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Abstract
We investigate if known extrinsic and intrinsic factors fully account for the complex features
observed in recordings of human activity as measured from forearm motion in subjects undergoing
their regular daily routine. We demonstrate that the apparently random forearm motion possesses
dynamic patterns characterized by robust scale-invariant and nonlinear features. These patterns
remain stable from one subject to another and are unaffected by changes in the average activity level
that occur within individual subjects throughout the day and on different days of the week, since they
persist during daily routine and when the same subjects undergo time-isolation laboratory
experiments designed to account for the circadian phase and to control the known extrinsic factors.
Further, by modeling the scheduled events imposed throughout the laboratory protocols, we
demonstrate that they cannot account for the observed scaling patterns in activity fluctuations. We
attribute these patterns to a previously unrecognized intrinsic nonlinear multi-scale control
mechanism of human activity that is independent of known extrinsic factors such as random and
scheduled events, as well as the known intrinsic factors which possess a single characteristic time
scale such as circadian and ultradian rhythms.
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1. Introduction
Control of human activity is complex, being influenced by many factors both extrinsic (work,
recreation, reactions to unforeseen random events) and intrinsic (the circadian pacemaker that
influences our sleep/wake cycle [1,2] and ultradian oscillators with shorter time scales [3,4]).
The extrinsic factors may account for the apparently random fluctuations in human motion
observed over short-time scales while the intrinsic rhythms may account for the underlying
regularity in average activity level over longer periods of up to 24 h. Further, human activity
correlates with important physiological functions including whole body oxygen consumption
and heart rate [5–8].
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2. Methods
Actiwatch devices are traditionally used to demarcate sleep versus wakefulness based on
average activity levels, or to observe the mean pattern of activity as it changes across the day
and night according to disease state (Fig. 1) [9–12]. The subject wears a wristwatch-sized
Actiwatch recorder (Mini-Mitter Co., OR, USA) that unobtrusively measures changes in
forearm acceleration in any plane (sensitive to 0.01g, where g is the acceleration due to gravity)
[12]. Each data point recorded in the device’s internal memory represents the value of changes
in acceleration sampled at 32 Hz and integrated over a 15-s epoch length. Recordings are made
continuously for different experimental protocols over several weeks, yielding approximately
105 data points for each subject. Inhomogeneity of recording sensitivity across the range of
activities is accounted for in the analyses.

Traditionally activity fluctuations are considered as random noise and have been ignored. We
hypothesize that there are systematic patterns in the activity fluctuations that may be
independent of known extrinsic and intrinsic factors. To test our hypotheses, we evaluate the
structure of human activity during wakefulness, using: (i) probability distribution analysis; (ii)
power spectrum analysis, and (iii) fractal scaling and nonlinear analysis. To elucidate the
presence of an intrinsic activity control center independent of known circadian, ultradian,
scheduled and random factors, we apply 3 complementary protocols.

• Daily routine protocol: We record activity data throughout two consecutive weeks in
16 healthy ambulatory domiciliary subjects (8 males, 8 females, 19–44 years, mean
27 years) performing their routine daily activities. The only imposed constraints are
that subjects go to bed and arise at the same time each day (8 h sleep opportunity) and
that they are not permitted to have daytime naps (Fig. 1).

• Constant routine protocol: To assess intrinsic activity controllers (i.e., circadian or
other neural centers) independent of scheduled and random external influences,
activity recordings are made in the laboratory throughout 38 h of constant posture
(semi-recumbent), wakefulness, environment (21°C, dim light [< 8 lux]), dietary
intake and scheduled events [13,14]. This protocol is performed in a subset of subjects
(7 males, 4 females) that participated in the daily routine protocol. These highly
controlled and constant experimental conditions result in reduced average and
variance of activity levels.

