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Extracting the Causality of Correlated Motions from Molecular
Dynamics Simulations

Hiqmet Kamberaj† and Arjan van der Vaart†‡*
†Center for Biological Physics, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona; and ‡Department of
Chemistry, University of South Florida, Tampa, Florida

ABSTRACT The information theory measure of transfer entropy is used to extract the causality of correlated motions from
molecular dynamics simulations. For each pair of correlated residues, the method quantifies which residue drives the correlated
motions, and which residue responds. The measure reveals how correlated motions are used to transmit information through the
system, and helps to clarify the link between correlated motions and biological function in biomolecular systems. The method is
illustrated by its application to the Ets-1 transcription factor, which partially unfolds upon binding DNA. The calculations show
dramatic changes in the direction of information flow upon DNA binding, and elucidate how the presence of DNA is communi-
cated from the DNA binding H1 and H3 helices to inhibitory helix HI-1. Helix H4 is shown to act as a relay, which is attenuated
in the apo state.
INTRODUCTION

Protein function is intimately related to protein motion. Of

particular interest are correlated, or collective motions,

which couple the dynamics of different parts of the protein.

Such correlated motions are essential for the coupling of

binding sites in allosteric regulation (1–3) and the generation

of mechanical work in motor proteins (4,5). They also play

a role in catalysis, ligand binding, and protein folding

(2,6–10). Correlated motions decrease the configurational

entropy, which affects the thermodynamics of these pro-

cesses (9,10). They alter the kinetics by bringing catalytic

residues together, by providing the concerted motions neces-

sary to overcome activation barriers, or by modulating

tunneling distances in electron or proton transfer reactions

(6–10).

Insights into protein-correlated motions are largely ob-

tained from two techniques. The first is nuclear magnetic

resonance (NMR). NMR relaxation experiments have been

used to measure the order parameter and the internal correla-

tion time for the motion of individual bond vectors (11).

These measures give insights into motions on the pico- to

nanosecond timescale, and can, in principle, be used to

calculate configurational entropies (10). Other NMR experi-

ments probe correlated motions through residual dipolar

couplings (12,13) or multiple-quantum spin relaxation (14),

or by measuring the change in order parameters for a series

of mutants (15), although simulations suggest that the latter

merely probes structural changes due to the mutations (16).

The second technique, also used in our study, is based on

molecular dynamics (MD) simulations. A popular approach

is the calculation of the normalized variance-covariance

matrix, or Pearson coefficient, from the simulated trajectory
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(17,18). The Pearson coefficient quantifies the correlation

between pairs of atoms, and can also be used to compute

the configurational entropy (19). Although the Pearson coef-

ficient can be calculated in a straightforward manner, the

method has several disadvantages. It only captures linear

correlations, and ignores nonlinear correlations; moreover,

only correlations between co-linear vectors are included,

while neglecting all correlations between perpendicular

motions (20). To solve for these deficiencies, the information

theory measure of mutual information has been employed

(20). Mutual information is sensitive to all statistical depen-

dencies and includes all linear and nonlinear pairwise corre-

lations, regardless of the relative spatial orientations of the

vectors.

In this article, we will address the causality of correlated

motions. If the motion of residues i and j is correlated,

does residue i drive the motion of residue j, or does residue

i respond to the motion of j? This question is particularly

pertinent in biology, where correlated motions often have

a direction or causal relationship. For example, in hemo-

globin, the correlated motions among heme, helix F, and

the rest of the protein are driven by oxygen binding to the

heme, which induces the motions to which helix F, and the

rest of the protein, respond (21,22). Another example is

the GroEL chaperone, in which the correlated motions of

the equatorial, intermediate, and apical domains, that lead

to the opening of the cis cavity, are driven by ATP binding

to the equatorial domain (23–25).

We propose to identify the causality of correlated motions

from MD simulations, using the information theory measure

of transfer entropy (26). Like mutual information, this

measure contains all pairwise linear and nonlinear statistical

dependencies, and is insensitive to the relative spatial orien-

tation of the motions. Unlike the Pearson coefficient and

mutual information, however, transfer entropy is not a

symmetric property: the transfer entropy between residues
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FIGURE 1 Structure of Ets-1 D301. The figure was

prepared with VMD (55) and povray (www.povray.org).

