent of

disk radius RD, suggesting that the stall force increases as

RD
2. According to Fig. 5, Pstall z 0.12 nN mm2.

FIGURE 4 (a) Velocity of disk as a function of drag force (B) and applied

external load at small drag force (�). The drag force is calculated using the

equation zDV, where zD¼ 2hDRD is the drag coefficient for the disk. There is

good agreement between the two sets of results, as expected. (b) Velocity

scaled by the zero applied load result, V/V0, as a function of applied force

scaled by F1/2, where F1/2 is the force when the velocity drops to V0/2. To

calculate V0, we use an average over the velocities shown in Fig. 2. Data

for the disk velocity are shown at different disk sizes (RD ¼ 30 nm, 6;

35 nm, -; 40 nm, 7; 45 nm, :; and 50 nm, �) and compared to the exper-

imental data of Parekh et al. (1) (B) for actin-driven motion of an atomic-

force microscope cantilever. There are no adjustable parameters in this

comparison.

Biophysical Journal 97(5) 1295–1304
Filament stiffness dependence

In our standard runs, the filament persistence length is ~0.1 mm.

This is approximately two orders of magnitude too low. To

extrapolate our results to realistic persistence lengths, we

also study systems with ‘p z 1 mm. This is still shorter than

the measured value for actin, but we note that mesh size (for

example, the typical distance between branches) of the

network is much shorter, so that we are in the correct regime

in which the mesh size is short compared to the persistence

length. As a result, the system is fairly rigid on the scale of

the mesh size.

We have also studied systems with very flexible filaments

with ‘p z 0.01 mm. This may appear pointless, since such

filaments have no biological relevance. In fact, it is extremely

useful to vary filament stiffness since any proposed mecha-

nism for motility should also account for the filament stiffness

dependence.

Fig. 6 shows that although filament stiffness does not affect

the speed at sufficiently small loads, as noted previously in

Lee and Liu (12), it affects the force-velocity relation signif-

icantly at higher loads. In particular, the constant behavior of

V with load at small loads is a feature of stiff filaments that

disappears for floppy filaments with ‘p z 0.01 mm. The shape

of the velocity-force curve is now concave upwards for floppy

filaments. In addition, we find that the stall pressure increases

with filament stiffness.

To gain insight into the effect of filament stiffness on the

force-velocity relation, we plot steady-state actin density

profiles rf(z) in Fig. 7. These steady-state profiles are shown

in the frame of the moving disk, so that the disk is at z¼ 0. In

calculating rf(z), we have included only monomers in fila-

ments that lie within a radius of RD þ s of the center axis

along the z direction, where RD is the disk radius and s is

FIGURE 5 Stall pressure as a function of disk radius. There is no depen-

dence on radius, suggesting that the stall force is proportional to the disk

area, or RD
2, which would correspond to an increase of a factor of 16 over

the measured range.
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the monomer diameter. Just behind the disk, rf(z) is small,

because the disk repels actin (12). As z becomes more nega-

tive, rf(z) increases to a maximum at ~z z �30 nm, because

filaments are recruited by Arp2/3. As z becomes more nega-

tive, rf(z) decreases again due to depolymerization.

Fig. 7 shows the evolution of the density profile with

applied load. The self-diffusiophoretic mechanism suggests

that changes in the profile in the range between the disk at

z ¼ 0 and the maximum at z z �30 nm provide the key

to understanding the behavior of the speed. For stiff fila-

ments, there is no perceptible change of the profile in this

range with increasing load until the load is comparable to

F*. For flexible filaments, on the other hand, the profile is

quite sensitive to the applied load, suggesting that F* is

much smaller and the network buckles under the load. This

suggests that F* ¼ c(‘p)Fstall(‘p), where c(‘p) and Fstall(‘p)

both increase with persistence length.

Fig. 7 b also shows that at high Fload, the concentration

gradient saturates at a maximum value. The corresponding

maximum driving force corresponds to the stall pressure.

Note that at the highest value of Fload shown in Fig. 7, Fload >
Fstall and the disk is moving backward.

