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An Energetic Representation of Protein Architecture that Is Independent
of Primary and Secondary Structure

Jason Vertrees,†‡§ James O. Wrabl,†‡ and Vincent J. Hilser†‡§*
†Department of Biochemistry and Molecular Biology, and ‡Sealy Center for Structural Biology and Molecular Biophysics, University of Texas
Medical Branch, Galveston, Texas; and §W. M. Keck Center for Computational and Structural Biology, Houston, Texas

ABSTRACT Protein fold classification often assumes that similarity in primary, secondary, or tertiary structure signifies
a common evolutionary origin. However, when similarity is not obvious, it is sometimes difficult to conclude that particular proteins
are completely unrelated. Clearly, a set of organizing principles that is independent of traditional classification could be valuable
in linking different structural motifs and identifying common ancestry from seemingly disparate folds. Here, a four-dimensional
ensemble-based energetic space spanned by a diverse set of proteins was defined and its characteristics were contrasted
with those of Cartesian coordinate space. Eigenvector decomposition of this energetic space revealed the dominant physical
processes contributing to the more or less stable regions of a protein. Unexpectedly, those processes were identical for proteins
with different secondary structure content and were also identical among different amino-acid types. The implications of these
results are twofold. First, it indicates that excited conformational states comprising the protein native state ensemble, largely
invisible upon inspection of the high-resolution structure, are the major determinant of the energetic space. Second, it suggests
that folds dissimilar in sequence or structure could nonetheless be energetically similar if their respective excited conformational
states are considered, one example of which was observed in the N-terminal region of the Arc repressor switch mutant. Taken
together, these results provide a surface area-based framework for understanding folds in energetic terms, a framework that may
eventually yield a means of identifying common ancestry among structurally dissimilar proteins.
INTRODUCTION

The most common means of representing a protein is with a

crystallographic or nuclear magnetic resonance structure (1).

Although extremely useful, such a representation is incomplete

in that it does not account for the experimental observation that

folded proteins are actually ensembles of interconverting

conformational states (2–4). Despite this reality, it remains

a difficult problem to apply such knowledge in a practical

way to questions of protein structure, function, stability, or

the organization of fold space. Indeed, most progress in struc-

tural biology to date has been achieved without explicit consid-

eration of the dynamic nature of protein structure.

This work is motivated by the hypothesis that ensemble-

derived thermodynamic information can provide significant

insight into these fundamental questions. Such a hypothesis

is supported by the success of our own ensemble-based treat-

ment of proteins, known as COREX/BEST (5), in capturing

a broad spectrum of biophysical and functional observations,

ranging from the identification of long range allosteric

effects (6,7), the identification of the effects of fluctuations

on binding affinity (8), the prediction of functional residues

(9), the prediction of hydrogen exchange protection factor

patterns (10), to the recapitulation of the effects of pH (11)

and temperature (12,13) on the ensemble.
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The ability to unify the description of these diverse

phenomena within a single framework suggests that the

COREX/BEST representation of proteins provides a set of

organizing principles that allow structure, function, and

stability to be quantitatively linked through the energetics

of the ensemble. Indeed, using ensemble-based thermody-

namic descriptors, our lab has empirically identified a general

set of thermodynamic environments in proteins (14), which

could be used successfully in fold recognition experiments

(15,16). Understanding the physical and mathematical

underpinnings for that result is one focus of this work.

Another more important focus concerns understanding of

the natural origins of protein architecture. In the absence of

complete knowledge of the physical and evolutionary mech-

anisms underlying protein fold space, much has been

learned from provisional organization of fold space relying

on similarities in primary sequence and secondary or tertiary

structure (17–21). However, one drawback to provisional

organization is that, in the absence of sequence or structure

similarity, it is unclear whether a particular pair of proteins

possesses an evolutionary relationship. It is possible that

such cases reflect more on the current technological limits

of sequence and structure comparison than on the absence of

common ancestry. Indeed, many exceptions to similarity-

based organization of fold space exist: it has long been

known that the structure of some sequences is context-

dependent (22), that folds may be similar in the absence

of detectable sequence similarity (23), and that folds may

even be different in the presence of substantial sequence

similarity (24). Clearly, new metrics, possibly independent
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of sequence and structure similarity, would be of great value

in increasing the limits of remote homology detection and

elucidating the natural organization of protein fold space.

