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Human behaviors can be more powerfully influenced by conditioned reinforcers, such as money, than by primary reinforcers. Moreover,
people often change their behaviors to avoid monetary losses. However, the effect of removing conditioned reinforcers on choices has not
been explored in animals, and the neural mechanisms mediating the behavioral effects of gains and losses are not well understood. To
investigate the behavioral and neural effects of gaining and losing a conditioned reinforcer, we trained rhesus monkeys for a matching
pennies task in which the positive and negative values of its payoff matrix were realized by the delivery and removal of a conditioned
reinforcer. Consistent with the findings previously obtained with non-negative payoffs and primary rewards, the animal’s choice behav-
ior during this task was nearly optimal. Nevertheless, the gain and loss of a conditioned reinforcer significantly increased and decreased,
respectively, the tendency for the animal to choose the same target in subsequent trials. We also found that the neurons in the dorsome-
dial frontal cortex, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex often changed their activity according to whether
the animal earned or lost a conditioned reinforcer in the current or previous trial. Moreover, many neurons in the dorsomedial frontal
cortex also signaled the gain or loss occurring as a result of choosing a particular action as well as changes in the animal’s behaviors
resulting from such gains or losses. Thus, primate medial frontal cortex might mediate the behavioral effects of conditioned reinforcers
and their losses.

Introduction
Behaviors are seldom rewarded immediately by primary rein-
forcers, such as food. Instead, strengths of many behaviors are
enhanced or diminished by conditioned reinforcers that have
been previously associated with primary reinforcements or pun-
ishments (Wolfe, 1936; Kelleher and Gollub, 1962; Kazdin,
1977). In humans, the loss of conditioned reinforcers as a
result of a particular behavior can subsequently suppress the
same behavior. Namely, the loss of conditioned reinforcers,
such as money, is punishing, and this is referred to as response
cost (Weiner, 1962; Kazdin, 1972, 1977). Although reinforcing
effects of conditioned reinforcers are well documented for
many animal species, how choices are controlled by the loss of
conditioned reinforcers has been rarely studied in animals
(Nader and Morgan, 2001; Pietras and Hackenberg, 2005). In
the present study, we characterized how the gains and losses of
conditioned reinforcers influence the choice behaviors of
rhesus monkeys.

Previous studies on neural activity related to gains and losses
of conditioned reinforcers were exclusively performed in hu-
mans. For example, studies based on scalp recordings and neu-
roimaging have shown that information about monetary gains
and losses is rapidly processed (Gehring and Willoughby, 2002;

Holroyd et al., 2004) and influences neural activity in multiple
brain areas (Elliott et al., 1997; Delgado et al., 2000; Knutson et
al., 2000; O’Doherty et al., 2001, 2003; Remijnse et al., 2005; Kim
et al., 2006; Liu et al., 2007; Seymour et al., 2007; Wrase et al.,
2007). In contrast, animal studies have mostly investigated the
neural activity related to aversive outcomes using a pavlovian
conditioning procedure in which the aversive outcomes are de-
livered regardless of the animal’s behavior (Paton et al., 2006;
Joshua et al., 2008; Matsumoto and Hikosaka, 2009), or using an
avoidance task in which aversive outcomes could be almost en-
tirely avoided (Nishijo et al., 1988; Koyama et al., 2001; Koba-
yashi et al., 2006; Hosokawa et al., 2007). As a result, it has re-
mained difficult to elucidate the neural mechanisms responsible
for adjusting the animal’s behavioral strategy based on the aver-
sive outcomes of its previous choices. Similarly, how the neural
signals related to positive and negative outcomes influence sub-
sequent choices oppositely is not known.

In the present study, we trained rhesus monkeys in a token-
based binary choice task, in which tokens exchangeable with juice
reward could be gained or lost. During this task, gains and losses
are expressed in the same currency, which is critical for the com-
parison of neural activity related to gains and losses. We found
that neurons modulating their activity according to the gains and
losses of conditioned reinforcers were common in multiple re-
gions of the prefrontal cortex. Furthermore, neurons in the dor-
somedial frontal cortex were more likely to change their activity
related to the animal’s upcoming choice differently according to
the previous choice and its outcome than those in the dorsal
anterior cingulate cortex and dorsolateral prefrontal cortex.
Thus, the dorsomedial frontal cortex might play a unique role in

Received Oct. 1, 2008; revised Feb. 16, 2009; accepted Feb. 19, 2009.
This work was supported by National Institutes of Health Grant MH073246. We are grateful to M. W. Jung for his

helpful comments on this manuscript.
Correspondence should be addressed to Dr. Daeyeol Lee, Department of Neurobiology, Yale University School of

Medicine, 333 Cedar Street, SHM B404, New Haven, CT 06510. E-mail: daeyeol.lee@yale.edu.
DOI:10.1523/JNEUROSCI.4726-08.2009

Copyright © 2009 Society for Neuroscience 0270-6474/09/293627-15$15.00/0

The Journal of Neuroscience, March 18, 2009 • 29(11):3627–3641 • 3627



adjusting the animal’s decision-making strategy based on the
gains and losses of conditioned reinforcers.

Materials and Methods
Animal preparations and data acquisition. Two male (H and J; body
weight, 9�11 kg) and one female (K; body weight, 6 kg) rhesus monkeys
were used. Their eye positions were monitored at a sampling rate of 225
Hz with a high-speed eye tracker (ET49; Thomas Recording). Single-
neuron activity was recorded from the dorsomedial frontal cortex
(DMFC), dorsal anterior cingulate cortex (ACCd), or dorsolateral pre-
frontal cortex (DLPFC), using a five-channel multielectrode recording
system (Thomas Recording) and a multichannel acquisition processor
(Plexon). DMFC neurons were located in the supplementary eye field or
its immediately surrounding areas (Tehovnik et al., 2000), whereas
ACCd neurons were recorded from the dorsal bank of the cingulate
sulcus (area 24c). DLPFC neurons were recorded anterior to the frontal
eye field, as identified by eye movements evoked by electrical stimulation
(Bruce et al., 1985). All the neurons encountered during the recording
sessions were tested for the behavioral task described below without any
prescreening. All the procedures used in this study were approved by the
University of Rochester Committee on Animal Research and the Institu-
tional Animal Care and Use Committee at Yale University, and con-
formed to the Public Health Service Policy on Humane Care and Use of
Laboratory Animals and Guide for the Care and Use of Laboratory Animals.

Behavioral task. Animals were trained to perform a token-based binary
choice task (Fig. 1a). After the animal fixated a central square during a
0.5 s foreperiod, two green peripheral targets were presented on a com-
puter screen along the horizontal meridian. The animal was then re-
quired to shift its gaze toward one of the targets when the central square
was extinguished at the end of a 0.5 s delay period. In addition, a series of
red disks (“tokens”) were displayed throughout the trial in a circular
array at the center of the computer screen, and served as conditioned
reinforcements, because they were exchanged with six drops of juice
reward when the animal accumulated six of them. Once the animal fix-
ated its chosen peripheral target for 0.5 s, a feedback ring appeared
around the chosen target and its color indicated whether the number of
tokens would increase (gain: red in all monkeys), decrease (loss: gray in
monkey H; yellow in J and K), or remain unchanged (neutral: blue in
monkey H; white in J and K). At the end of this 0.5 s feedback period, the
number of tokens displayed on the screen was adjusted after gain or loss
outcomes, and any remaining tokens were displayed continuously dur-
ing the subsequent intertrial interval. To test whether the activity seem-
ingly related to gains and losses reflected the color selectivity of the neu-
rons, a subset of neurons recorded in two animals (monkeys J and K)

were further tested in separate blocks in which the gain, neutral, and loss
outcomes were signaled by gray, blue, and orange feedback rings, respec-
tively. After juice delivery, the animal received two to four free tokens at
the onset of the next trial.