(A) In apo-Ets-1, the motion between helices H4 and

HI-1 is correlated (in-phase), as shown by the parallel

arrows. HI-1 is stabilized by the Leu421-Phe304 and

Leu422-Lys305 hydrogen bonds with H4 (shown as van

der Waals spheres) and macrodipolar interactions with

H4. (B) In the metastable, folded Ets-1-DNA complex,

the motion between HI-1 and H4 is anticorrelated (out-

of-phase), as shown by the arrows. The hydrogen bond

between Leu337 of helix H1 and the T6 phosphate of the

complementary DNA strand (shown as van der Waals

spheres) acts as a conformational switch. (C) At the onset

of unfolding, the anti-correlated motion between H4 and

HI-1 lead to the breaking of the Leu421-Phe304 and Leu422-Lys305 hydrogen bonds between H4 and HI-1, respectively, a disruption of the stabilizing macro-

dipolar interactions between H4 and HI-1, and the outwards motion of HI-1 away from the rest of the protein.
i and j does not equal the transfer entropy between residues j

and i. This explicit asymmetry means that the transfer

entropy can be used to distinguish between the residues

that drive the correlated motion and the residues that

respond, between the cause and the effect of correlated

motions. The calculation of this information merely requires

a standard MD simulation; the transfer entropies are obtained

by postprocessing the trajectory. Transfer entropies have

been successfully used for signal analysis in other fields,

for example for clinical electroencephalography (26–28)

and financial data (29), but to our knowledge, no applications

to molecular simulation data have been reported. Like other

information theory measures, the method is data-intensive

and sensitive to noise (27,28). Therefore, we have combined

several signal-processing techniques to yield robust and

accurate estimates of the transfer entropy, and introduced

statistical analyses to optimize the various parameters needed

for the calculation. We will summarize our implementation

in the methodology section below, and present the technical

details in the Appendices.

To illustrate the method, we present its application to

Ets-1, a human transcription factor that partially unfolds

upon binding its DNA target sequence (30–33). Previous

studies revealed that correlated motions are crucial for this

highly unusual binding mechanism. Mutation experiments

(32) and MD simulations (34) showed that hydrogen bonds

between Leu337 and Gln336 of helix H1 and the DNA act as

a conformational switch, which senses the presence of the

DNA and transmits this information to inhibitory helix 1

(HI-1). MD simulations of the folded apo protein, and the

metastable, folded Ets-1-DNA complex demonstrated that

the conformational switch induces a dramatic change in

correlated motions between helix H4 and HI-1 (34). In

apo-Ets-1, the motion between H4 and HI-1 is in-phase-

correlated, leading to a continuous stabilization of HI-1

through hydrogen bonding and macrodipolar interactions

with H4 (Fig. 1 A). In the metastable, folded DNA-bound

state, the motion is anti-correlated (out-of-phase), which

disrupts the hydrogen bonds and macrodipolar interactions

(Fig. 1 B). At the onset of unfolding, the disruptions of these
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stabilizing interactions lead to the outward motion of HI-1,

away from the rest of the protein (Fig. 1 C). It is thought

that ultimately, these motions lead to the experimentally

observed unfolding of HI-1.

Here we will apply transfer entropies to investigate the

cause of the changes in correlated motions in folded Ets-1

upon DNA binding. Our calculations show how the presence

of DNA is transmitted through the protein, providing new

mechanistic insights into how DNA destabilizes HI-1 at

the onset of unfolding. Given the importance of correlated

motions for protein function, we expect that the method

will be of general use for a wide range of systems.

METHODS

The information theory measure of transfer entropy quantifies the statistical

coherence between two processes that evolve in time. Since we are interested

in the statistical coherence between atomic motions, we take these processes

as the positional fluctuations of atoms i and j, although in principle, other

scalar or vector quantities could be used as well. The positional fluctuations

are given by ri(tn) h jxi(tn) � hxiij, where x is the atomic position and h.i
denotes a time average. Time tn ¼ nDt is discrete, with Dt ¼ Mdt a multiple

of the MD integration time step dt and M the frequency of saving coordi-

nates. By describing the discrete time processes as stationary Markov

processes of order m, the dynamics of the system can be characterized by

m-dimensional state vectors, which we will denote by I. Using the method

of time delayed embedding (35,36), the state vectors are given by

I
mi

k h
�
riðtkÞ; riðtkþ ti

Þ;/; riðtkþðmi�1Þti
Þ
�T
;

J
mj

k h
�
rjðtkÞ; rjðtkþ tj

Þ;/; rjðtkþðmj�1Þtj
Þ
�T
;

(1)

where the time shift t is a multiple of Dt, and the superscript T indicates the

transpose operation. The m and t embedding parameters can be different for

atoms i and j; their specific values are indicated by the superscript

m h (m, t). Taking time tkþðmi�1Þti
as the present, I

mi

k and J
mj

k describe the

histories of the processes, which consist of the present and past m � 1 fluc-

tuations. Similarly, the future fluctuations of atoms i and j are given by

Ikþ 1hriðtkþmiti
Þ;