As a step toward understanding the effectiveness of ther-

modynamic environments in fold recognition, and, more

generally, toward understanding the energetic basis of the

organization of protein fold space, a novel representation

of a protein as a multidimensional structure composed of

thermodynamic environments was explored. By applying

principal components analysis to the energetic space, the

principal axes of energetic variation within the database of

structures were identified. This revealed the independent

mechanisms that combine to determine the stability of

different states in the ensemble, and thus different regions

of each protein. Interestingly, these mechanisms turn out to

be independent of both secondary structure class and

amino-acid type. Because the resultant eigenstates corre-

spond to the underlying framework for a thermodynamic

representation of protein fold space, to our knowledge they

provide a novel means of energetically assessing the simi-

larity of proteins with different sequences and structures.

METHODS

Thermodynamic environment space of proteins
defined from native state ensembles

Previously, we described the COREX/BEST algorithm (5,10,25), which

generates a conformational ensemble for a protein using the high-resolution

structure as a template. This algorithm has been vetted in both retrospective

validation (8,11,12,26) and prediction (10), and thus provides a reasonable

representation of the ensemble. For this work, a COREX/BEST analysis

was performed on each member of a database of 120 diverse human proteins

(15,27) (Table S1 in the Supporting Material) using the default parameters as

described in the Supporting Material. Secondary structure was assigned

using STRIDE (28).

Although potentially many thermodynamic quantities may be computed

from a COREX/BEST ensemble, analysis here was restricted to four, in

agreement with those employed in previous work (14–16): stability (DG),

apolar enthalpy of solvation (DHap), polar enthalpy of solvation (DHpol), and

conformational entropy (TDSconf). These values were computed as residue-

specific descriptors averaged over the native state ensemble, providing a quan-

titative report of the energetics experienced by each position j in the protein:
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In Eqs. 1–4, [DG]j, [DHap]j, [DHpol]j, and [TDSconf]j were the residue-

specific thermodynamic descriptors for the native state ensemble at position

j, Pi was the Boltzmann-weighted probability of a particular microstate i in

the entire ensemble, and Pi;Fj
or Pk;NFj

were the respective probabilities in

the folded or unfolded subensembles of a microstate i or k containing residue

j in either a folded or unfolded conformation. Additional details concerning

the calculations of these Boltzmann-weighted probabilities are given in the

Supporting Material.

Distance calculations in three-dimensional
Cartesian space and four-dimensional
thermodynamic environment space

Distances between sequential a-carbon atoms j and j þ 1 in both Cartesian

(Eq. 5) and thermodynamic environment space (Eq. 6) were calculated as

follows:

Euclidean Distance¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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�2
q

;

(5)

In Eq. 5, (xj, yj, zj) denotes coordinates of a-carbon atom j in the Protein

Data Bank file. In Eq. 6, (DGj, DHap,j, DHpol,j TDSconf,j) denotes thermody-

namic parameters of residue j as given by Eqs. 1–4. Units of Euclidean distances

were in Ångstroms; units of thermodynamic distances were in kcal/mol at

25�C. Distances were computed between all sequential residues within each

of the 120 proteins in the dataset described above, and the distributions of these

distances were normalized such that the area of each distribution was 1.

Principal component analysis (PCA)
of thermodynamic environment space

Principal component analysis (PCA) was performed using the R function

princomp (http://www.r-project.org) on the four-dimensional energetic

data computed from the 120 native state ensembles of the protein database.

This procedure is described in more detail in the Supporting Material.