The outcome of the animal’s choice in a given trial was determined by
the payoff matrix of a biased matching pennies game (Fig. 1a, inset)
(Barraclough et al., 2004; Lee et al., 2004). During this game, the com-
puter opponent simulated a rational decision maker who chooses its
target so as to minimize the payoff of the animal, and the animal gained
a token only when it chose the same target as the computer. When the
animal’s choice was different from that of the computer, its outcome was
different for the two targets. For one target, referred to as “risky” target,
the animal lost a token, whereas for the other target, referred to as “safe”
target, the outcome was neutral, and the animal neither gained nor lost a
token. The positions of the risky and safe targets were fixed in a block of
trials, and their positions were changed without any cues with a 0.1
probability each trial after 40 trials. In game theory, a set of strategies
from which none of the players can deviate individually to increase his or
her payoff is referred to as a Nash equilibrium (Nash, 1950). The partic-
ular matching pennies game used in this study has a unique Nash equi-
librium which corresponds to the animal and the computer opponent
choosing the safe target with 2/3 and 1/3 probabilities, respectively. To
show this, it should be noted that, at the equilibrium, the expected value
of payoff should be equal for the two alternative targets. Denoting the
probability of choosing the safe target for the animal and the computer
opponent as p and q, this implies that the expected values of the animal’s
payoff from the safe and risky targets are q and (�1) q � (1 � q),
respectively. Therefore, q � (�1) q � (1 � q), so q � 1/3 at the equilib-
rium. Similarly, p � (�1) (1 � p) � (1 � p), so p � 2/3, because the
expected payoffs from the two targets should be equal for the computer
opponent. This implies that when both players make their choices ac-
cording to the equilibrium strategies, the probabilities that the animal’s
choice would lead to the gain, neutral, and loss outcomes would be 4/9,
4/9, and 1/9, respectively. This implies that, against the competitive com-
puter opponent, the animal would obtain on average 1/3 token each trial
when it chose the risky and safe targets with 1/3 and 2/3 probabilities. If
the animal’s strategy in a given block deviated significantly from the
equilibrium strategy, this was exploited by the computer opponent and
would decrease the expected payoff for the animal. For example, if the
animal chose the safe target more frequently than with 2/3 probability,
the computer opponent always chose the risky target. In game theory, a
strategy is referred to as pure when it corresponds to choosing a partic-
ular action exclusively, whereas a mixed strategy refers to a case in which
multiple actions are chosen stochastically. Therefore, the equilibrium

Figure 1. Behavioral task. a, Spatiotemporal sequence of the task and payoff matrix used to determine the outcome of the animal’s choice. S and R refer to safe and risky targets. b, Frequencies
of gain, neutral, and loss outcomes. Dotted lines indicate the outcome probabilities expected for the optimal strategy.
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strategy for the biased matching pennies task used in this study was
mixed. An important advantage of using a game with a mixed equilib-
rium strategy is that it reduces the serial correlation between the succes-
sive choices of the animal and makes the outcome of each choice stochas-
tic. This makes it possible to estimate the neural activity related to the
animal’s choice and its outcome in a given trial separately from those in
the previous trial (Lee and Seo, 2007).

Analysis of behavioral data. To test how the animal’s choice was af-
fected by the gains and losses of tokens in previous trials, the following
logistic regression model was applied (Lee et al., 2004):

logit pt(right)'logpt(right)/pt(left)�Abeh[1Ut�1Ut�2. . .Ut�10]�,

(1)

where pt(right) and pt(left) refer to the probability of choosing the right-
ward and leftward targets in trial t, respectively; Ut � [Ct Gt Lt Rt] is a row
vector consisting of four separate regressors corresponding to the ani-
mal’s choice (Ct � 0 and 1 for leftward and rightward choices, respec-
tively), gain outcome (Gt � �1 and 1 for gaining a token from leftward
and rightward choices, respectively, and 0 otherwise), loss outcome (Lt �
�1 and 1 for losing a token from leftward and rightward choices, respec-
tively, and 0 otherwise), and reward delivery (Rt � �1 and 1 if the animal
obtains the sixth token and receives juice reward after choosing leftward
and rightward targets, respectively, and 0 otherwise) in trial t; and Abeh is
a vector of regression coefficients. A positive (negative) coefficient in this
logistic regression model indicates that a particular outcome resulting
from the choice of a given target reinforces (punishes) the same behavior.
This was evaluated separately for multiple lags of trials. For example, a
positive coefficient for gain with a lag of two trials indicates that when the
animal’s choice in a given trial (trial t) results in the gain of a token, the
animal is more likely to choose the same target two trials later (trial t � 2).
This model was fit to the animal’s behavioral data in each session, and the
regression coefficients related to the same variable and trial lag (e.g., Gt �

4) were averaged separately.
Previous behavioral studies in humans and nonhuman primates have

demonstrated that decision makers during competitive games might ad-
just their strategies dynamically according to a reinforcement learning
algorithm (Sutton and Barto, 1998; Camerer, 2003; Lee et al., 2004,
2005). To test whether similar learning algorithms can account for the
changes in the animal’s choice behavior resulting from the gains and
losses of tokens, we applied a reinforcement learning model, in which the
value function was updated according to the following: Vt � 1(x) � Vt(x)
� �{rt � Vt(x)}, where Vt(x) refers to the value function for choosing x in
trial t, rt is the outcome in trial t (�1, 0, and 1 for loss, neutral, and gain
outcomes, respectively), and � is the learning rate. The value function for
the unchosen target was not updated. The probability that the animal
would choose the rightward target was given by the logistic (also known
as softmax) transformation of the value functions as follows:

pt(right)�exp�Vt(right)/{exp�Vt(right)�exp�Vt(left)}

�1/[1�exp��{Vt(right)�Vt(left)}], (2)

where � refers to the inverse temperature that controls the randomness
of the animal’s choice. The two parameters of this model (� and �) were
estimated separately for each session according to a maximum-
likelihood procedure (Pawitan, 2001; Seo and Lee, 2007).

To further test whether the neutral outcome was less reinforcing than
the gain outcome and whether the loss outcome was more punishing
than the neutral outcome, we also estimated the reward values of the
neutral and loss outcomes as additional free parameters (rneutral and rloss)
in the above reinforcement learning model, whereas the gain was still
coded as �1. To avoid over-parametrization, the value of inverse tem-
perature � was estimated and fixed for the entire dataset from each
animal using the same reinforcement learning model described above in
which the loss, neutral, and gain outcomes were coded as �1, 0, and �1,
respectively.

To test whether the introduction of these additional parameters re-
sulted in overfitting, we computed the Bayesian information criterion

(BIC) for each model as follows (Burnham and Anderson, 2002): BIC �
�2 log L � k log N, where L denotes the likelihood of a given model, k
denotes the number of free parameters, and N denotes the number of
trials. The second term in this formula penalizes the use of additional
parameters, because the model with the smaller BIC is preferred.