Jkþ 1hrj

�
tkþmjtj

�
:

(2)

To reconstruct the dynamical structure of the time series, the proper choice

of m and t is crucial. We discuss our method to optimally select t and m from

the MD trajectory in the Appendices.
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If the fluctuations of atoms i and j are independent processes, the condi-

tional probability to observe the future fluctuation of atom i, given its

history, is independent of the history of atom j,

pðIkþ 1jImi

k Þ ¼ p
�
Ikþ 1

��Imi

k ; J
mj

k

�
for independent processes;

(3)

where pðIkþ1jImi

k Þ is the conditional probability to observe the future fluctuation

of atom i, given its history, and pðIkþ1jImi

k ; J
mj

k Þ is the conditional probability to

observe the future fluctuation of atom i, given the histories of atoms i and j. The

transfer entropy quantifies the deviation from independence, and is given by the

Kullback-Leibler distance (37–39) between these probability distributions (26):

Tj/i ¼
XNm

k¼ 0

p
�
Ikþ 1; I

mi

k ; J
mj

k

�
log

p
�
Ikþ 1

��Imi

k ; J
mj

k

�
pðIkþ 1jImi

k Þ
; (4)

where pðIkþ1; I
mi

k ; J
mj

k Þ is the joint probability distribution of observing the

future atomic fluctuation of atom i, and the histories of atoms i and j. The

sum is over all possible state vectors: Nm ¼ N � (m � 1)t, with N the total

number of snapshots. By construction, the transfer entropy is a positive

quantity, with a minimum value of zero when the fluctuations of atoms

i and j are independent, and a maximum of the entropy rate

hðIkþ 1jImi

k Þ ¼ �
XNm

k¼ 0

pðIkþ 1; I
mi

k Þlog pðIkþ 1jImi

k Þ

when the fluctuations of atoms i and j are completely coupled; this maximum

is reached when i ¼ j, for example. The entropy rate equals the information

gained in observing an additional state vector of atom i when all its previous

states are known.

A straightforward derivation shows that the transfer entropy can be refor-

mulated as conditional mutual information (I) (27):

Tj/i ¼ I
�
Ikþ 1; J

mj

k

��Imi

k

�
: (5)

This conditional mutual information equals the amount of information that

knowing the history of the fluctuations of atom j provides about the future

fluctuations of atom i, given the history of fluctuations of atom i. Moreover,

since the transfer entropy is based on conditional probabilities, Tj/i s Ti/j

in general. This means that the measure can be used to identify causal rela-

tionships (26). High values of Tj/i indicate that the fluctuations of atom j are

strongly driving the fluctuations of atom i, whereas low values indicate

a smaller dependence. To quantify whether, on average, the motion of

atom j drives the motion of atom i, or whether the motion of atom i drives

the motion of atom j, we use the normalized directional index Dj/i (27,28),

Dj/i ¼
Tj/i

hðIkþ 1jImi

k Þ
� Ti/j

h
�
Jkþ 1

��Jmj

k

�; (6)

where Di/j ¼ �Dj/i, with values between �1 and þ1. If Dj/i > 0, the

fluctuations of atom j drive the fluctuations of atom i, or j is the source of

correlations. If Dj/i < 0, the motion of atom i drives the motion of atom

j, while atom j responds to the motion of atom i, or j is the sink of correla-

tions. Although the directional index is a measure of causality, it is not

a measure of the independence of the two processes: if Di/j ¼ Dj/i ¼ 0,

there is no overall driving motion between atoms i and j, but only if

Tj/i ¼ Ti/j ¼ 0 the fluctuations of atoms i and j are independent. Since

Di/j is based on mutual information, the index includes all linear and

nonlinear correlations between the two time series.

To limit the effects of statistical noise and to speed up the calculations, we

used several specialized techniques. The details of our implementation are

described in the Appendices. Although this implementation quantifies the

statistical coherence between positional fluctuations, the method could be

readily adapted to quantify the statistical coherence between other time-

dependent simulation properties, such as displacement vectors, dipole

moments, and/or energetic quantities.
Simulation setup

We analyzed the transfer entropy between the Ca atoms of apo and DNA-

bound Ets-1 and between the P atoms of DNA and the Ca atoms of Ets-1

using the MD trajectories described in Kamberaj and van der Vaart (34).