RESULTS

Energetic environments and thermodynamic
structure of a protein

We define the thermodynamic structure of a protein as its vector

set of points given by Eqs. 1–4. This novel four-dimensional

Thermodynamic Distance¼
�
DGj� DGjþ 1

�2þ
�
DHap;j� DHap;jþ 1

�2þ
�
DHpol; j� DHpol; jþ 1

�2þ
�
TDSconf; j� TDSconf;jþ 1

�2
q

:

(6)

Biophysical Journal 97(5) 1461–1470

http://www.r-project.org


Energetic Architecture of Proteins 1463
thermodynamic structure is analogous to the three-dimen-

sional Cartesian coordinate-based structure, but instead exists

in thermodynamic space. Examples of protein structures in

both traditional three-dimensional coordinate space as well

as in thermodynamic space are displayed in Fig. 1. It is impor-

tant to note that the attributes of thermodynamic structures in

thermodynamic space differ with respect to those of crystal

structures in Cartesian space. For example, two residues

within a typical structure cannot occupy the same place at the

same time due to excluded volume constraints; however, resi-

dues in a thermodynamic structure can, and often did. Also,

two a-carbon residues in sequence (i.e., a virtual CA-CA

bond) are almost always 3.8 5 0.1 Å apart in typical struc-

tures (Fig. 2 A). In contrast, two sequential atoms can have

very large energetic jumps in thermodynamic space (Fig. 2 B).

As described in Methods, residue-specific descriptors were

computed for a large database of 120 diverse human proteins

using default COREX/BEST parameters (15,27). In earlier

work, these 17,484 position-specific energetic values were

statistically clustered, and subjected to fold recognition exper-

iments based on the propensities of different amino acids to

appear within each cluster (14–16,27,29). The success of

the fold recognition experiments indicated that the entire

descriptor space could be meaningfully represented by a small

number of clusters, which we termed thermodynamic envi-

ronments (TEs). Here we investigated the physical principles

underlying the TE space. Shown in Fig. 3 is a three-dimen-

sional representation of TE space with the fourth (entropy)
dimension presented by color. Two significant observations

can be made from these data. First, the data assume an arrow-

head shape, indicating physical limitations to the boundaries

of the TE space. Second, the entropy axis (color) is correlated

to the other three axes, and thus not independent. In fact,

significant correlation in all of the parameters exists, moti-

vating principal component analysis.

Organization of TE space revealed by PCA is
independent of primary and secondary structure

Because the original thermodynamic axes were correlated,

change along one axis necessarily implied a change along

all other correlated axes, hindering analysis of the underlying

mechanism behind the organization of the TE space. To

address this issue, we employed PCA. Eigenvectors and

eigenvalues from the TE space of human proteins are dis-

played in Table 1. The first three principal components

explain 99.2% of the variance of the original data, with a sharp

decrease in the magnitude of the eigenvalues. This indicates

that the data are substantially linearly related and supported

the use of PCA as a valid analytical technique. The proportion

of variance explained by each eigenvector is 75.2%, 22.0%,

2.6%, and ~0.1% for principal components 1–4, respectively.

Thus, principal component 1 alone explains the majority of

variance of the original energetic data.

To assess the possible differential contributions of secon-

dary structure elements and individual amino-acid types to
FIGURE 1 Comparison of conventional protein struc-

ture with thermodynamically defined protein structure.

(A) A table (left) containing a subset of the three-dimen-

sional Cartesian coordinates for the human mucosal

addressin cell adhesion molecule 1 (PDB id 1gsmA) and

its corresponding structural image (right). Positions of

a-carbon atoms in Cartesian space are joined by virtual

bonds, and N- and C-termini are marked. (B) A table con-

taining a subset of the native state ensemble’s four-dimen-

sional thermodynamic coordinates for the same protein.

Only the first three dimensions of these coordinates are

plotted to visually approximate the protein’s thermody-

namic structure. Characteristics of the thermodynamic

protein structure are graphically different from those of

the conventional structure.
Biophysical Journal 97(5) 1461–1470
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the principal components obtained from the complete TE

space, subsets of the complete space were also analyzed.