DISCUSSION

Summary of results and comparison with self-
diffusiophoretic mechanism

Our results show that at small loads, the velocity is indepen-

dent of load, whereas at high loads, the velocity vanishes at

the stall force Fstall, which is determined by the stall pressure:

Fstall ¼ Apstall, where Apstall is the cross-sectional area of the

actin comet tail at the moving surface. Note that this result

explains why the stall force (approximately nN in experi-

FIGURE 6 Disk velocity as a function of applied load for stiff filaments

with persistence lengths of 0.1 mm (�), 1 mm (B), and for flexible filaments

with a persistence length of 0.01 mm (,). For flexible filaments, the velocity

decreases steadily with increasing load, whereas for stiff filaments, the

velocity is initially constant.
ments) is so much larger than the minute force (tens of fN)

exerted by the actin network to drive beads at the observed

velocity in low-viscosity cell extracts. The difference

between the two force scales can easily reach many orders

of magnitude, depending on the size of the moving object

and the viscosity of the solution. The crossover load force

F* that separates the low- and high-load limits is a given

fraction of the stall force (we find F* z 0.5Fstall). Thus,

the picture that emerges from our results automatically

implies a velocity/force curve that is constant up to 0.5Fstall,

then decreases to zero at Fstall.

We find that at small loads, our model is independent

of load because it moves at a velocity set by the net

FIGURE 7 Steady-state density profiles of actin monomers in filaments, rf,

as a function of position z in the frame of the moving disk, whose position is at

z¼ 0. The profiles are shown for different applied loads for (a) stiff filaments

with a persistence length of 0.1 mm and (b) flexible filaments with a persistence

length of 0.01 mm. For stiff filaments, there is no observable change in

the density profile behind the moving disk (at z < 0) for Fload ¼ 0 (solid)

and Fload ¼ 0.4 pN (short-dashed), whereas for flexible filaments, there is

an appreciable difference between the profiles for Fload¼ 0 (solid) and Fload¼
0.1 pN (long-dashed). For stiff filaments, the profile distorts when Fload ¼
0.8 pN, which is comparable to the stall force of ~1 pN. Note that the disk

is moving backward (Fload> Fstall) for the highest loads shown in both panels

a and b.

Biophysical Journal 97(5) 1295–1304
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polymerization rate. The force exerted by the actin tail

adjusts to maintain this fixed velocity. This is consistent

with the self-diffusiophoretic mechanism proposed earlier

(12): the disk moves ahead of the accumulating actin to avoid

it; thus, it achieves a speed determined by the buildup of

actin, namely the net polymerization speed. This should

hold true not only for our simulated model, with unphysical

values of the rate constants, but for the real system, as well.

Thus, the insight provided by the self-diffusiophoretic mech-

anism suggests that the speed of the moving surface should

be given by the net polymerization speed in the real system.

At high loads, the actin comet tail can withstand up to a

certain maximum pressure, namely the stall pressure. Again,

this is consistent with our self-diffusiophoretic mechanism

(12): the distortion of this concentration profile by an applied

load will depend on the applied pressure, and the same

distortion should be achieved for different disk sizes at a

given pressure, not a given force. The distortion of the profile

leads to a higher concentration gradient at the surface and

consequently a higher driving pressure. The surface concen-

tration gradient cannot grow indefinitely, however, so the

driving pressure must eventually saturate. Once the opposing

applied pressure reaches the maximum driving pressure, the

system stalls.

The self-diffusiophoretic mechanism is also consistent

with the filament stiffness dependence shown in Fig. 6.

The magnitude of the distortion of the actin concentration

profile due to an applied pressure will depend on the network

compressibility near the moving surface, which will be

affected by filament stiffness. For the same applied load,

the distortion of the profile should be larger for a network

of flexible filaments than for a network of stiff filaments. It

is therefore not surprising that the force-velocity relation

depends on filament stiffness even though the velocity is

independent of stiffness in the small load limit.

The proposed self-diffusiophoretic mechanism for

motility enables us to extract a prediction for the stall pres-

sure for realistic rate constants. The stall pressure should

correspond to the pressure needed to distort significantly

the concentration profile, or equivalently, the branched actin

network. The stall pressure should therefore be approxi-

mately the compression modulus of the tail at the surface.

For cross-linked systems, the compression modulus should

be of the same order of magnitude as the Young’s modulus

for the branched actin network. The latter quantity has been

experimentally measured for actin comet tails, and is ~kPa

(31). This is indeed the order of magnitude of the experi-

mental results for the stall pressure (1 kPa h 1 nN/mm2).