Analysis of neural data. To investigate how neural activity was influ-
enced by the gains and losses of tokens as well as the animal’s choices, we
focused our analyses on the spike rates during the delay period (0.5 s after
target onset) and feedback period (0.5 s after feedback onset). The spike
rate yt during each of these intervals in trial t was then analyzed using the
following multiple linear regression model:

yt�a0�AC[Ct Ct�1]��AG[Gt Gt�1]��AL[Lt Lt�1]��

AR[Rt Rt�1]��aAAssett�aRRiskt�aSSacct�aRTRTt, (3)

where Ct is the animal’s choice in trial t (Ct � �1 and 1 for leftward and
rightward choices, respectively), Gt is a dummy variable for the gain
outcome (Gt � 1 for gain trials and 0 otherwise), Lt is a dummy variable
for the loss outcome (Lt � 1 for loss trials and 0 otherwise), Rt is a dummy
variable for the reward (Rt � 1 for rewarded trials and 0 otherwise), Assett

is the number of tokens (0 to 5) possessed by the animal at the beginning
of trial t, Riskt is a dummy variable indicating whether the animal chose
the risky target or not (Riskt � 1 if the animal selects the risky target in
trial t and 0 otherwise), Sacct is a dummy variable indicating the presence
(Sacct � 1) or absence (Sacct � 0) of a saccade during the feedback period
in trial t, and RTt is the saccadic reaction time in milliseconds relative to
feedback onset for trials in which the animal made a saccade during the
feedback period (RTt � 0, for the trials without saccades), and finally a0,
aA, aR, aS, aRT, AC, AG, AL, and AR are regression coefficients. In addition
to the variables related to the animal’s choice and its outcome in the
current trial t, this model included the corresponding variables from the
previous trial t � 1, because it has been previously demonstrated that
the neurons in some of the cortical areas tested in this present study often
encode the signals related to the animal’s choice and its outcome in the
previous trial (Barraclough et al., 2004; Seo and Lee, 2007). We also tested
whether the neural activity related to the gain and loss outcomes during
the feedback period was influenced by the number of tokens owned by
the animal. This was accomplished by adding to the above regression
model (Eq. 3) the interaction term for gain and asset, Assett � Gt, and the
interaction term for loss and asset, Assett � Lt.

Previous studies have found that reward-related activity of the neu-
rons in the frontal cortex, such as the dorsolateral prefrontal cortex (Bar-
raclough et al., 2004) and supplementary eye field (Uchida et al., 2007),
might be influenced by the direction of the animal’s eye movement. Such
signals related to the conjunction of choice and outcome can be used to
update the value function for a particular action (Seo et al., 2007; Seo and
Lee, 2008). Therefore, to test whether the neural activity is influenced by
specific conjunctions of the animal’s choices and its outcomes, a set of
interaction terms were added to the above regression model as follows:

yt�a0�AC[Ct Ct�1]��AG[Gt Gt�1]��AL[Lt Lt�1]��

AR[Rt Rt�1]��AG2[Gt�Ct Gt�1�Ct Gt�1�Ct�1]��

AL2[Lt�Ct Lt�1�Ct Lt�1�Ct�1]��aC2Ct�1�Ct�

aG3Gt�1�Ct�1�Ct�aL3Lt�1�Ct�1�Ct

�aAAssett�aRRiskt�aSSacct�aRTRTt, (4)

where aC2, AG2, and AL2 are the regression coefficients for the two-way
interactions, and aG3 and aL3 are the regression coefficients for the three-
way interactions that involve the gain or loss outcome in trial t � 1 as well
as the animal’s choices in trials t � 1 and t. It should be noted that, for the
dummy variables used in the three-way interactions, their main effects
and two-way interactions were also included in this model. Therefore,
the regression coefficients for the three-way interactions estimated the
conjunctive effects of three variables that were not accounted for by their
main effects or two-way interactions (Aiken and West, 1991).
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In the reinforcement learning model de-
scribed above (Eq. 2), the probability of choos-
ing a particular target is determined by the dif-
ference in the value functions for the two
alternative targets. This suggests that neural ac-
tivity related to the difference in the value func-
tions, namely, Vt(right) � Vt(left), might influ-
ence the animal’s choice. To investigate
whether and how individual neurons contrib-
ute to the animal’s upcoming choice according
to the difference in the value functions, the fol-
lowing regression model was applied to the
activity during the delay period.

yt�a0�aCCt�aAAssett�

aD{Vt(right)�Vt(left)}�

aS{Vt(right)�Vt(left)}, (5)

where Vt(x) is the value function for target x in
trial t, and a0, aC, aA, aD, and aS are the regres-
sion coefficients. We included the animal’s
choice, the asset, and the sum of the value func-
tions in this model to control for any changes in
neural activity that might be related to these
additional variables (Seo and Lee, 2008). The
value functions of successive trials are corre-
lated, because they are updated iteratively, and
this violates the independence assumption in
the regression model. Therefore, the statistical
significance for the regression coefficients in
this model was determined by a permutation
test (Seo and Lee, 2008). For this, we shuffled
the trials separately for the blocks in which the
left target was the safe target and those in which
the right target was the safe target. We then es-
timated the value functions from these shuffled
trials using the same parameters of the rein-
forcement learning model obtained for the un-
shuffled trials. This shuffling procedure was re-
peated 1000 times, and the p value for a given
independent variable was determined by the
fraction of the shuffles in which the magnitude
of the regression coefficient from the shuffled
trials exceeded that of the original regression
coefficient.

Results
Effects of tokens on choices
Given that the computer opponent simu-
lated a rational player in a zero-sum game,
the optimal strategy for the animal during
the token-based binary choice used in the
present study was to choose the safe and
risky target with 2/3 and 1/3 probabilities,
respectively. Indeed, the probability that
the animal would choose the safe or risky
target approached the value predicted for the optimal strategy of
the game within �10 trials after the blocks switched (Fig. 2a).
Nevertheless, the animal tended to choose the risky target signif-
icantly more frequently than predicted for the optimal strategy.
Overall, the average fraction of trials in which the animal chose
the risky target was 0.399, 0.403, 0.382 for monkeys H, J, and K,
respectively, and this was significantly larger than 1/3 in all ani-
mals (t test, p � 0.001). The outcome of the animal’s choice was
a loss in 18.2% of the trials (Fig. 1b), which was also significantly
higher than the value expected for the optimal strategy (1/9). The

overall percentages of trials in which the animal’s choice resulted
in the neutral and gain outcomes were 31.1 and 50.8%, respec-
tively (Fig. 1b).

Because the animal was rewarded with juice only when it ac-
cumulated six tokens and the outcomes in individual trials were
probabilistic, the number of trials between the two successive
juice deliveries varied substantially (Fig. 3a). Averaged across all
animals, the number of trials between the two successive juice
deliveries was 9.5. As expected, the average number of trials be-
fore the next juice delivery decreased monotonically with the

Figure 2. Behavioral performance in a token-based binary choice task. a, Changes in the animal’s choice probability after block
transitions. P(safe) refers to the probability that the animal would choose the safe target in the new block (the risky target in the
previous block). The dotted lines indicate the choice probabilities for safe (2/3) and risky (1/3) targets that correspond to the Nash
equilibrium. b, Average regression coefficients associated with gains, losses, choices, and juice rewards in 10 previous trials. The
large circles indicate that they are significantly different from 0 (t test, p � 0.05). Error bars indicate SEM.

Figure 3. Frequency of rewards. a, Frequency histograms for the number of trials between two successive reward delivery
periods. b, Average number of trials necessary to acquire juice rewards (filled symbols) and error rates (empty circles) plotted as a
function of the number of tokens (assets) possessed by the animal. Error bars (SEM) are often smaller than the symbols.
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number of tokens (or assets) (Fig. 3b). Similarly, the frequency of
error trials in which the animal broke their fixations prematurely
decreased with the number of tokens possessed by the animal,
presumably reflecting an increased level of motivation (Fig. 3b).

To test how the animal’s choice was influenced by the out-
comes of its previous choices, we applied a logistic regression
model to the behavioral data (Eq. 1). The results showed that, in
all three animals, the gain of a token from a particular choice
increased the likelihood that the animal would choose the same
target in the next trial, and this reinforcing effect decayed gradu-
ally over several trials (Fig. 2b; gain, blue). In contrast, the loss of
a token from a particular choice decreased the likelihood that the
same target would be chosen in subsequent trials (Fig. 2b; loss,
red). The immediate effect of a token loss on the choice in the
next trial varied across different animals, and this might be attrib-
utable to the fact that a strict “lose-switch” strategy could be
exploited by the computer opponent and therefore was subopti-
mal. In addition, there was a significant tendency for the animals
to avoid repeating the same choices in successive trials, as re-
flected in the negative coefficients associated with the animal’s
previous choices (Fig. 2b; choice, orange). Compared with the
gains and losses of tokens, primary reinforcers had weaker effects
on the animal’s choice behavior and tended to counteract the
reinforcing effects of tokens (Fig. 2b; reward, light blue).