• Forced desynchrony protocol: To test for the presence of heretofore unidentified
intrinsic activity control centers, independent of known activity regulators (circadian
pacemaker), while accounting for scheduled and random external influences, we
employ the validated Forced desynchrony (FD) protocol [2]. Six (4 male, 2 female)
of the 16 subjects that participated in the daily routine protocol completed the FD
limb of the study. For 8 days subjects remain in constant dim light (to avoid “resetting”
the body clock). Sleep periods are delayed by 4 h every day, such that subjects live
on recurring 28 h “days”, while all scheduled activities become desynchronized from
the endogenous circadian pacemaker. Thus, as measurements occur across all phases
of the circadian clock, the effect of intrinsic circadian influences can be removed
[2]. Average activity level and activity variance are also significantly reduced due to
laboratory-imposed restrictions on the subjects activity (Fig. 1).

3. Results and discussion
When the same subject is studied in different protocols, we find large differences in the
probability distributions (Fig. 2). For example, during wakefulness greater values of activity
occur most frequently during the daily routine, intermediate activity values occur during the
forced desynchrony, and the highest frequency of low activity values is seen during the constant
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routine (Fig. 2a). Indeed, the largest activity values encountered during the constant routine
protocol are approximately two orders of magnitude less frequent than similar activity values
encountered in the daily routine protocol. We find major differences between individuals in
the distribution of activity values during the daily routine protocol (Fig. 2b). Such differences
are expected given the different daily schedules, environments, and reactions to random events.

To test if the individual probability density curves follow a common functional form, we
appropriately rescale the distributions of activity values on both axes to account for differences
in average activity level and standard deviation while preserving the normalization to unit area.
We divide the activity values by a constant, A0, and multiply the probability density function
by the same constant, where A0 is the activity value before rescaling of each individual curve
for which the cumulative probability (i.e., the area under the density function curve) is 60%.
We find a remarkable similarity in the shapes of the probability distributions for each subject
in all three protocols (Fig. 2e), and for all individuals when in the same protocol (Fig. 2f–h).
The existence of a universal form of the probability distribution, independent of activity level
in all individuals and in all protocols (Fig. 3a), suggests that a common underlying mechanism
may account for the overall distribution of activity.

This probability distribution when plotted on a log–log scale reveals different characteristics
above and below a distinct crossover point (Fig. 3a). At scales above the crossover activity
level there is pronounced non-Gaussian tail (Fig. 3a). This tail on the log–log plot represents
a power-law form, indicating an intrinsic self-similar structure for a range of activity values.
Moreover, we find that the observed shape of the rescaled probability distribution remains
unchanged when the data series are reanalyzed using a variety of observation windows ranging
from 15 s to 6 min (Fig. 3b). This stability of the probability distribution over a range of time
scales indicates that the underlying dynamic mechanisms controlling the activity have similar
statistical properties on different time scales. Statistical self-similarity is a defining
characteristic of fractal objects [15–17] and is reminiscent of a wide class of physical systems
with universal scaling properties [15,18]. Our finding of a universal form of the probability
distribution raises the possibility of an intrinsic mechanism that influences activity values in a
self-similar “fractal” manner, that is unrelated to the individual’s daily and weekly schedules,
reactions to the environment, the average level of activity, the phase of the circadian pacemaker,
and the time scale of observation.

We next perform power spectral analyses for all three protocols to determine whether there
exist any systematic intrinsic ultradian rhythms of activity with periods of less than 24 h
duration [3,19]. The data for each individual exhibit occasional peaks in the daily routine
protocol for periods ranging from 30 min to 4 h. However, we find no systematic ultradian
rhythms within individuals from week to week, and no systematic ultradian rhythms in the
group average for the daily routine protocol (Fig. 4). The only systematic rhythms that are
ostensibly in the ultradian range which emerge in the group data are at 4 h during the forced
desynchrony protocol (with harmonics at 2 h and 80 min) and at 2 h during the constant routine
protocol (with harmonics at 1 h and 30 min) (Figs. 1 and 4). These peaks are caused by the
controlled scheduled activities in the laboratory and are extrinsic to the body as they also occur
in simulated scheduled activity data that assumes specific activity values for each scheduled
behavior imposed throughout the laboratory protocols (Fig. 4). Thus, we find no evidence of
systematic intrinsic ultradian rhythms in our data.