In general, the Young’s modulus of a semiflexible network

scales as

Y¼ kBT‘2
p=x5

m; (1)

where xm is the mesh size of the network and ‘p is the fila-

ment persistence length (32,33). We predict that the stall
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pressure scales similarly. Note that Eq. 1 explains why it is

important for the filaments to be stiff—if they are flexible,

the Young’s modulus is low and the stall pressure will be

low, as well.

Comparison with previous theoretical predictions

We stress that it is important to use physical forces that arise

from interactions between particles and to allow free mono-

mers as well as monomers in filaments to exert forces, to

obtain physically meaningful results for motility and the

force/velocity relation. Thus, some numerical approaches—

such as those in which forces depend on the time step of the

simulation or in which free monomers are treated in the

context of a fixed concentration field—cannot be used to

study force generation explicitly. When properly interpreted,

however, such simulations can yield physical insight that can

be used to adduce a force/velocity relation. For example,

Carlsson (21) found that the velocity is independent of load

force. In Carlsson’s model, the filaments were infinitely rigid

and fixed in space once they polymerized. According to the

self-diffusiophoretic mechanism, this system would have

an infinite compression modulus, which would lead to

F* ¼N, so that the velocity would be constant at all loads.

Carlsson’s results are therefore consistent with our model in

this limit.

The processive filament growth model (11) predicts a

constant velocity at small loads, and a decreasing velocity

at high loads. This shape is consistent with our results and

with the experiments of Parekh et al. (1). However, we

note that our simulations do not allow for processive filament

growth, so it is not necessary to invoke a motorlike complex

at the moving surface to obtain a force-velocity relation in

reasonable agreement with experiments.

Both the elastic Brownian ratchet model (8,9) and the

elastic gel model (10) explain the discrepancy between the

femtoNewton-scale force needed to drive the system at small

loads and the nanoNewton-scale stall force in ways that are

similar to our proposed mechanism. All three models yield

a fixed speed at small loads, arising from the rate at which

F-actin is added by polymerization, and a fixed stall pressure

at large loads. However, the predicted shape of the force-

velocity relation is very different in between these two limits

of small and large loads. In the elastic Brownian ratchet

model (8,9), the velocity drops precipitously as the force

increases from zero, and then decreases more gradually

with increasing force, yielding a concave upwards shape

for the velocity-force curve. We suspect that the primary

reason for the discrepancy is the single-filament nature of

the elastic Brownian ratchet model. The physical explanation

that we have advanced for our results is explicitly a many-

body one based on the existence of a well-defined, steady-

state concentration profile for actin. It is not surprising that

a single-filament model should fail to capture the physics

of a cooperative, many-filament system.
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The force-velocity relation predicted by the elastic gel

model of Gerbal et al. (10) also differs from ours: it is concave

upwards in shape with a rapidly decreasing velocity at small

forces, and a more slowly decreasing velocity at higher

forces. We note that the underlying assumptions of the elastic

gel model differ significantly from ours. First, their model

assumes that the comet tail is a continuum elastic medium,

whereas our comet tail is not cross-linked. Second, our self-

diffusiophoretic mechanism suggests that the main physics

lies in the concentration gradient just behind the moving

surface, and not in the competition between compressive

and tensile stresses near the bead surface. Indeed, tensile

stresses are completely absent in our simulations because

we have not included binding of filaments to the surface.

It has been found, in all cases so far checked, be it a bacte-

rium, a bead, or a cell, that the actin filaments are bound to

the surface; one might therefore object that our neglect of

such binding is unjustified. We disagree with this view since

an effective way to determine whether attachment to the

surface is essential is to leave it out and study, theoretically,

what difference it makes. Certainly, filament binding is

essential to several properties of actin-driven motility. For

example, binding to the surface may play an important role

in setting the overall magnitude of the velocity at small loads,

V0 (34,35). Finite element simulations (A. Gopinathan and

A. J. Liu, unpublished) suggest that V0 decreases with

increasing filament binding energy, in accord with experi-

ments by Co et al. (35). As noted by the Noireaux et al.

(3) and Bernheim-Groswasser et al. (30), filament binding

is also critical to phenomena such as hopping, and the com-

petition between compressive and tensile stresses is particu-

larly interesting for curved surfaces (10). Nevertheless, our

results suggest that filament binding is not crucial for all

aspects of motility. As noted in Lee and Liu (12), we obtain

the correct dependence on Arp2/3 concentration and other

protein concentrations, even without including filament

binding to the surface. Here, we have further shown that fila-

ment binding does not seem to be essential for understanding

the shape of the force-velocity relation. Further calculations

(E. Banigan and A. J. Liu, unpublished) are currently

underway to elucidate what the effects of filament binding

on the force-velocity relation may be.