In the logistic regression analysis, the effect of gaining or los-
ing a conditioned reinforcer is modeled separately for each trial
lag. Nevertheless, their weights decreased gradually with the
number of intervening trials, suggesting that it might be more
parsimonious to model the reinforcing and punishing effect of
gains and losses, respectively, using a reinforcement learning
model (Eq. 2). Indeed, according to the BIC, a simple reinforce-
ment learning model performed better than the logistic regres-
sion model in almost all sessions (152 of 154 sessions) (Table 1).
We also calculated the BIC for the logistic regression model after

excluding the variables related to the pre-
vious choices and rewards. This reduced
logistic regression model still performed
more poorly than the reinforcement learn-
ing model, except for one session (Table
1).

In the above reinforcement learning
model, the loss, neutral, and gain out-
comes were respectively coded as �1, 0,
and 1, respectively. To test directly
whether the neutral outcome was less rein-
forcing than the gain outcome and
whether the loss outcome was more pun-
ishing than the neutral outcome, we tested
a modified reinforcement learning model
in which the loss and neutral outcomes
were coded by two separate free parame-
ters (rloss and rneutral). This analysis showed
that the influence of the loss outcome on
the animal’s choices was approximately
equal and opposite to that of the gain out-
come, whereas the effect of the neutral
outcome was intermediate compared with
the effects of gain and loss outcomes. First,
the average value of the parameter rloss was
�1.07, �1.18, and �1.14 for monkeys H,
J, and K, and therefore relatively close to
�1, although for monkeys J and K, this
was significantly more negative than �1 (t

test, p � 0.05) (Fig. 4). Second, the average value of the parameter
rneutral was significantly smaller than �1, and this was true for all
animals (t test, p � 10�28) (Fig. 4). Third, the average value of
rneutral was 0.01, �0.21, and �0.08 for monkeys H, J, and K,
respectively, and therefore relatively close to 0 (Fig. 4). The null
hypothesis that rneutral � 0 was rejected only for monkey J ( p �
0.05). Finally, the average value of the parameter rneutral was sig-
nificantly more positive than the average value of rloss, which was
again true for all animals (t test, p � 10�16) (Fig. 4). Because the
estimated values of loss and neutral outcomes were not substan-
tially different from those used in the original reinforcement
learning model, their use as free parameters might have resulted
in the overfitting. Indeed, the BIC for this new reinforcement
learning model was larger than the original reinforcement learn-
ing model in the majority of sessions (134 of 154 sessions) (Table
1). Therefore, it is parsimonious to assume that the effects of loss
and gain outcomes are equal and opposite with the neutral out-
comes having intermediate effects.

Neural activity related to gains and losses
Single-neuron activity was recorded from the DMFC (76 neu-
rons), the ACCd (75 neurons), and the DLPFC (76 neurons) (Fig.
5). During the 0.5 s time window immediately after feedback
onset, many neurons in these three cortical areas changed their
activity significantly when the animal acquired or lost a token in
the same trial, compared with when the outcome of their choice
was neutral. For example, two of the three DMFC neurons illus-
trated in Figure 6, a and b, changed their activity significantly
during the feedback period according to the outcome of the ani-
mal’s choice in the same trial. The neuron illustrated in Figure 6a
significantly increased and decreased its activity during the feed-
back period of loss and gain trials, respectively, compared with
the activity in the trials with neutral outcomes. In contrast, the
neuron in Figure 6b increased its activity during the feedback

Table 1. Summary of model comparisons

Monkey

Models H J K

Regression 864.0 (2) 794.7 (0) 693.1 (0)
Regression � CR 795.7 (1) 710.7 (0) 620.8 (0)
RL 730.9 643.4 554.7
RL � rneutral � rloss 733.9 (11) 646.9 (5) 558.0 (4)
N sessions 82 37 35
N trials/session 574.7 509.7 457.2

Average values of BIC for different models used to analyze the choice behavior of each animal. The numbers in the parentheses indicate the number of sessions
in which the corresponding model performed better than the simple reinforcement learning model (RL). Regression refers to the logistic regression model,
whereas Regression � CR refers to the model without the terms related to choice and reward.

Figure 4. Reward values for the loss (rloss ) and neutral (rneutral) outcomes estimated as free parameters in a reinforcement
learning model. The pink and green lines correspond to the default values used for the loss (�1) and neutral (0) outcomes in the
original reinforcement learning model. The solid black line corresponds to rloss � rneutral � 1. The empty circles correspond to the
values obtained for individual sessions, whereas the large filled symbols correspond to their means for individual animals.
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period of gain trials compared with the ac-
tivity in neutral trials, whereas it showed a
modest but statistically significant de-
crease in its activity in loss trials (t test, p �
0.005). Neurons in the ACCd and DLPFC
also commonly changed their activity dur-
ing the feedback period according to the
outcome of the animal’s choice. For exam-
ple, the ACCd neuron shown in Figure 7a
significantly increased its activity during
the feedback period of gain trials com-
pared with the activity in neutral trials
(Fig. 7a, top left). Similarly, the DLPFC
neuron shown in Figure 7b significantly
increased its activity during the feedback
period of gain and loss trials compared
with the activity in neutral trials (Fig. 7b,
top left). Overall, the percentage of neu-
rons showing significant activity changes
during the feedback period in gain trials
relative to the activity in neutral trials was
65.8, 62.7, and 54.0% for the DMFC,
ACCd, and DLPFC, respectively, whereas
the corresponding percentages for the loss
trials was 39.5, 28.0, and 19.7% (Fig. 8a,
left). To test whether the activity during
the feedback period seemingly related to
gains and losses resulted from the color
selectivity of the neurons, a subset of neu-
rons in each cortical area were tested with a
different set of colors for the feedback
rings. The results from this control exper-
iment showed that the neural activity re-
lated to gains and losses were relatively un-
affected by the colors of the feedback rings
(Fig. 7; supplemental Fig. 1, available at
www.jneurosci.org as supplemental
material).

Whether the activity of individual neurons increased or de-
creased during the feedback period of gain and loss trials com-
pared with the activity in neutral trials varied across neurons in
each cortical area. In addition, whether the activity of a given
neuron increased or decreased during the feedback period of gain
trials compared with the activity in neutral trials was not system-
atically related to the activity related to the loss outcome. For
example, compared with the activity in neutral trials, some neu-
rons changed their activity during the feedback period oppositely
for gain and loss outcomes (Fig. 6a,b). In contrast, some neurons
changed their activity in response to either gains or losses com-
pared with their activity in neutral trials (Fig. 7a), whereas others
changed their activity similarly to both gains and losses (Fig. 7b).
Accordingly, the regression coefficients related to gains were not
significantly correlated with those related to losses in any of the
cortical areas tested in this study (Fig. 9). Similarly, within each
cortical area, whether a given neuron increased or decreased its
activity significantly in gain and loss trials was not systematically
related (� 2 test, p � 0.2) (Table 2).

We also found that the gain or loss of a token in a given trial
influenced the activity of many neurons during the delay period
of the next trial. For example, the DMFC neuron shown in Figure
6a increased its activity significantly during the delay period
when the outcome in the previous trial was a loss compared with
when the previous outcome was neutral. Overall, during the de-

lay period, 31.6, 37.3, and 21.1% of the neurons in the DMFC,
ACCd, and DLPFC, displayed significant modulations in their
activity related to the gain of a token in the previous trial, whereas
the corresponding percentages for the loss outcome in the previ-
ous trial were 43.4, 21.3, and 17.1%, respectively (Fig. 8a, right).
Therefore, signals related to the gains and losses in a given trial
were reflected in the activity of neurons in the frontal cortex
during the delay period of the next trial.