To provide further insight into the dynamic control of activity, we next examine the temporal
organization in the fluctuations in activity values that is responsible for the stability of the
distribution form at different time scales (Fig. 3b). We perform detrended fluctuation analysis
(DFA) which quantifies correlations in the activity fluctuations after accounting for
nonstationarity in the data by subtracting underlying polynomial trends [20–23]. The DFA
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method quantifies the root mean square fluctuations, F(n), of a signal at different time scales
n. Power-law functional form, F(n) ~ nα, indicates self-similarity (fractal scaling). The
parameter α, called the scaling exponent, quantifies the correlation properties in the signal: if
α=0.5, there is no correlation (random noise); if α < 0.5, the signal is anticorrelated, where
large activity values are more likely to be followed by small activity values; if α > 0.5, there
are positive correlations, where large activity values are more likely to be followed by large
activity values (and vice versa for small activity values).

Fig. 5a shows that F(n) for a typical subject during wakefulness exhibits a power-law form
over time scales from ≈1 min to ≈4 h. We find that the scaling exponent α is virtually identical
for records obtained during the first week of daily routine (α = 0.92 ± 0.04, mean ± standard
deviation among subjects), the second week (α = 0.92 ± 0.06) of the daily routine, the constant
routine protocol (α = 0.88 ± 0.05), and the forced desynchrony protocol (α = 0.92 ± 0.03). The
value of α ≈ 0.9 for all protocols and all individuals indicates that activity fluctuations are
characterized by strong long-range positive correlations, and thus are not dominated by random
factors. Furthermore, we find that this scaling behavior is not caused by the scheduled activities
because simulated scheduled activity data that are generated by assigning a specific activity
value for each scheduled event throughout the laboratory protocols yields an exponent of
α=1.5 (Fig. 5a), which represents random-walk type behavior [24]. These results suggest that
the activity fluctuations are not a consequence of random events (in which case α would be
0.5) or scheduled events, but rather relate to an underlying mechanism of activity control with
stable fractal-like features over a wide range of time scales from minutes to hours. Since mean
activity levels and the amplitude of the fluctuations are greatly reduced in the laboratory during
the constant routine and forced desynchrony protocols (Fig. 1), we obtain smaller values of F
(n) (downward shift of the lines in Fig. 5a). However, there is no change in the scaling exponent
α. Similarly, the scaling exponents for the daily routine protocol are independent of the average
activity levels of the different subjects (Fig. 6a), the mean activity level on different days of
the week (Fig. 6b), and of the circadian phase, suggesting that this scaling pattern of activity
fluctuations appears to be an intrinsic feature.

To test for the presence of nonlinear properties of the data, we analyze the “magnitude series”
formed by taking the absolute values of the increments between consecutive activity values
[25,26]. Again, from detrended fluctuation analysis of this series, we find practically identical
scaling exponents, αmag, for all three protocols, despite large differences in mean activity levels
between protocols (Fig. 5b). Moreover, all individuals have very similar values of the scaling
exponent αmag (Fig. 6a), which are not systematically changed by the protocol. For the group,
during the first week of daily routine, we find αmag = 0.78 ± 0.06 (mean ± standard deviation
among subjects), during the second week αmag = 0.76 ± 0.05, during the constant routine
protocol αmag =0.82 ± 0.05, and during the forced desynchrony protocol αmag =0.80 ± 0.04.
Since αmag ≈ 0.8( > 0.5), there are positive long-range correlations in the magnitude series of
activity increments, indicating the existence of nonlinear properties related to Fourier phase
interactions (Fig. 5b) [26,27]. To confirm that the observed positive correlations in the
magnitude series indeed represent nonlinear features in the activity data, we do the following
test: we generate a surrogate time series by performing a Fourier transform on the activity
recording from the same subject during daily routine as in Fig. 5a, preserving the Fourier
amplitudes but randomizing the phases, and then performing an inverse Fourier transform. This
procedure eliminates nonlinearities, preserving only the linear features of the original activity
recording such as the power spectrum and correlations. Thus, the new surrogate signal has the
same scaling behavior with α = 0.93 (Fig. 5a) as the original activity recording; however, it
exhibits uncorrelated behavior for the magnitude series (αmag = 0.5) (Fig. 5b). Our results show
that the activity data contains important phase correlations which are canceled in the surrogate
signal by the randomization of the Fourier phases, and that these correlations do not exist in
the simulated scheduled activity. Further, our tests indicate that these nonlinear features are
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encoded in Fourier phase, suggesting an intrinsic nonlinear mechanism [27]. The similar value
of αmag for all three protocols and all individuals, which is different from αmag = 0.5 obtained
for the simulated scheduled activity and for the phase randomized data, confirms that the
intrinsic dynamics possess nonlinear features that are independent of the daily and weekly
schedules, reaction to the environment, the average level of activity, and the phase of the
circadian pacemaker.