Comparison with experiments

Experimental results for the force-velocity relation are rather

confusing, with different experiments yielding apparently

contradictory results. Here we sift through the various exper-

iments to construct a rationale for reconciling the different

results, and to speculate on why our results agree or disagree

with each one.

We preface our discussion with three remarks concerning

the comparison of our results with experiments.

First, we note that our calculated stall pressure is

~0.1 nN/mm2, in reasonable agreement with experimental
measurements. Marcy et al. (15) and Parekh et al. (1) both

find Pstall z 1 nN/mm2. Indeed, there seems to be a consensus

in experiments that the stall force lies somewhere in the nN

range for micron-sized moving objects. The agreement

between our simulation and the experiments is not fortuitous.

We have adjusted the net polymerization rate to be compa-

rable to the experimental one, so that the F-actin concentra-

tion behind the moving surface is realistic (in the mM range)

(12). In addition, the persistence length in our simulations,

although smaller than the true value, is still large compared

to the mesh size of the network (of approximately tens of

nanometers in our simulations and in experiments). As a

result, the mechanical properties of the branched structure

near the surface are likely to be reasonably close to the exper-

imental ones.

Second, we note that the results for different disk sizes and

disk drag coefficients collapse onto a single scaled force-

velocity plot, when the force is scaled by the stall force

and the velocity is scaled by its zero-load value. This scaling

collapse was discovered by Parekh et al. (1) in experiments,

and should be viewed as an important property of the force-

velocity relation.

Third, we emphasize that our model does not contain

cross-linking proteins. One might therefore expect our

results to agree better with experiments on purified proteins

than with those carried out on cell extracts, which contain

cross-linking and bundling proteins. We note, however,

that experiments with purified proteins found that the addi-

tion of cross-linkers did not affect the speed (38).

The experimental literature on the force-velocity relation

shows that there are large discrepancies from experiment

to experiment. For example, our calculations suggest that

the velocity should remain constant up to a force of F* z
0.5Fstall. This would then yield F* in the nN range, similar

to the stall force, for micron-sized objects. These results

are consistent with experimental findings of Wiesner et al.

(14) for polystyrene beads in purified protein solutions

with added methylcellulose to increase the viscosity. There,

they observed that the velocity was nearly flat at least up to

50 pN. However, McGrath et al. (17) found F* z 10 pN

in cell extracts with added methylcellulose. Moreover,

Cameron et al. (18), found a nonmonotonic dependence on

bead size, or equivalently, a nonconstant dependence on

load force in the 10–100 fN range, suggesting F* < 10 fN.

One possible explanation for the discrepancy between the

results of Wiesner et al. (14) with the experiments of McGrath

et al. (17) and Cameron et al. (18) is that the latter two exper-

iments may be more strongly biased by spontaneous

symmetry-breaking. In all three experiments, only beads

that successfully break symmetry and continue moving are

tallied. The factors that affect symmetry-breaking are still

not clear. Bead size is certainly an important factor, since

the rate of spontaneous symmetry-breaking appears to

decrease rather strongly with increasing bead size (18). One

example of a possible source of bias is that large coated beads

Biophysical Journal 97(5) 1295–1304
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might only succeed in breaking symmetry if they are coated

with particularly sparse actin networks; this would bias the

results toward lower speeds for larger beads. We note that

spontaneous symmetry breaking appears to be more difficult

in cell extracts than in systems with purified proteins (14),

possibly due to cross-linking and bundling proteins. Thus,

artifacts due to symmetry-breaking might be more

pronounced for cell extracts than for purified proteins. This

might explain why our results agree better with those of Wies-

ner et al. (14) than with those of McGrath et al. (17) or

Cameron et al. (18).

Our results are also inconsistent with experiments by

Shaevitz and Fletcher (16), who varied viscosity as a function

of position by confining the system between two plates. They

measured velocity as a function of height and found that the

velocity was reduced by 36% even at a fair distance from the

walls, where the viscosity gave rise to a load force of only

20 fN. This extraordinary sensitivity was attributed to the

importance of Brownian fluctuations of the bead. An alter-

nate possibility is that attraction of cross-linked actin fila-

ments in solution to the confining surfaces in the cell extracts

might have given rise to a network near the surface that is

unrelated to the actin comet tail but that impedes motion of

the bead.