Conjunctive coding of choices and outcomes
A particular outcome influences the animal’s subsequent behav-
iors differently depending on the action responsible for that out-
come. For example, the gain of a token after choosing the leftward
and rightward target tends to increase and decrease, respectively,
the probability of choosing the leftward target in subsequent tri-
als (Fig. 2b). This suggests that neurons involved in updating the
animal’s decision-making strategy might encode the animal’s
previous choice and its resulting gain or loss conjunctively. In-
deed, during the feedback period, activity of neurons in the
DMFC often encoded the animal’s choice in the same trial and its
outcome conjunctively, whereas during the delay period, neural
activity tended to reflect the conjunction of the animal’s choice in
the previous trial and its outcome. In addition, neurons encoded
specific conjunctions of the animal’s choice and its outcomes
more frequently in the DMFC than in the DLPFC or ACCd (Fig.

Figure 5. Anatomical distributions of the neurons in the DMFC, ACCd, and DLPFC. Neurons that showed significant effects for
gain and/or loss are indicated in different colors. AS, Arcuate sulcus; ML, midline; PS, principal sulcus.

3632 • J. Neurosci., March 18, 2009 • 29(11):3627–3641 Seo and Lee • Neural Encoding of Gains and Losses



8b), indicating that DMFC might play a key role in adaptively
adjusting the animal’s choice behaviors based on the gains and
losses of conditioned reinforcers.

An example neuron in DMFC showing such conjunctive cod-
ing is illustrated in Figure 6c. The activity of this neuron during
the feedback period of loss, neutral, and gain trials changed dif-
ferently depending on the animal’s choice in the same trial (Fig.
6f,i, left). In particular, when the animal chose the leftward target
(Fig. 6f, purple), the activity of this neuron was higher during the
feedback period of gain trials than in neutral or loss trials. In
contrast, when the animal chose the rightward target (Fig. 6f,
blue), the activity of the same neuron in the loss trials was higher
than that in the gain or neutral trials. The results from the regres-
sion analysis with interaction terms (Eq. 4) confirmed that for the
activity of this neuron during the feedback period, two-way in-
teraction was significant both for the animal’s choice and loss
outcome and for the animal’s choice and gain outcome in the

same trial (t test, p � 0.0001). During the feedback period, 61.8
and 25.0% of the neurons in the DMFC showed significant inter-
actions between the animal’s choice and gain and between the
choice and loss, respectively.

Similar to the activity during the feedback period, more than
one-third of the neurons in the DMFC displayed significant in-
teraction for the animal’s choice in the previous trial and its out-
come during the delay period (36.8 and 43.4% for gains and
losses, respectively). Significant two-way interactions for choice
and gain in the previous trial were found during the delay period
for all three neurons shown in Figure 6, a– c, right, and two of
these neurons also showed significant two-way interactions for
choice and loss (Fig. 6b,c, right). Therefore, signals related to the
conjunctions of the animal’s choice and its outcome were still
available in the DMFC, when the animal was ready to make its
choice in the next trial (Fig. 8b, middle, choice � out). Compared
with the neurons in the DMFC, the proportion of the neurons

Figure 6. Neural activity related to gains and losses in the DMFC. a– c, Spike density functions (SDFs) of three DMFC neurons during the feedback period (gray background, left) or delay period
(gray background, right) in trial t sorted by the outcome of the current trial (t, left) or previous trial (t � 1, right). d–f, Left, Average spike rates during the feedback period of trial t sorted by the
animal’s choice and its outcome in the same trial (L, loss; N, neutral; G, gain). Right, Average spike rates during the delay period of trial t sorted by the animal’s choice in the same trial in addition to
the choice and its outcome in the previous trial (t � 1). The animal’s choices in two successive trials are color coded. For example, the orange line indicates that the animal chose the leftward target
in both trials (L3 L). g–i, SDFs aligned to feedback onset (left) or target onset (right) sorted as in d–f. Error bars in d–f indicate SEM; the shaded areas in the SDF plots indicate mean 	 SEM.
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showing such conjunctive activity related
to the animal’s choice and its outcome in
the previous trial was significantly lower in
the ACCd and DLPFC (� 2 test, p � 0.05).
For the ACCd, the percentages of neurons
showing significant interactions for the
animal’s previous choice and gain out-
come and for the previous choice and loss
outcome was both 13.3%. For the DLPFC,
these corresponding percentages were 9.2
and 18.4%, respectively.

Neurons mediating the effects of gains
and losses on the animal’s behavior must
change their activity related to the animal’s
upcoming choice differently depending on
the animal’s previous choice and its out-
come. For example, the neuron illustrated
in Figure 6a showed a robust change in its
activity during the delay period related to
the animal’s upcoming choice, but this dif-
ferential activity was greatly reduced when
the animal’s leftward choice in the previ-
ous trial resulted in a loss (Fig. 6d,g, right;
orange and green lines). For the neuron
illustrated in Figure 6b, its activity re-
flected the animal’s upcoming choice most
robustly after the outcome of the leftward
choice in the previous trial was a loss (Fig.
6e,h, right; orange and green lines). For
both of these neurons, the activity during
the delay period showed a significant
three-way interaction between the ani-
mal’s choice in the previous trial, the loss
resulting from that choice, and the ani-
mal’s choice in the current trial (t test, p �
0.05). The percentage of neurons in the
DMFC with such significant three-way in-
teractions was 21.1 and 23.7% for gains
and losses (Fig. 8b, bottom), respectively,
suggesting that some DMFC neurons en-
coded the animal’s upcoming choice dif-
ferently depending on its previous choice
and outcome. As in the two-way interac-
tion for the animal’s choice and its out-
come, the three-way interaction for the
animal’s choices in two successive trials
and the previous outcome was observed
more frequently in the DMFC than in the
DLPFC or ACCd (Fig. 8b, bottom).

Coding of value functions
In the reinforcement learning models used
to analyze the animal’s choice behavior,
the probability of choosing a particular
target was a function of the difference in
the value functions for the two alternative
targets (Eq. 2). Therefore, neurons encod-
ing the difference in the value functions
might be involved in the selection of a par-
ticular target. Indeed, many neurons in the
DMFC modulated their activity during
the delay according to the difference in the
value functions. For example, the activity

Figure 7. Activity of example neurons in the ACCd (a) and DLPFC (b). Top, Spike density function aligned to feedback onset
sorted by the outcome of the animal’s choice. The shaded areas indicate mean 	 SEM. Bottom, Average spike rates during the
feedback period sorted by the animal’s choice and its outcome in the same trials (L, loss; N, neutral; G, gain). The left and right
columns in each panel correspond to the activity during the trials tested with two different sets of feedback ring colors. Error bars
indicate SEM.

Figure 8. Population summary of neural activity related to gains and losses during feedback (left) and delay (right) periods. a,
Fraction of neurons showing significant effects of gains and losses, estimated with a regression model without interaction terms.
b, Fraction of neurons showing significant effects of gains and losses estimated along with their interactions with the animal’s
choices. CH(t) refers to the animal’s choice in trial t, and OUT(t) the gain or loss outcome in trial t. *p � 0.05, � 2 test.
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of the neuron illustrated in Figure 6b increased its activity during
the delay period as the value function for the rightward target
increased relative to that for the leftward target (Fig. 10a). This
was true regardless of whether the animal chose the leftward or
rightward target. In contrast, the neuron shown in Figure 6c in-
creased its activity as the value function for the leftward target
increased relative to that for the rightward target (Fig. 10b). Sim-
ilarly, some neurons in the ACCd changed their activity accord-
ing to the difference in the value functions for the two targets (Fig.
10c). To evaluate the activity related to the value functions statis-
tically, we applied a regression model that included the difference
in the value functions as an independent variable in addition to
the animal’s choice, asset, and the sum of the value functions (Eq.
5). The results showed that 47.4, 22.7, and 7.9% of the neurons in
the DMFC, ACCd, and DLPFC, respectively, modulated their
activity significantly according to the difference in the value func-
tions (permutation test, p � 0.05) (Fig. 11a). Whereas these per-
centages were significantly higher than the 5% significance level
(binomial test, p � 0.05) for the DMFC and ACCd, this was not
the case for the DLPFC.