Since no high-resolution structures are available for the full-length protein,

these 15-ns trajectories were generated for Ets-1 D301, a construct consist-

ing of residues 301–440 with an intact autoinhibitory module and approxi-

mately twofold autoinhibition (33). To probe the interactions that lead to the

unfolding of HI-1, the simulations were performed on the folded states of

Ets-1. The all-atom simulations were performed with the CHARMM force

field (40) in the NPT ensemble, coordinates were saved every 500 steps

(every ps), and the simulations included explicit water molecules and

ions. The simulated DNA sequence in the Ets-1–DNA complex was

50-AGTGCCGGAAATGTGC-30 with the high affinity 50-GGAA-30 target

sequence. The reader is referred to Kamberaj and van der Vaart (34) for

the technical details of the simulations; we used the last 10 ns of the trajec-

tories for the analyses. Given the possibly long timescales of unfolding (33),

we did not expect to observe the complete unfolding of HI-1 in the DNA-

bound complex in the timescales of the simulation. Instead, we observed

the onset of unfolding, consisting of the breaking of the Phe304-Leu421

and Lys305-Leu422 hydrogen bonds between HI-1 and H4, the breaking of

the Lys305-Glu428 salt bridge between HI-1 and H5, and the outward motion

of HI-1, away from H4 and HI-2 (see Fig. 1). Our objective was to identify

the interactions and correlated motions that led to the onset of the unfolding;

therefore, the simulation of the complete unfolding process was not neces-

sary and the present simulations met our goals.

RESULTS

To probe the change in correlated motions that lead to the

destabilization of HI-1 upon DNA binding, we analyzed

the transfer entropy between the Ca atoms of Ets-1 in MD

trajectories of the folded apo protein in solution, and the

metastable, folded Ets-1 in complex with high affinity

DNA. Fig. 2 shows the directional index Dj/i between the

Ca atoms for apo-Ets-1 (Fig. 2 A) and the Ets-1–DNA

complex (Fig. 2 B). In the figure, atom j is on the vertical,

and atom i on the horizontal axis. Positive values of Dj/i

(in yellow and red) indicate that the information flow is

from j to i; that on average, the fluctuations of atom j drive

the fluctuations of atom i, and that atom j is the source of

the correlations between atoms j and i. Likewise, negative

values of Dj/i (in blue) signify that atom j is the sink of

the correlations between atoms j and i, and that atom j

responds to the motion of atom i. On the diagonal, Di/i¼ 0,

since Ti/i ¼ hðIkþ1jImi

k Þ (Eqs. 4 and 6). Fig. 2 C shows

which Ca atoms switched from driver to responder upon

DNA binding, and vice versa. Changes from a negative to

a positive Dj/i upon DNA binding are shown in red; red

horizontals indicate Ca atoms that changed from responder

to driver upon DNA binding. The opposite change is shown

in blue; atom pairs that did not switch sign of Dj/i are shown

in white. For clarity, only one shade of red and blue is used in

Fig. 2 C. Fig. 2, D and E, show Dj/i between the P atoms of

each DNA strand and the Ca atoms of Ets-1.

Fig. 2 shows dramatic changes in the directional index

upon DNA binding. For many atom pairs, ~36% of the total,

the driver and responder switched roles upon DNA binding

Biophysical Journal 97(6) 1747–1755
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FIGURE 2 The normalized directional index. Atom j

is on the vertical, and atom i on the horizontal axis. (A)

Dj/i for the Ets-1 Ca atoms in apo-Ets-1 and (B) the

Ets-1–DNA complex. (C) Sign switching of Dj/i upon

DNA binding. Changes from negative to positive values

are shown in red, changes from positive to negative values

in blue, and changes that did not involve a switch of sign

(including changes from jDj/ij % 0.05) are shown in

white. (D) Dj/i between the P atoms of the DNA main

(strand 1) and (E) complementary strand (strand 2) and

the Ca atoms of Ets-1.
(Fig. 2 C). Especially S1, S2, H3, S3, S4, and H5 showed

many switches from responding to driving residues upon

binding. For residue pairs that did not switch, DNA binding

increased the absolute magnitude of the directional index

for 41% of all atom pairs, while decreasing the absolute

magnitude for the remaining 25%. Fig. 2, D and E show

that Ets-1 drives most of the correlated motions between

the protein and DNA; especially large drivers are H3, S1,

and S2.

Of particular interest are the transfer entropies of the H1,

H3, H4, and HI-1 helices, which are crucial for the binding

mechanism (31–34). H3 is the recognition helix, which binds

the major groove of DNA (Fig. 1). In the complex, H3 drives

the motion of the DNA P atoms in the binding site (the hori-

zontal for H3 is mostly red and yellow in Fig. 2, D and E).