To determine whether or not there is any alteration of the intrinsic patterns for dominant and
non-dominant (left and right) hands [28], we record 1 week of activity data of the left and right
hands simultaneously for five additional subjects in the daily protocol. For all subjects, we find
that the form of activity distribution (Fig. 7a) and the power-law correlations (Fig. 7b) are the
same for dominant (more active) and non-dominant hands, confirming that the observed
intrinsic patterns are independent of activity level.

Finally, to ensure that the power-law correlations are not an artifact produced by the instrument,
we obtain “test” activity data by attaching an Actiwatch to a 15 cm radius disk, turning at
constant angular velocity of 45 rpm (Fig. 8a). The activity values of the Actiwatch fluctuate
only slightly, and analysis of these random fluctuations reveals scaling exponents α ≈ 0.5 and
αmag ≈ 0.5 (Fig. 8b), which indicate random linear behavior. Thus, the stable values of α and
αmag observed in our subjects throughout the varied protocols do not depend on the recording
device, but instead these exponents are inherent characteristics of the subjects, and that both
hands have the same underlying dynamics of activity regulation.

In summary, the findings reported here offer insights into the mechanisms of human wrist
activity control. Prior to our work, it has been a general belief, though never tested, that
fluctuations in activity during wakefulness are somewhat random, influenced mainly by
extrinsic factors such as reactions to unforeseen random events. Our findings of a stable form
for the probability distribution, long-range power-law correlations and nonlinar Fourier-phase
features on time scales from seconds to hours, and the consistency of our results among
individuals and for different protocols, suggest that there exist previously unrecognized
complex dynamic patterns of human activity that are unrelated to extrinsic factors or to the
average level of activity. We also show these scale-invariant patterns to be independent of
known intrinsic factors related to the circadian and to any ultradian rhythms. Notably, (i) these
patterns are unchanged when obtained at different phases of the circadian pacemaker; (ii) we
do not observe systematic intrinsic ultradian rhythms in activity among subjects in the daily
routine experiment; (iii) imposing strong extrinsic ultradian rhythms at 4 and 2 h in the
laboratory protocols did not change the fractal scaling exponents α or αmag or the form of the
probability distribution; and (iv) we find consistent results over a wide range of time scales.
Together, these findings strongly suggest that our results are not a reflection of the basic rest
activity cycles or ultradian rhythms. We attribute these novel scale-invariant patterns to a robust
intrinsic multi-scale mechanism of regulation (Fig. 1). Further, our findings suggest that
activity control may be based on a multiple-component nonlinear feedback mechanism
encompassing coupled neuronal nodes located both in the central and peripheral nervous
systems, each acting in a specific range of time scales [29]. This insight provides key elements
and guidance for future studies focused on modeling locomotor regulation [30,31].
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Fig. 1.
Independent contributors to the complex dynamics of human activity, depicted at the top of
the figure, include: ➀ reaction to extrinsic random events, ➁ scheduled activities and, ➂
intrinsic factors, notably the endogenous circadian pacemaker which influences the sleep/wake
cycle. Our findings of scale-invariant activity patterns (Figs. 2–7) indicate a heretofore-
unidentified intrinsic multi-scale control of human activity ➃, which is independent of other
extrinsic and intrinsic factors such as ➀, [➁, and ➂. The second panel illustrates an actual
one-week recording of human activity [12] during the daily routine protocol. Data structure
highlights a 24-h sleep/wake periodic change in the mean activity—lowest during sleep (filled
bars). The third panel, expanding a 16-h section of wakefulness, also shows patches of high
and low average activity levels with apparent erratic fluctuations at various time scales. The
bottom left panel is an activity recording from the same subject during the constant routine
protocol with much lower average activity values compared to daily routine. The clear 2-h
cycle is a result of scheduled laboratory events. The bottom right panel shows activity levels
in the same subject during the forced desynchrony protocol, characterized by a 28-h sleep/
wake cycle (as opposed to the 24-h rhythm in activity data during the daily routine).
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Fig. 2.
Common functional form for the probability distributions of activity values. (a) Probability