We hypothesized that the neurons encoding the conjunction
of a particular choice and its outcome would signal the difference
in the value functions. To test this, we compared the percentage
of neurons that significantly changed their activity according to
the difference in the value functions, separately for the neurons

showing significant interaction effects for
the animal’s choice in the previous trial
and gain outcome and the neurons with-
out such interaction effects (Eq. 4). The
same analysis was repeated separately for
the loss outcome. The results mostly con-
firmed the hypothesis, especially for the
DMFC. For example, among the DMFC
neurons that showed significant interac-
tions between the animal’s choice and loss
outcome, 72.7% of them modulated their
activity significantly according to the dif-
ference in the value functions, whereas this
percentage was reduced to 27.9% for the
neurons that did not have such conjunc-
tive coding (Fig. 11a). Neurons in the
ACCd were also more likely to change
their activity according to the difference in
the value functions, when they showed sig-
nificant conjunctive coding for choice and
loss outcome compared with when they
did not (Fig. 11a). Similarly, the neurons
in the DMFC were more likely to encode
the difference in the value functions when
they showed significant conjunctive cod-
ing for choice and gain outcome (Fig. 11a).
However, this was not true for the ACCd.
The fact that the percentage of neurons en-
coding the difference in the value func-
tions was affected consistently by the inter-
actions between choice and outcome only
for the DMFC is not surprising, because
the overall percentage of neurons encod-
ing the difference of value functions (Fig.
11a) or interactions between the animal’s
choice and outcome (Fig. 8b, middle) was
relatively low for ACCd and DLPFC.

Conjunctive coding of the animal’s
choice and loss outcome, namely, the interaction between these
two variables, was evaluated by comparing the activity during the
delay period after the trials with loss and neutral outcomes.
Therefore, for the neurons in the DMFC, we hypothesized that
the neurons with such conjunctive coding might be more likely to
encode the difference in the value functions when the outcome of
the animal’s choice in the previous trial was loss or neutral, com-
pared with the previous outcome was gain. Similarly, because
conjunctive coding of choice and gain outcome was evaluated by
examining the activity related to the gain and neutral outcomes in
the previous trials, we predicted that the DMFC neurons showing
significant conjunction for choice and gain outcome in the pre-
vious trial would be more likely to encode the difference in the
value functions when the previous outcome was gain or neutral
compared with when the previous outcome was loss. To test these
predictions, we computed the percentage of neurons that showed
changes in their activity related to the difference in the value
functions separately according to the outcome of the animal’s
choice in the previous trial. The results from this analysis mostly
confirmed the predictions (Fig. 11b). For example, DMFC neu-
rons that showed conjunctive coding of choice and loss outcome
encoded the difference in the value functions more frequently
than the neurons without such significant interactions, when the
outcome in the previous trial was loss or neutral, but not when
the previous outcome was gain. Similarly, DMFC neurons with

Figure 9. Population summary of activity related to gains and losses in different cortical areas. Standardized regression
coefficients associated with gain outcomes are plotted against those associated with loss outcomes. The black symbols indicate
the neurons that showed significant effects for both gain and loss, whereas the gray symbols indicate the neurons that showed
significant effects for either gain or loss. The values within each plot show Spearman’s rank correlation coefficient ( r), and the solid
line is the best-fitting regression line. The correlation was not significant for any of the cortical areas ( p � 0.05).

Table 2. Contingency tables for the number of neurons that displayed significant modulations in their activity
related to gains and losses during the feedback period

Gain � Gain � No gain All

DMFC (�2 � 5.062, p � 0.2810)
Loss � 7 6 2 15
Loss � 7 2 6 15
No loss 16 12 18 46
All 30 20 26 76

ACCd (�2 � 4.5890, p � 0.3321)
Loss � 1 3 4 8
Loss � 6 5 2 13
No loss 14 18 22 54
All 21 26 28 75

DLPFC (�2 � 1.4254, p � 0.8398)
Loss � 4 0 4 8
Loss � 3 1 3 7
No loss 24 9 28 61
All 31 10 35 76

Gain �/� (Loss �/�), The number of neurons significantly decreasing/increasing their activity in gain (loss) trials (t test, p � 0.05). No gain (loss), The
number of neurons without significant effect of gain (loss).
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significant conjunctive coding of choice
and gain outcome changed their activity
according to the difference in the value
functions more frequently when the previ-
ous outcome was gain or neutral (Fig.
11b).

Neural activity related to assets
and reward
The performance of the animals improved
with the number of tokens owned by the
animal, suggesting that the animal’s moti-
vation was systematically influenced by the
number of tokens (Fig. 3b). Many neurons
examined in this study also modulated
their activity during the delay period ac-
cording to the number of tokens. Neurons
with such significant asset-related activity
were found in all three cortical areas tested
in this study, although they were more
common in the DMFC (64.5%) and ACCd
(57.3%) than in the DLPFC (23.7%). For
example, ACCd neuron illustrated in Fig-
ure 12a increased its activity during the de-
lay period gradually as the number of tokens increased, whereas
the DMFC neuron in Figure 12b decreased its activity as the
number of tokens increased. The estimates of this asset-related
activity was relatively unaffected when a separate regressor was
included to factor out the activity changes that might occur when
the animal owned five tokens and therefore might have expected
immediate reward. The regression coefficient for this new
dummy variable was significant in 51.3, 45.3, and 11.0% of the
neurons in the DMFC, ACCd, and DLPFC, respectively. Never-
theless, the percentage of neurons with significant asset-related
activity in each of these areas was 44.7, 45.3, and 21.1%, with the
addition of this dummy variable, and therefore relatively unaf-
fected. This indicates that many neurons in the frontal cortex
changed their activity gradually with the number of tokens.

This asset-related activity was evaluated, using a multiple lin-
ear regression analysis that controlled for the effect of gains and
losses in the previous trial (Eq. 3). Nevertheless, for the neurons
in the DMFC and ACCd, there was a significant positive correla-
tion between the asset-related activity during the delay period

and the gain-related activity during the feedback period (Fig.
12c). This suggests that the signals related to the number of to-
kens might be conveyed, in a consistent manner, by the same
population of neurons that initially registered the positive out-
comes of the animal’s actions. In contrast, the asset-related sig-
nals during the delay period were not significantly correlated with
the loss-related activity during the feedback period in any of the
cortical areas tested in the present study (Fig. 12c).

Conjunctive coding of assets and outcomes
For the majority of the neurons recorded in this study, the sign
and magnitude of activity related to gain and loss outcomes did
not change with the assets significantly. For example, for the
DMFC neuron shown in Figure 13a, its activity related to
the gain, neutral, and loss outcomes was mostly unaffected by the
assets during the feedback period. Similarly, although the activity
of the ACCd neuron shown in Figure 13b gradually increased its
activity during the feedback period according to the assets, the
difference in the activity among the gain, neutral, and loss trials
did not change significantly. In contrast, some neurons in each of

Figure 10. Example neurons in the DMFC (a, b) and ACCd (c) modulating their activity according to the difference in the value functions for the two targets. The empty and filled circles represent
the average spike rates during the delay period of the trials in which the animal chose the leftward and rightward targets, respectively. Each symbol corresponds to a decile of trials sorted by the
difference in the value functions. Error bars indicate SEM. The light and dark histograms show the distribution of the difference in the value functions for the trials in which the animal chose the
leftward and rightward targets, respectively.

Figure 11. Population summary for neural activity related to value functions. a, Fraction of neurons that significantly modu-
lated their activity during the delay period according to the difference in the value functions. This is shown for all neurons in each
cortical area (gray) and separately for a subset of neurons that showed (or did not show) significant interaction effects for the
animal’s choice in the previous trial and its outcome (gain or loss). b, Fraction of neurons in the DMFC that changed their activity
significantly according to the difference in the value functions when the animal’s choice in the previous trial led to the loss, neutral,
or gain outcome. As in a, this was computed separately according to whether the neurons showed significant interaction between
the animal’s choice in the previous trial and its outcome (gain or loss). *�2 test, p � 0.05.