For example, Tyr395 drives the motion of G8 and A9 in

strand 1 (the main strand), Arg391 drives the motion of the

T8 and C9 of strand 2 (the complementary strand), and

Arg394 drives the motion of G7, G8, A9, and A10 of strand

1 and T6, T7, C8, and C9 of strand 2. In apo-Ets-1, H3 acts as

a sink for the correlated motions (the horizontal for H3 is

mostly blue, the vertical is mostly yellow in Fig. 2 A). This

means that in the apo-protein, helix H3 responds to the

motion of most other protein residues. H3 behaves very

differently in the DNA-bound state (Fig. 2 B): in the

DNA-complex, H3 is mostly a source of the correlated

motions with the other protein residues. This change upon

DNA binding makes biological sense: the recognition helix

senses the presence of the DNA and transmits this informa-

tion to the rest of the protein through correlated motions.
Biophysical Journal 97(6) 1747–1755
Helix H1 contains the conformational switch, consisting

of Leu337 and Gln336, which hydrogen-bond with the T6

phosphate of DNA strand 2 (32–34). Fig. 2, D and E show

that the correlated motions between Leu337, Gln336, and

this phosphate are driven by the P atom of T6. In apo-Ets-

1, H1 is a source for the correlated motions with all other

secondary structure elements. In the DNA-bound state, the

causality of these correlations is reversed for half the

elements. In the complex, H1 is a sink for the correlated

motions with S1, S2, H3, S4, and H5, and a source of the

correlations with HI-1, HI-2, H2, S3, and H4. H1 becomes

a much stronger source for the correlations with HI-1 upon

DNA binding, and a slightly stronger source for the correla-

tions with H4.

In the apo-protein, the motion between H4 and HI-1 is in-

phase correlated, and H4 stabilizes HI-1 through macrodipo-

lar and hydrogen-bonding interactions. Upon DNA binding,

the motion between H4 and HI-1 becomes anti-correlated,

and the stabilizing interactions are disrupted (34). H4 is

a very weak source for the correlated motions with HI-1,

H3, S3, and H5 in the apo protein, and a sink for the corre-

lated motions with the other secondary structure elements. In

the DNA-bound complex, H4 is a strong sink for the corre-

lated motions with most residues, and a strong source for the

correlations with HI-1. HI-1 is the helix that unfolds upon

binding DNA (30–33). In apo-Ets-1, HI-1 is a weak source

of the correlations with H3, S3, and H5, and a sink for the

correlations with HI-2, H1, S1, S2, H2, S4, and H4. Upon

DNA-binding, HI-1 becomes a very strong sink of the corre-

lations with all other protein residues. In addition, parts of
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HI-1 and the loop between HI-1 and HI-2 are sinks for the

correlations with the DNA.

Other regions of interest are the loop region between S3

and S4, which contact the DNA. Correlations between this

loop region and the DNA are partially driven by the DNA

and partially by the protein. Lys404 drives the motion of

T3, G4, and C6 and is a sink for the correlation with C5 of

strand 1. Thr405, Ala406, Gly407, Lys408, and Arg409 act as a

sink for the correlated motions with T3, G4, C5, and C6 of

strand 1. We also observed that the correlated motions

between Ets-1 and the highly flexible bases at the end of

DNA strands are driven by Ets-1.

From these analyses, a clear picture of the information

flow within the protein emerges. The presence of DNA is

transferred by a network of correlated motions, and the direc-

tion of the information flow is from the driving to the re-

sponding residues. The network starts with the DNA sensing

H1 and H3 helices. DNA binding changes the H3 recogni-

tion helix from a sink to a source of correlated motions,

transmitting the information that DNA is present to the rest

of the protein by driving correlated motions. The T6 phos-

phate of DNA strand 2 activates the conformational switch,

by hydrogen bonding with Leu337 and Gln336 of helix H1,

and driving the correlated motions with these residues. In

addition, H1 becomes a stronger driver of correlated motions

with H4 and HI-1 upon DNA binding. H4, the helix that

stabilizes HI-1 in the apo state, and destabilizes HI-1 in the

DNA-bound state, plays a central role in the correlated

network. Whereas in the apo state, H4 is a very weak source

for the correlated motions with HI-1, and either a weak

source or weak sink for the correlated motions with the

rest of the protein, in the DNA-bound state, H4 is a strong

source of correlated motions with HI-1 and a strong sink

for the correlated motions with the other protein residues.

H4 responds to the motion of all non-HI-1 protein residues

in the DNA-bound state, and transmits this information to

HI-1 by strongly driving the correlations with this helix.