In an interesting set of experiments by Paluch et al. (19) on

purified proteins, the dependence on bead size was measured

as a function of gelsolin concentration. Paluch et al. (19)

found that the velocity is independent of bead size at high

gelsolin concentration, but not at low gelsolin concentration.

Thus, F* would appear to increase with gelsolin concentra-

tion. This is consistent with our expectation. It is known

that increasing the concentration of gelsolin, which severs

and caps F-actin (39), decreases the branch spacing in the

actin comet tail (14). This is probably due to the capping

activity of gelsolin, since it is known that capping can

enhance the branching rate (14,40–42). As a result, the

mesh size should decrease with increasing gelsolin, leading

to an increase in the Young’s modulus of the network and

hence an increase in the stall force and F*.

Since our results appear to agree reasonably well with

experiments on purified proteins in which load force is varied

by increasing viscosity or bead size, it seems disturbing that

our force-velocity relation has an entirely different shape

from that measured by Marcy et al. (15) for purified protein

systems. We note, however, that near v¼ 0 there is consider-

able scatter in the experimental data at forces between 0 and

1.5 nN. A flat velocity is not inconsistent with their data in

that regime, so our results may be consistent with theirs

there. At higher forces, however, there is definitely a discrep-

ancy between our results and theirs. This discrepancy could

arise from the geometry of the experiment, in which the

velocity was applied by pulling on the tail. This pulling force

could modify the concentration gradient near the surface,

especially for large pulling forces or speeds. To simulate

their experiment, we would need to add cross-linking

Biophysical Journal 97(5) 1295–1304
proteins to our simulations and apply forces to the depolyme-

rizing end of the tail.

Finally, we note again that our results are in good agree-

ment with those of Parekh et al. (1), as shown in Fig. 4 b,

even though these experiments are performed in cell extracts.

However, these experiments cannot be biased by sponta-

neous symmetry-breaking because the symmetry is broken

by the geometry of the experiment. This may explain why

their observations agree well with our simulations.

It is important to point out, however, that one aspect of the

experiments of Parekh et al. does not agree with our simula-

tions. In those experiments, the velocity depended not only

on the load force but also on the load force history. The

velocity was higher if the load force approached a given

value from above than if it approached the value from below.

We do not find any such hysteresis; our results depend only

on the load. One possible reason is that load history depen-

dence arises when cross-linking or bundling proteins are

present to lock in the structure and density of the actin comet

tail. Alternatively, recent experiments suggest that the persis-

tence length of actin may increase upon compression (43), so

that actin filaments are stiffer when a given compression is

approached from above than from below. Our results in

Fig. 6 show that the speed increases with bending stiffness.

If we combine these results with those of Greene et al.

(43), this would suggest that the speed would be higher if

a given load was approached from above than below, consis-

tent with the results of Parekh et al. (1).

Suggestions for future experiments

If our interpretation of previous experimental results is

correct, then it is of paramount importance to measure the

force-velocity relation in experimental systems that are de-

signed to be asymmetric. In this way, one can avoid bias

in the results due to the need to break symmetry. One possi-

bility is to use Janus beads, which are coated only on one

side with ActA or N-WASP. One article reports experiments

on Janus beads (2), with the finding that 1-mm Janus beads

moved at the same rate as smaller symmetrically coated

beads, consistent with our interpretation, but that 2-mm beads

moved at somewhat slower rates. It is not clear from

Cameron et al. (2) whether the difference between the speeds

of 2 mm and 1 mm beads lies within experimental error.

A second way to use geometry to break symmetry is to

form dimers by grafting small ActA or N-WASP coated

beads to uncoated beads of various sizes via strong bonds,

such as streptavidin/biotin links. This system would clearly

be asymmetric by design. For these bead dimers, the drag

force would be determined by the diameter of both beads,

whereas the stall pressure would depend only on the diam-

eter of the coated bead. A systematic study of bead dimers,

as a function of the diameters of the two beads and solution

viscosity, would be very valuable in clearing up the discrep-

ancies between the various reported experiments and for

testing our predictions.
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