Eigenvectors and eigenvalues were found to be essentially

unchanged with respect to secondary structure class or

amino-acid type (Fig. 4 and Table S2).

Because the principal components decomposition of TE

space is independent of primary or secondary structure, it

implies that changing a protein’s sequence or structure is

possible without necessarily changing its energetic profile.

In other words, the results of Fig. 4 suggest that multiple

sequences or secondary structures could be tolerated by a

single native state ensemble. If this hypothesis is true, a novel

mechanism for evolutionary fold change can be inferred: fold

change can proceed through an incremental change to the

ancestral sequence or structure with minimum change to the

new fold’s thermodynamic profile (i.e., its sequence of posi-

FIGURE 2 Comparison of Euclidean protein distances between sequen-

tial residues with thermodynamically defined distances. (A) Histogram of

the probability density of sequential a-carbon CA-CA virtual bond distances

(Eq. 5) for the 120 proteins in the thermodynamic database. Note that>99%

of these distances are tightly clustered at 3.8 5 0.1 Å. (B) Histogram of four-

dimensional energetic distances (Eq. 6) between sequential residues. Note

that the distribution of energetic distances is markedly broadened by

comparison.
Biophysical Journal 97(5) 1461–1470
tion-specific energetic values). This hypothesis is developed

in more detail in the Discussion.

Relationship between principal components
of TE space, protein energetics, and solvent-
accessible surface area

As described in Methods, a change in location parallel to the

first principal axis corresponds to a change in the four ener-

getic parameters. For example, a change ofþ1.0 unit exactly

incident with principal component 1 equals changes of

�0.55 kcal/mol along [DG], 0.65 kcal/mol along [DHap],

�0.51 kcal/mol along [DHpol], and �0.09 kcal/mol along

[TDSconf]. To arrive at the structural basis of each axis, we

correlated energetic changes along principal components

axes with the ensemble-average changes in solvent-acces-

sible surface area (DASA) from the unfolding events for a

particular residue. This transformation was possible because

FIGURE 3 Thermodynamic environments space of 120 diverse human

proteins. Energetic values from the native state ensembles of 120 proteins,

17,484 residues total, are plotted. The conformational entropy value is indi-

cated by color, red for the lowest conformational entropies, and violet for the

highest. These data assume an arrowhead shape and span the physical limits

of thermodynamic environments space. The segregation of entropy colors

suggests latent organization of this space, organization subsequently revealed

by PCA.

TABLE 1 Principal components of the thermodynamic

database of 17,484 residues from 120 human proteins

PC1 PC2 PC3 PC4 Average*

[DG] �0.55 0.15 0.59 �0.57 �8.13

[DHap] 0.65 0.69 0.22 �0.23 9.52

[DHpol] �0.51 0.70 �0.23 0.44 �11.72

[TDSconf] �0.09 0.11 �0.74 �0.66 �4.56

Eigenvalue 24.07 7.04 0.85 0.02

*Average value of the thermodynamic quantity given in column 1, in

kcal/mol.
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the energy function used in the COREX/BEST algorithm

was parameterized in terms of DASA (10,25), as detailed in

the Supporting Material. The enthalpy component of the

COREX/BEST energy function, for example, given by

Eq. 7, can be rearranged to express changes in apolar and

polar surface area in terms of changes in apolar and polar

enthalpy, Eqs. 8 and 9, respectively:

DHð25Þ ¼ DHð60Þ þ DCpðT � 60Þ
¼ �8:44 � DASAap þ 31:4 � DASApol

þ
�
0:45 � DASAap � 0:26

� DASApol

�
ðT � 60Þ; (7)

FIGURE 4 Principal components are independent of primary and

secondary structure. (A) Values of each coefficient of the first principal

component for secondary structure subsets of the entire thermodynamic

descriptor dataset. Subsets were extracted based on STRIDE (28) secondary

structure assignment (helix¼ H, G, I; strand¼ E, B, b; and coil¼ T, C). (B)