3636 • J. Neurosci., March 18, 2009 • 29(11):3627–3641 Seo and Lee • Neural Encoding of Gains and Losses



the cortical areas tested in this study changed the magnitude of
the outcome-related activity according to the assets. For example,
for the DMFC neuron shown in Figure 13c and the ACCd neuron
in Figure 13d, the difference in their activity during the feedback
period of gain and neutral trials increased with the number of
tokens. For the DMFC neuron shown in Figure 14a, the differ-
ence in its activity during the feedback period of loss and neutral
trials gradually decreased with the number of tokens, whereas for
the ACCd neuron shown in Figure 14b, this difference increased
with the number of tokens. The statistical significance of such
asset-dependent changes in outcome-related activity was evalu-
ated by including the interaction terms for assets and outcomes in
a regression model (see Materials and Methods). Overall, among
the neurons that showed significant difference in their activity
during the gain and neutral trials, the percentages of neurons that
showed significant asset by gain interaction were 38.0, 42.6, and
22.0% for the DMPFC, ACCd, and DLPFC, respectively (Table
3). The corresponding percentages for asset by loss interaction
were 36.7, 19.1, and 46.7% (Table 3).

To investigate further whether there
was a significant tendency for the magni-
tude of activity changes related to gain out-
comes to increase or decrease with the as-
sets, we analyzed the standardized
regression coefficients associated with the
interaction term for assets and gain against
the standardized regression coefficients
for the gain outcome estimated from the
regression model without the interaction
terms (Eq. 3). These two coefficients
would be positively correlated if the mag-
nitude of gain-related activity increased
with the assets. For example, these two co-
efficients would have the same signs for a
neuron that increases the difference in its
activity for gain and neutral trials as the
number of tokens increases. In contrast,
the signs of these two coefficients would be
opposite if the magnitude of activity asso-
ciated with gain outcomes decreases with
assets. We also analyzed how the loss-
related activity changes with assets.

For the DMFC and ACCd, we found
that the coefficients related to the interac-
tion term for gain and assets did not show
any significant correlation with the coeffi-
cients for the gain outcome (supplemental
Fig. 2, available at www.jneurosci.org as
supplemental material). Spearman’s cor-
relation coefficient between these two
variables was 0.108 ( p � 0.364) and 0.077
( p � 0.532) for the DMFC and ACCd, re-
spectively. Therefore, although there were
a substantial number of neurons that sig-
nificantly changed their gain-related activ-
ity according to the number of tokens,
there was no consistent bias for gain-
related activity to weaken or strengthen
with the assets at the population level in
the DMFC or ACCd. Accordingly, for
these two cortical areas, difference in nor-
malized activity between the gain and neu-
tral trials did not change substantially,

when averaged separately according to whether the neurons in-
creased or decreased their activity during the gain trials relative to
their activity in the neutral trials (Fig. 13e,f). Interestingly, for the
DLPFC, the coefficients associated with asset by gain interaction
were significantly and negatively correlated with those related
with the gain outcome (Spearman’s r � �0.372; p � 0.046). This
was mostly attributable to the fact that all six neurons signifi-
cantly decreasing their activity during gain trials compared with
their activity during neutral trials showed significantly negative
coefficients for asset by gain interactions (supplemental Fig. 2c,
available at www.jneurosci.org as supplemental material). Con-
sistent with this finding, the difference in the normalized activity
for the trials with gain and neutral outcomes tended to decrease
with assets for the DLPFC neurons that decreased their activity
during the gain trials compared with the neutral trials (Fig. 13g,
green vs blue lines). For the activity related to the loss outcomes,
the coefficients related to asset by loss outcomes were not signif-
icantly correlated with the coefficients related to the loss outcome
in any cortical areas. The corresponding values of the Spearman’s

Figure 12. Example neurons in the ACCd (a) and DMFC (b) that significantly increase and decrease their activity with the
number of tokens (assets) owned by the animal, respectively. The left panels show the activity aligned at the time of target onset
separately for different levels of assets, whereas the right panels show the activity during the feedback period sorted by the
outcomes. c, Standardized regression coefficients related to assets for activity during the delay period (gray background in the left
panels in a and b) are plotted against the standardized regression coefficients related to the gains (top) and losses (bottom) for
activity during the feedback period (gray background in the right panels in a and b). Neurons in which the effects of assets and
outcome were statistically significant are indicated by different colors. The values within each plot show Spearman’s rank corre-
lation coefficient (r), and the solid line is the best-fitting regression line.
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correlation coefficient were �0.173, �0.089, and 0.046 for the
DMFC, ACCd, and DLPFC, respectively ( p � 0.1) (supplemen-
tal Fig. 2, available at www.jneurosci.org as supplemental mate-
rial). Accordingly, the difference in the normalized activity aver-
aged separately for loss and neutral outcomes did not change
substantially with the number of tokens in any cortical areas,
regardless of whether the neurons increased or decreased their
activity during the loss trials compared with the activity in the
neutral trials (Fig. 14c– e). In summary, there were a significant
number of neurons in the frontal cortex that changed their activ-
ity related to gain or loss outcomes according to the number of
tokens. However, at the population level, there were no system-
atic biases for such outcome-related activity to strengthen or
weaken with the assets.

Discussion
Reinforcement learning in competitive games
The process of acquiring adaptive behavioral strategies can be
described by reinforcement learning algorithms, in which the

probability of taking each action is determined by a set of value
functions (Sutton and Barto, 1998). These value functions are
adjusted when reward or penalty received by the animal deviates
from the predicted outcomes. Reinforcement learning algo-
rithms have been successfully applied to many decision-making
problems (Barraclough et al., 2004; Lee et al., 2004; Samejima et
al., 2005; Daw and Doya, 2006; Matsumoto et al., 2007; Seo and
Lee, 2007; Gold et al., 2008; Lau and Glimcher, 2008), including
decision making during social interactions (Mookherjee and So-
pher, 1994; Erev and Roth, 1998; Camerer, 2003; Lee, 2008). For
example, animals in the present study approximated the optimal
strategy during a competitive game according to a reinforcement
learning algorithm. The payoff matrix during this game included
a negative value, which was realized as the removal of a condi-
tioned reinforcer. Using the analyses based on logistic regression
models and reinforcement learning models, we demonstrated
that the gains and losses of tokens resulting from the choice of a
given target increased and decreased, respectively, the animal’s

Figure 13. Effects of assets on gain-related activity. a, b, Two example neurons (a, DMFC; b, ACCd) that did not change their gain-related activity with assets. The plots show spike density
functions for each neuron during the feedback period (gray background) averaged separately according to the animal’s choice outcome and the number of tokens (assets). c, d, Two example neurons
(c, DMFC; d, ACCd) that significantly changed their gain-related activity with assets. The shaded areas indicate mean 	 SEM. e– g, Normalized activity averaged across the neurons that increased
(gain positive) or decreased (gain negative) their activity during the feedback period of gain trials relative to the activity in the neutral trials in each cortical area. For each neuron, the activity during
the feedback period of individual trials was converted to z-scores, before they were averaged across neurons. Error bars indicate SEM.
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tendency to choose the same target in subsequent trials. The ef-
fects of gains and losses on the animal’s behavior were approxi-
mately equal and opposite, whereas neutral outcomes tended to
have intermediate effects. To our knowledge, this provides the
first evidence that the choice behavior of nonhuman primates can
be punished by the losses of conditioned reinforcers.