Thus, H4 acts as a relay between HI-1 and the other residues,

transmitting the information that DNA is present from all

other protein residues onto HI-1; moreover, in the apo state,

this relay is attenuated. Finally, HI-1 is on the receiving end

of all correlated motions in the DNA-bound state, and

strongly responds to the motions of all other residues when

DNA is bound.

DISCUSSION

We have used the information theory measure of transfer

entropy to extract the causality of correlated motions from

MD trajectories. The method dissects each pair of correlated

residues into a residue that drives the motion and a residue

that responds, and establishes which residues dictate the

observed correlations in the system. Combined with existing

techniques to calculate the correlations (for example, the

Pearson coefficient (17,18) or mutual information (20)),
the methods quantifies the flow of information in biomole-

cules, and gives new insights into how correlated motions

relate to biological function.

We illustrated the method by its application to Ets-1,

a protein which unfolds its HI-1 helix upon binding the target

DNA sequence (30–33). The transfer entropy analysis

revealed that the flow of information drastically changed

upon DNA binding, showing how the presence of DNA is

transmitted by correlated motions. The T6 phosphate which

hydrogen-bonds Leu337 and Gln336 drives the correlations

with these protein residues, activating the conformational

switch. The H3 recognition helix drives the correlated

motions with the DNA and with the rest of the protein in

the complex. In the apo-protein, H4 is either a weak driver

or weak sink for the correlated motions with the other resi-

dues, while in the complex H4 strongly drives the correla-

tions with HI-1, and strongly responds to the motions of

the rest of the protein (including the DNA-binding H1 and

H3 helices). HI-1 is a strong sink for the correlations with

all other residues (including the DNA) in the complex; its

motion is dictated by the rest of the system. Thus, the anal-

ysis showed how the information of the presence of DNA is

transmitted through the protein, from the DNA-binding H3

and H1 helices, to helix H4 and HI-1. The calculations iden-

tified a central role for helix H4 as a relay of information flow

between the DNA-binding helices and HI-1 in the DNA-

bound state, and showed that this relay is attenuated in the

apo state.

In the Appendices, we describe the technical aspects of the

calculation of transfer entropies from MD trajectories. We

used several techniques to reduce the effects of noise and

to speed up the calculation, and statistical analyses to

estimate the optimal values of the m and t embedding param-

eters. To verify the accuracy and robustness of our imple-

mentation, we have performed extensive tests on a large

variety of (noisy) dynamical systems (data not shown).

Our implementation provides robust estimates of the transfer

entropy, and merely requires a trajectory from a standard MD

simulation. Given the importance of correlated motions for

biological function, we expect that transfer entropies will

be useful for the study of a wide range of biomolecular

systems.

APPENDIX A: TRANSFER ENTROPY

In practice, we calculate the transfer entropy from the Shannon information

entropy H. Using m h (m, t), mþ 1 h (mþ 1, t), and the formulation of the

transfer entropy as conditional mutual information (Eq. 5),

Tj/i ¼ I
�
Ikþ 1; J

mj

k

��Imi

k

�
¼ HðImiþ 1

k Þ � HðImi

k Þ � H
�
I

mi þ 1
k ; J

mj

k

�
þ H

�
I

mi

k ; J
mj

k

�
:

(7)

The Shannon entropy (41) is given by

Biophysical Journal 97(6) 1747–1755
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HðImi

k Þ ¼ �
X

k

pðImi

k Þlog pðImi

k Þ; (8)

where the sum is over all states.

In general, the length of the discrete time processes and the number of states

are limited by the sampling. To correct for the finite sampling, we use (42)

HðImi

k Þ ¼ ln N � 1

N

X
k

nkjðnkÞ; (9)

where sum is over all states, nk is the frequency of observing state k, and j(x)

is the derivative of the g-function (42). Similar expressions can be obtained

for the other Shannon entropy terms in Eq. 7. To reduce the effect of noise

and to speed up the calculations, we do not use the states I
mi

k and I
miþ1

k

directly. Instead, we use the technique of symbolization (28,43–46) as

described in Appendix D.

APPENDIX B: SHUFFLING OF DATA AND
NORMALIZATION OF TRANSFER ENTROPIES

Since the probability distributions of the time series are not known a priori,

the computation of the transfer entropy is complicated and subject to noise

(27). Moreover, for large time shifts ti and tj, a broad joint distribution will

be obtained. For such a broad distribution, the transfer entropy can be

different from zero even when there is no causal link between the two

time series (27). The use of an effective transfer entropy �Tj/i
E based on

the shuffling of data removes this effect (27,29). We have adopted this

measure in our implementation.