Values of each coefficient of the first principal component for amino-acid

type subsets of the entire thermodynamic descriptor dataset. Eigenvectors

and eigenvalues were highly similar among all subsets. In both panels, the

term ‘‘All’’ indicates results from the entire thermodynamic descriptor data-

set of 17,484 residues, also given in the first column of Table 1.
DASAap ¼
DHapð25Þ

aH þ aCp
� ðT � 60Þ; (8)

DASApol ¼
DHpolð25Þ

bH þ bCp
� ðT � 60Þ: (9)

In Eqs. 8 and 9, DHap(25) and DHpol (25) refer to the apolar and

polar terms of Eq. 7; aH and bH are the temperature-independent

coefficients of �8.44 and 31.4 cal � mol�1 � Å�2, respec-

tively; and aCp and bCp are 0.45 and �0.26 K�1 � cal �
mol�1 � Å�2, respectively (10).

This conversion of enthalpy to surface area is quantita-

tively displayed in Table 2. This table provides estimates

of the quantity and type of surface area exposure necessary,

on average, for a given energetic change in the folding of an

arbitrary globular protein. Note that this is a valid transfor-

mation because the phenomenological effect of surface

area exposure relative to energy is additive (30,31). Analo-

gous, albeit redundant, equations can be derived to express

DASA in terms of solvation entropy or conformational

entropy. In the case of conformational entropy, it was found

that changes in conformational entropy in the absence of

surface area changes are rare and minor in magnitude

when they do occur in our database. Note for example that

PC3, containing conformational entropy as the dominant

contributor, accounts for an insignificant fraction of the vari-

ance, thus justifying its exclusion from the analysis.

Interpretation of thermodynamic environment
space in terms of solvent-accessible surface area

Inspection of Table 2 reveals that the first principal compo-

nent represents the increase (or decrease) in the ensemble-

averaged amount of total ASA associated with unfolding.

For PC1, a change of þ1.0 units requires the simultaneous

changes of �27 Å2 of apolar surface and �13 Å2 of polar

surface. (Note that negative values indicate a larger amount

of solvent-accessible surface area in the unfolded subensem-

ble than in the folded subensemble.)

Tables 1 and 2 also reveal the relationship between surface

area changes and stability: a protein can be stabilized (a

negative change in [DG] of �0.55 kcal/mol) by exposing

both apolar and polar surface areas in an ~2:1 ratio. Residues

with higher values of PC1 are stabilized because their

unfolded subensembles exhibit a lower probability due to

the exposure of large amounts of surface area at the ratio

of 2:1, apolar/polar. Note that this ratio includes areas of

TABLE 2 Correspondence between one-unit changes along

principal component axes and changes in average solvent-

accessible surface areas for a folded to unfolded transition in

the native state ensemble

PC1 PC2 PC3 PC4

hDASAapi (� 103 Å2) �0.027 �0.028 �0.009 �0.009

hDASApoli (� 103 Å2) �0.013 þ0.017 �0.006 �0.011

hDASAapi / hDASApoli 2.15: 1 �1.64: 1 1.66: 1 0.86: 1
Biophysical Journal 97(5) 1461–1470
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complementary exposure as well as the area of direct unfold-

ing. Complementary surface area exposure results from the

fact that although residue j may always be folded in Fj (or

unfolded in NFj), other residues can be newly exposed due

to unfolding of the segment containing residue j. Fig. 5

shows the total ensemble-averaged surface area exposed

(DASAapþDASApol) at each residue position as a function

of PC1; clearly the magnitude of surface area exposure is

strongly correlated with position along PC1. Thus, the

most dominant local unfolding events in the native state

ensemble for this database of proteins involve surface area

exposure at a 2:1 apolar/polar ratio.