Neural signals related to gains and losses
Previous studies based on brain imaging and event-related po-
tentials have implicated the medial frontal cortex in monitoring
monetary gains and losses resulting from previous behaviors (El-
liott et al., 1997; O’Doherty et al., 2001, 2003; Holroyd et al., 2004;
Remijnse et al., 2005; Liu et al., 2007; Wrase et al., 2007). Some
neurons in the primate anterior cingulate and dorsomedial fron-
tal cortex also modulate their activity according to the outcome
of the animal’s action (Shima and Tanji, 1998; Matsumoto et al.,
2007; Sallet et al., 2007; Seo and Lee, 2007; Uchida et al., 2007;
Quilodran et al., 2008). In the present study, we found that the
neurons in the DMFC, ACCd, and DLPFC also changed their
activity when the animal lost a conditioned reinforcer, suggesting
that such outcome-related activity did not simply signal the com-

mission of error or omission of reward
(Stuphorn et al., 2000; Ito et al., 2003; Hol-
royd et al., 2006), but also the abstract na-
ture of decision outcomes. Interestingly,
neurons encoding gain outcomes were
found more frequently compared with
loss-encoding neurons in all three cortical
areas, although the magnitude of the be-
havioral effects were similar for gain and
loss outcomes. Resolution of this apparent

discrepancy awaits additional studies on the neural mechanisms
responsible for translating the outcome-related activity to subse-
quent behavioral changes. In addition, although some neurons in
each cortical area changed their activity related to gain or loss
outcomes according to the number of tokens, there was no sys-
tematic bias for the activity related to gains or losses to weaken or
strengthen as the animal accumulated more tokens. Therefore, at
the population level, neurons in these cortical areas provided
signals related to the outcomes of the animal’s choices reliably
throughout the task.

The results from this study also suggest that the DMFC might
play a particularly important role in adjusting the animal’s choice
strategy based on conditioned reinforcers. First, compared with
the ACCd and DLPFC, neurons in the DMFC modulated their
activity more frequently according to gain and loss outcomes
resulting from a particular action. For example, activity of neu-
rons in the DMFC during the gain trials often differed depending
on the action chosen by the animal. Activity of such neurons
encoding the animal’s choices and their outcomes conjunctively
might represent whether a particular choice is likely to produce

Figure 14. Effects of assets on loss-related activity. a, b, Two example neurons (a, DMFC; b, ACCd) that significantly changed their loss-related activity with assets. The format is the same as in
Figure 13a. c– e, Normalized activity averaged across the neurons that increased (loss positive) or decreased (loss negative) their activity during the feedback period of loss trials relative to the activity
in the neutral trials in each cortical area. The format is the same as in Figure 13e.

Table 3. Percentages and number of neurons showing significant interactions for asset and outcome

Asset by gain Asset by loss

Gain No gain Loss No loss

DMFC 38.0 (19/50) 42.3 (11/26) 36.7 (11/30) 17.4 (8/46)
ACCd 42.6 (20/47) 28.6 (8/28) 19.1 (4/21) 22.2 (12/54)
DLPFC 22.0 (9/41) 17.1 (6/35) 46.7 (7/15) 4.9 (3/61)

Denominators inside the parentheses in the columns labeled Gain (No gain) and Loss (No loss) indicate the number of neurons with (without) significant gain
and loss effects, respectively, whereas the numerators indicate the number of neurons with significant asset by gain or asset by loss interactions.
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better outcomes than other alternative choices. Indeed, in the
DMFC and ACCd, neurons encoding choice and loss outcome
conjunctively were more likely to change their activity according
to the difference in the value functions than the neurons without
such conjunctive coding. Similarly, DMFC neurons encoding
choice and gain outcome conjunctively tended to show modula-
tions in their activity related to the difference in the value func-
tions frequently. Therefore, activity related to the conjunction of
choice and outcome might provide a substrate for computing the
difference in the value functions. Previous studies have shown
that many neurons in the medial (Uchida et al., 2007) and lateral
(Barraclough et al., 2004) prefrontal cortex also change their ac-
tivity according to the presence or absence of reward differently
according to the animal’s action. Combined with the results from
the present study, this suggests that signals related to the conjunc-
tions of action and outcome might become more prevalent in the
DMFC compared with the DLPFC, when the animal’s choices
lead to gains and losses of conditioned reinforcers without im-
mediate rewards. Therefore, DMFC might play a particularly im-
portant role in adjusting the animal’s behavioral strategies, when
the feedback is provided in more abstract forms. Second, DMFC
neurons often encoded the animal’s upcoming choice in con-
junction with the previous choice and its outcome. For example,
some neurons might increase their activity before the animal
chooses a particular target only when the outcome of the same
choice in the previous trial was a loss. Therefore, DMFC might
provide a neural substrate necessary for modifying the animal’s
behavioral strategy flexibly, even when the behaviors are not im-
mediately rewarded or punished by primary reinforcers. Third,
neurons in the DMFC and ACCd were more likely to change their
activity systematically according to the number of tokens owned
by the animals. These signals might reflect the level of reward
expectancy (Shidara and Richmond, 2002; Satoh et al., 2003; Hi-
kosaka and Watanabe, 2004; Nakahara et al., 2004; Roesch and
Olson, 2004; Sohn and Lee, 2007), because the number of tokens
was closely related to the number of trials before the juice reward.
This also suggests that such asset-related signals might contribute
to improving the animal’s performance. During the task used in
this study, tokens owned by the animal were constantly displayed
on the computer screen, and therefore the animals were not re-
quired to store the number of tokens in its working memory.
Nevertheless, the fact that gain-related signals during the feed-
back period were correlated with asset-related activity during the
delay period suggests that the asset-related activity might at least
in part arise from the gain-related activity that is temporally
integrated.

Neural circuitry for conditioned reinforcement
By definition, conditioned reinforcers are conditioned stimuli
predicting upcoming rewards or aversive stimuli, and can influ-
ence the animal’s behavior, even when rewards or physically aver-
sive stimuli are omitted. In addition, conditioned reinforcers can
be delivered through different sensory modalities and linked to a
large number of possible actions. Therefore, the neural mecha-
nisms for processing various aspects of conditioned reinforcers
and inducing the corresponding behavioral changes are likely to
be implemented in multiple brain regions. Indeed, neurons that
modulate their activity according to the reward or punishment
expected from a particular sensory stimulus or motor response
have been found in many different brain areas, including the
prefrontal cortex (Watanabe, 1996; Rolls, 2000; Barraclough et
al., 2004; Kim et al., 2008), posterior parietal cortex (Platt and
Glimcher, 1999), basal ganglia (Schultz, 1998; Samejima et al.,

2005), and amygdala (Nishijo et al., 1988; Paton et al., 2006; Tye
et al., 2008). Some of these previous studies focused on identify-
ing the neural processes involved in extracting the affective values
of conditioned reinforcers. In particular, neurons in the orbito-
frontal cortex and amygdala tend to track the value of reward or
punishment expected from a particular stimulus more closely
than its physical attributes (Nishijo et al., 1988; Rolls, 2000; Paton
et al., 2006), suggesting that these two structures might play an
important role in assigning the appropriate values to conditioned
reinforcers (Parkinson et al., 2001; Pears et al., 2003; Burke et al.,
2008). The results from the present study suggest that the DMFC
might be a key structure in linking such outcome-predicting sig-
nals to appropriate actions. In addition, we found a substantial
overlap between the populations of neurons encoding gains and
losses of conditioned reinforcers. However, the source of signals
related to gains and losses identified in the present study is pres-
ently unknown. The orbitofrontal cortex is connected to the me-
dial and lateral prefrontal areas (Cavada et al., 2000), and the
amygdala also projects to the medial frontal regions (Porrino et
al., 1981). Consistent with this anatomical connectivity, we found
that the signals related to gains and losses from a particular action
were represented robustly in the DMFC. It would be important to
test whether and how neurons in the orbitofrontal cortex and
amygdala represent the losses of conditioned reinforcers in addi-
tion to their gains, and to determine whether the altered neural
activity in orbitofrontal cortex and amygdala affects the signals
related to gains and losses in the DMFC.
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