The shuffling of a time series I or J completely removes any link between

I and J without changing their distributions (27,29). This means that the

transfer entropy calculated from a shuffled time series can serve as a signif-

icance threshold, to distinguish information flow from artifacts due to insuf-

ficient sampling. The new measure is the effective transfer entropy (29)

�Tj/i
E ¼ Tj/i �

1

Ntrials

XNtrials

n¼ 1

Tjshuffled/i; (10)

where the second terms represent the averages over all the Ntrials random

shufflings of the time series. In this study, we used Ntrials ¼ 100. The effec-

tive transfer entropy is normalized by (27)

Tj/i
E ¼

�Tj/i
E

hðIkþ 1jImi

k Þ
; (11)

where

hðIkþ 1jImi

k Þ ¼ �
XNm

k¼ 0

pðIkþ 1; I
mi

k Þlog pðIkþ 1jImi

k Þ

is the entropy rate. In Eq. 11, TE
j/i is distributed in the interval [0, 1]. The

preferred direction of flow is given by the normalized directional index

DE
j/i (27,28)

DE
j/i ¼ TE

j/i � TE
i/j; (12)

where DE
i/j is in the interval [�1, 1]. All our reported results are based on the

effective transfer entropies, and the normalized directional index (Eq. 12).

APPENDIX C: OPTIMIZATION OF THE M AND t
EMBEDDING PARAMETERS

The correct choice of the m and t embedding parameters is crucial for the

proper characterization of the structure of the time series (Eq. 1) (47–49).
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The objective is to properly describe the dynamics of a lower dimensional

space (here, the fluctuations ri of a subset of atoms) from the full dynamics

of the system, where, as an additional complication, the full dynamics are

given as discrete solutions of the continuous equation of motions. For

example, very small values of t will result in strongly correlated state vector

elements, whereas large values will result in elements that are randomly

distributed in the m-dimensional space; the projected trajectories will cross

for small values of m, whereas for large values of m, noise will start to domi-

nate and the computation becomes more expensive. This problem has been

extensively studied in dynamical systems theory (47–51), and the reader is

referred to the original literature for an in-depth treatment of the subject. For

example, the mathematical concepts for selecting the state vector dimension

m have been reviewed in Noakes (50) and Sauer et al. (51). Several methods

have been proposed for estimating the optimal values of m and t simulta-

neously (47,48), as well as a method in which they are individually

optimized (49). Since a comparison showed its superiority (49), we largely

followed the latter approach.

In this approach, the time lag parameter t is chosen as the time at which

the mutual information I(Ik;Ikþt) has its first minimum (49,52,53). For this

purpose, the mutual information is written as a function of t,

IðIk; Ikþ t; tÞ ¼
P

k

pðIk; Ikþ tÞlog
pðIk; Ikþ tÞ

pðIkÞpðIkþ tÞ
¼ HðIkÞ þ HðIkþ tÞ � HðIk; Ikþ tÞ;

(13)

where Ik is the value of the time series I at time k, and Ikþt at time k þ t.

Since the calculation of the probability depends on the number of bins

used, a dependence of the Shannon entropy on the number of bins is

expected (49). In our implementation, we optimize the number of bins, by

using the number of bins that maximizes the Shannon information entropy

(H(Ik)). As convergence criterion for the number of bins, we use jH(Nbinsþ 1)

� H(Nbins)j < 0.0001; using this method, we optimized ti for each atom i.

The optimized number of bins and the optimized time-lag parameters for

the Ca atoms of apo-Ets-1 and the Ets-1-DNA complex are shown in Fig. 3.

For both systems, t varied between 1 and 17, and the number of bins

between 300 and 450. The value t is closely correlated to the flexibility of

the atoms: the larger the flexibility, the larger the value of t.

After optimizing the time shifts, we used the false nearest-neighbors

method (47–49) to obtain the optimal estimate for m. In this method, the

Euclidean distance between two state vectors Ik
m and Il

m in the m-dimen-

sional space is given by

Rm
i ¼

 Xm�1

n¼ 0

ðriðtkþ ntÞ � riðtlþ ntÞÞ2
!1=2

: (14)

For notational clarity, we have dropped all subscripts i in mi, ti, and mi. The

state Il
m with the smallest distance is the nearest neighbor of Ik

m; we will

denote the index l of the nearest neighbor by NN. Extending Ik
m and INN

m by

one element into (mþ1)-dimensional space, the distance between the

extended states is given by

Rmþ 1
i ¼

��
Rm

i

�2þðriðtkþmtÞ � riðtNNþmtÞÞ2
�1=2

: (15)