In contrast to PC1, changes in PC2 reflect changes in the

type of surface area exposed: the apolar and polar values in

Table 2 have opposite sign. For a þ1.0 unit change along

PC2, the folded to unfolded DASA values are �0.028 and

þ0.017 Å2 for apolar and polar, respectively. Such a change

slightly destabilizes a particular state by an average of

~þ0.15 kcal/mol. Also, in contrast to PC1, this change

exposes less apolar surface area while exposing more polar

surface area. In summary, PC2 is more directly related to

the type of surface area exposed rather than the quantity,

and combinations of PC1 and PC2 can account for all possi-

bilities of type and amount of exposure.

ASA coefficients in Table 2 for a þ1.0 unit change along

PC3 are much smaller than those of PCs 1 or 2, indicating

that the major energetic component of PC3 is not due to

FIGURE 5 Correlation between change in total solvent-accessible surface

area and PC1. Each of the 17,484 points represents values from one residue in

the thermodynamic database of 120 proteins. The x axis indicates the value of

the first principal component. The y axis indicates the total change in average

solvent-exposed surface area (DASAap þ DASApol) for each residue in the

ensemble simulated folded to unfolded transition. As discussed in the text,

a correlation is evident between PC1 value and solvent-exposed surface

area, highlighting the biophysical interpretation of PC1 in terms of area.

Biophysical Journal 97(5) 1461–1470
surface area exposure. The conformational entropy change

for PC3 is three-to-five times larger than for PC1 or PC2.

Thus, a small change in ASA with larger changes in entropy

and stability characterize PC3. Finally, the amount of vari-

ance explained by PC4 is insignificant in value and can be

considered rank-one noise. PCA thus reduced the thermody-

namic environment space from four ensemble-averaged

dimensions (i.e., [DG], [DHap], [DHpol], and [TDSconf]) to

three orthogonal components (i.e., PC1, PC2, and PC3),

simplifying thermodynamic environments space.

Understanding the structural basis of TE space
through investigation of extreme principal
component values

To determine how the structures of proteins are related to the

thermodynamic environments, the structural and energetic

properties of residues at the extremes of each PC were con-

trasted. For PC1, two such residues are Ile156 from 1jhjA and

Pro79 from 1i71A (Table 3 and Fig. 6). Their differences in

ensemble-weighted average accessible surface areas upon

unfolding of these positions were computed from the differ-

ences between their apolar and polar enthalpies, resulting in

1030 and 348 Å2 of buried apolar and polar areas, respec-

tively. This indicates that Pro79 is 16.5 kcal/mol less stable

than Ile156. In other words, the most probable states in the

1jhjA native state ensemble containing Ile156 unfolded

expose a Boltzmann average of almost 1400 Å2 of additional

surface, 75% of which is apolar, as compared to the most

probable states in the 1i71A ensemble. Thus, the probability

of being in an unfolded state is lower for Ile156 due to its

large amount of buried apolar surface area, and this position

can thus be considered stable (Fig. 6 A). On the contrary, the

probability of being in an unfolded state is higher for Pro79

due to its large amount of solvent exposure, and thus this

position can be considered unstable (Fig. 6 B).

Similarly, two residues exhibiting extreme values of PC2

were chosen, Arg471 from 1ifrA and Leu180 from 1gsmA

(Table 3 and Fig. 7). Although both residues appear mostly

buried, the large differences in [DHap] and [DHpol] between

the residues indicates a large difference in the type of surface

area exposed upon unfolding. This large difference in apolar

surface area between Arg471 and Leu180 is 321 Å2 of

increased exposure, reflecting the dominance of polar (red)

surface area in Fig. 7 A. The polar change is a similarly large,

TABLE 3 Extreme values observed along the first three

principal component directions in the thermodynamic database

Direction PDB ID Residue [DG]* [DHap] [DHpol] [TDSconf]

PC1 þ 1jhjA Ile156 �15.2 25.1 �15.5 �7.1

PC1 � 1i71A Pro79 1.3 0.2 �1.4 �2.3

PC2 þ 1ifrA Arg471 �14.1 7.8 �22.6 �6.5

PC2 � 1gsmA Leu180 �6.8 15.5 �5.1 �4.1

PC3 þ 1a17A Ile63 �11.1 7.8 �10.2 �0.4

PC3 � 2ilkA Ile147 �6.3 12.8 �14.1 �9.5

*Units of all thermodynamic quantities in kcal/mol.
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but opposite in sign, �433 Å2, reflecting the dominance of

apolar (blue) surface area in Fig. 7 B.