distributions of activity values during wakefulness for an individual subject during 14
consecutive days of daily routine, 38 h of constant routine and 8 days of the forced desynchrony
protocol. Probability distributions for all subjects during (b) the daily routine protocol, (c) the
constant routine, and (d) the forced desynchrony protocol, indicate large difference between
individuals. (e)–(h) Same probability distributions as in (a)–(d), after appropriately rescaling
both axes. Data points for all subjects and for all three protocols collapse onto a single curve.
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Fig. 3.
(a) Group average of the rescaled distributions during all three protocols. All distributions
collapse onto a single curve, suggesting a common underlying mechanism of activity
regulation. The same rescaling procedure as in Fig. 2 is used. (b) Group average of all individual
distributions rescaled as in (a) obtained for varied time windows during the daily routine.
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Fig. 4.
Group average power spectral densities for all three protocols. Curves are vertically offset.
Power spectra are shown with decreasing frequency from left to right. Smooth behavior of the
daily routine curve suggests absence of periodic rhythms in the ultradian range. The spectral
density peaks for the simulated scheduled activity data representing controlled scheduled
events during the protocol (bottom curve) match the peaks observed in the original human
activity data recorded during the forced desynchrony protocol. Our analysis and simulation
suggest that the observed peaks in the power spectrum are due to scheduled laboratory events
and cannot be attributed to endogenous ultradian rhythms.
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Fig. 5.
Long-range fractal correlations and nonlinearity in activity fluctuations. (a) DFA scaling of
activity fluctuation for a subject during wakefulness, demonstrating strong positive correlations
on time scales from seconds to hours. (b) DFA scaling of the magnitude series of activity
increments for the same signals as in (a). A scaling exponent αmag ≈ 0.8 of similar value is
observed for all three protocols, consistent with robust nonlinear dynamics.
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Fig. 6.
Stability of scaling and nonlinear features: (a) Scaling exponents αand αmag (left scale), and
average activity levels (right scale) for all 16 subjects obtained from a 14-day daily routine
protocol. Although the average activity level between subjects changes considerably (from 0.2
to 0.5), both scaling exponents are consistent for all subjects, exhibiting a group average of α
= 0.92 ± 0.05 and αmag = 0.77 ± 0.05. (b) Group average scaling exponents αand αmag calculated
for different days of the week. While the average activity level progressively increases
throughout the week (with a peak on Saturday and a minimum on Sunday), the group average
scaling exponents α and αmag remain practically constant, consistent with a robust underlying
mechanism of control characterized by fractal and nonlinear features which do not change with
activity level.
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Fig. 7.
Comparison of left and right wrist activity. In five additional subjects, we continuously measure
both left and right wrist activity levels simultaneously for 1 week. (a) Distributions of left and
right wrist activity for a typical subject. The subject is right-handed, and the activity level and
variance of the right wrist is larger than that of the left wrist. As a result, compared to the left
wrist, the right wrist has a smaller probability at small activity level, and a larger probability
at large activity level. After the same rescaling as in Fig. 2(e)–(h), the distributions of the left
wrist activity and the right wrist activity collapse onto the same curve. The functional form of
this curve is the same as obtained in Fig. 2(e)–(h) and Fig. 3. (b) DFA results of left and right
wrist activity fluctuations reveal practically identical power-law correlations—the same value
of α. The smaller values of F(n) (vertical shift) for the left wrist are due to the smaller average
activity level and variance of the left hand.
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Fig. 8.
Turning table test for the Actiwatch device suggests the observed scaling features in activity
fluctuations are not an artifact of the device. (a) Data recorded from an Actiwatch placed on a
disk rotating with constant angular velocity. (b) DFA correlation analysis of the fluctuations
in (a) shows random noise behavior, in contrast to the strong positive correlations in activity
fluctuations (Figs. 5 and 7).
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