This distance is normalized against the distance in m-dimensional space (52):

gm
i ¼

 �
Rmþ 1

i

�2�
�
Rm

i

�2�
Rm

i

�2

!1=2

¼ jriðtkþmtÞ � riðtNNþmtÞj
Rm

i

:

(16)

Here, gm
i is compared to a threshold value Rtol, which is determined a priori

(49,52) and recommended to be 15 (49,52). If gm
i exceeds Rtol, then INN

m is

a false nearest neighbor of Ik
m and fNN, the frequency of false nearest
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FIGURE 3 Optimized number of bins (Nbins) and time

lag parameters (t) for the Ca atoms of Ets-1. The root

mean-square fluctuation (in Å) of the Ca atoms of Ets-1

is shown in shaded representation. (A) Apo-Ets-1. (B)

Ets-1-DNA complex.
neighbors, is increased by one. The value of m is increased until fNN

approaches zero. The procedure is repeated to optimize mi for each atom i.

Fig. 4 shows m and fNN for apo-Ets-1 and the Ets-1-DNA complex. Similar

values were obtained for both systems, with m varying between 6 and 9.

APPENDIX D: COARSE-GRAINING OF THE TIME
SERIES

The calculation of the transfer entropy can be greatly sped up, and the effects

of noise can be substantially reduced by using the technique of symboliza-

tion (28,43–46). In this method, a symbolic sequence {bI1,bI2, .,bIN} is asso-

ciated with the time-series {I1, I2, ., IN} through coarse-graining (43–45).

In the coarse-graining, all information concerning the dynamics of the series

is suitably encoded using a partitioning of phase space. The time-series

{I1, I2, ., IN} is converted into a symbolic sequence by the rule

Îj¼ Ŝk if Xk< Ij< Xkþ 1; (17)

where X0;X1;/;XNb
gf is a given set of Nb þ 1 critical points, and

{bS0; bS1;/; bSNb�1} is a set of Nb symbols, here the numbers 0, 1, 2, etc.

Concatenation of the symbols of a subsequence of length m yields the

word wI,

w Î ¼
Xm

i¼ 1

Nm�i
b Îkþði�1Þt; (18)

where k indicates the starting position of the subsequence along the sequence

{bI1, bI2, ., bIN}. A particular subsequence is uniquely characterized by the

word wI.
The probability of finding a particular value of wI is calculated from the

simulation data, and used to compute the Shannon entropy

H
�̂
Im

k

�
¼ �

X
fw

Î
g

pðw ÎÞlog pðw ÎÞ: (19)

Since the time series {I1, I2, $$$, I} is mapped onto the symbolic sequence

{bI1, bI2, ., bIN} uniquely (i.e., the symbolic representation is injective), the

entropies H(bIm
k) and H(Im

k) coincide (54).

We obtain the critical points {X} for a particular series by maximizing

the entropy with respect to all possible partitions. Increasing the number of

critical points will initially increase the information entropy, but after

a sufficient number of critical points, the information entropy plateaus.

At this point the optimum number of critical points has been reached:

a further increase will not increase the accuracy of the calculation, but

does slow down the computation. In our implementation, we optimize

both Nb and {X} by maximizing the Shannon entropy through a Monte

Carlo approach. We chose Nb ¼ 2, 3, 4, and 5 and randomly selected

Nb þ 1 critical points X in the range from the minimum to the maximum

observed value of the time series. This process is repeated many times

(here, 10,000 times) to yield the Nb and X for which the information

entropy was a maximum. In a similar way, the joint Shannon information

entropy of two discrete symbolic processes {bI1, bI2, ., bIN} and {bJ1, bJ2, .,bJN} is calculated as

H
�̂
Imi

k ; Ĵ
mj

k

�
¼ �

X
fw Îg
fw Ĵg

pðw Î;w ĴÞlog pðw Î;w ĴÞ; (20)
FIGURE 4 Optimized embedding state dimension m and

the frequency of false nearest neighbors fNN for the Ca

atoms of Ets-1. (A) m for apo-Ets-1 and (B) the Ets-1-

DNA complex. (C) fNN for apo-Ets-1 and (D) the Ets-1-

DNA complex.
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where the sum is over all {wI} and {wJ} states. Usually the entropy is

measured in units of bits; in this case, the logarithmic functions in Eqs. 19

and 20 are computed with base Nb. The Shannon entropies of Eqs. 19 and

20 are used to calculate the transfer entropy of Eqs. 7 and 10.
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