DISCUSSION

A large body of work has demonstrated that the native state

of a protein is most accurately described not as a single

crystal structure, but rather as an ensemble of interconverting

states in equilibrium with that structure (2–4). These confor-

FIGURE 6 Structural microenvironments of residues exhibiting extreme

positions along PC1. (A) Ile156 (PDB id 1jhjA), near a maximum value of

PC1, and its immediate unfolding neighbors are displayed as pink-colored

sticks. Note that removal of these residues (i.e., upon unfolding) would

result in a large amount of newly exposed solvent-accessible surface area;

water could potentially fill the entire cavity left by the removal. (B) Residue

Pro79 (PDB id 1i71A) and its unfolding neighbors near the smallest PC1

value. Note that no cavity would be left upon unfolding of these residues.
mational fluctuations within the ensemble are known to

be important for protein function, stability, and evolution

(32–34). However, detailed information about the ensemble

is often impossible to obtain by experiment or by computa-

tional analysis of single crystal structures. Our model of

FIGURE 7 Structural microenvironments of residues exhibiting extreme

positions along PC2. (A) Arg471 (PDB id 1ifrA), near a maximum value

of PC2, and its immediate unfolding neighbors are shown as pink sticks.

A large amount of polar surface area (colored red) surrounds these residues.

(B) Leu180 (PDB id 1gsmA), near a minimum in PC2, and its unfolding

neighbors are shown as pink sticks. Note the surrounding surface area is

almost completely apolar (blue). In both panels, gray area corresponds to

surface that is neither highly apolar nor highly polar. Polar area is defined

as residue types R, K, H, E, D, N, Q, T, S, and C, and apolar area is defined

as residue types A, G, V, I, L, F, and M.

Biophysical Journal 97(5) 1461–1470



1468 Vertrees et al.
the native state ensemble, COREX/BEST, developed over

the past decade (5,10,25), provides such information about

the equilibrium conformational fluctuations of proteins in

terms of energetics. COREX/BEST represents an improve-

ment over a single crystal structure because it can reproduce

many different experimental observables of proteins (6–13).

This article provides a concise description of this energetic

information through construction and investigation of a ther-

modynamic environment space. Future work will use these

results to develop improved tools for protein structure anal-

ysis tasks and fold recognition (27,35).

Principal component analysis was employed to organize

and simplify the thermodynamic environment space of

proteins. Notably, the three physical processes revealed by

PCs 1–3 were independent of secondary structure elements

or amino-acid content, as demonstrated in Fig. 4. The reason

for this independence is that the native state of a protein can

be defined independently of its secondary structure elements

or amino-acid content. Therefore, the local energetics of the

same protein, depending only on the equilibrium between the

native and denatured states and not their structural identities,

can also be independent of primary and secondary structure.

Importantly, this equilibrium is not apparent from inspec-

tion of the crystal structure, as it depends on the unfolding of

multiple residues in the form of partially disordered states.

Consideration of all partially disordered states, comprising

the native state ensemble, provides additional information

about this equilibrium, in effect averaging the energetic

contributions of each residue position with those of neigh-

boring positions. Therefore, considerable similarity may

exist between sequence segments in two different proteins

when the equilibria of those segments are compared, even

though those segments may be structurally quite different

when folded. In other words, differences between the static

structures of two proteins may belie similarities in the ther-

modynamic stabilities of those same static structures. The

central hypothesis proposed in this work is that these thermo-

dynamic similarities between proteins, perhaps contradictory

to similarities between their crystal structures, have evolu-

tionary relevance.

One implication of this hypothesis is that energetic simi-

larities between secondary structure elements of different

type may mediate the evolution of new folds from existing

ones. Secondary structure is mentioned specifically because

evolutionary mechanisms of fold change are thought to

include localized changes to secondary structure elements

(36,37). This hypothesis, schematically outlined in Fig. 8,

could thus be considered a novel thermodynamic explana-

tion of this accepted evolutionary mechanism.

This mechanism is possibly observed in vitro in the case of

the Arc repressor protein homodimer (38) (Fig. 8 A). Two

proteins with different secondary structure elements (in

a specific region), exemplified in the figure by wild-type

Arc and the switch mutant N11L L12N, undergo equilibrium

fluctuations resulting from similar thermodynamic environ-

Biophysical Journal 97(5) 1461–1470
FIGURE 8 Schematic illustration of incremental fold change resulting

from energetic equivalence. (A) A highly simplified energy landscape with

two dominant wells is displayed. In this scenario, evolution of different

secondary structures, and different folds, is mediated by moderately excited

conformational states accessed by local equilibrium fluctuations. Direct

evolutionary changes of entire secondary structure elements, absent the

sequence changes, are forbidden, as indicated by the lowest horizontal

double arrow. However, the structure of a particular protein may gradually

morph, mechanistically driven by changes in secondary structure elements

caused by random mutation of amino-acid sequence. Each change is toler-

ated because energetic properties (thermodynamic environments) of both

the original and new secondary structure elements are similar in the context

of the entire protein. The experimentally observed case of the Arc repressor

homodimer switch mutant is consistent with this scenario. Ground states of

wild-type Arc protein (39) and mutant N11L L12N (40) are shown: the wild-

type forms b-structure at the N-terminal region of the chain (dark shaded)

whereas the mutant forms 3-10 helical structure in the same region (solid).

(B) Despite the different secondary structure elements observed in the

wild-type (dark shaded) and mutant (solid) proteins, the energetic properties

of these elements (vertical boxed regions), as well as of the entire proteins,

were similar as computed by the COREX/BEST algorithm. The PDB codes

1bdt, chains A and B, and 1nla, chains A and B, were used for these calcu-

lations, with window size of 5, minimum window size of 4, entropy weight-

ing of 0.750, and simulated temperature of 25.0�C. Plotted are the values of

the first principal component (Table 1) of each protein as a function of

residue position in the homodimer.
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ments in these elements. The similar thermodynamic envi-

ronments, captured by the COREX/BEST algorithm

(Fig. 8 B, boxed regions), are places where localized struc-

tural change can occur with minimum disruption to the rest

of the fold, because of the similar energetic properties of

the ancestral and changed structures. Over time, many local-

ized changes could gradually result in a different fold,

possibly with a residual energetic similarity to its ancestor.

Unknown at present is the degree to which the evolutionary

distance between two proteins is reflected in their degree of

energetic similarity, as quantified by the energetic principal

components. This latter hypothesis is currently being inves-

tigated in more detail through the COREX/BEST analysis of

large numbers of proteins with known evolutionary relation-

ships (data not shown).

CONCLUSION

Principal component analysis was used to gain insight into

the organization of thermodynamic environment space of

proteins, and it was discovered that protein energetics, as

described by three principal components, are independent

of primary and secondary structure. In addition to the impli-

cations for fold classification, these results clearly illuminate

the biophysical origin of thermodynamic environments in

terms of solvent-exposed surface area. The first principal

axis in TE space is highly correlated to the magnitude (in

total surface area) of the local unfolding event. In contrast,

PC2 is most directly related to the type, not the quantity,

of surface area unfolded. PC3 is related to stability changes

mediated by conformational entropy instead of surface area.

The importance of these results is twofold. First, similarities

in thermodynamic environment space, often hidden by

tertiary structure, yet quantified by these principal energetic

components, can provide a novel metric for comparison of

proteins, even those with dissimilar folds. Second and

equally as important, these results provide a quantitative

thermodynamic basis for how new and structurally dissimilar

folds can arise from an existing fold.
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