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Optimality and Robustness of a Biophysical Decision-
Making Model under Norepinephrine Modulation
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The locus ceruleus (LC) can exhibit tonic or phasic activity and release norepinephrine (NE) throughout the cortex, modulating cellular
excitability and synaptic efficacy and thus influencing behavioral performance. We study the effects of LC–NE modulation on decision
making in two-alternative forced-choice tasks by changing conductances in a biophysical neural network model, and we investigate how
it affects performance measured in terms of reward rate. We find that low tonic NE levels result in unmotivated behavior and high levels
in impulsive, inaccurate choices, but that near-optimal performance can occur over a broad middle range. Robustness is greatest when
pyramidal cells are less strongly modulated than interneurons, and superior performance can be achieved with phasic NE release,
provided only glutamatergic synapses are modulated. We also show that network functions such as sensory information accumulation
and short-term memory can be modulated by tonic NE levels, and that previously observed diverse evoked cell responses may be due to
network effects.

Introduction
Neuromodulation is important in decision making (Doya, 2008).
Here we examine norepinephrine (NE) modulation due to acti-
vation of the locus ceruleus (LC), a brainstem nucleus that re-
ceives diffuse afferent inputs and projects back throughout the
cortex (Morrison and Foote, 1986; Aston-Jones et al., 1991; Wa-
terhouse et al., 1998a; Simpson and Lin, 2007). NE released by
efferent LC fibers changes cellular excitability and synaptic effi-
cacy (Berridge and Waterhouse, 2003) and can alter performance
in behavioral tasks (Berridge and Waterhouse, 2003; Aston-Jones
and Cohen, 2005; Bouret and Sara, 2005). Dysregulation of NE is
also implicated in cognitive disorders (Arnsten, 2007).

LC activity can be categorized into tonic and phasic modes. In
the former, LC neurons fire asynchronously, producing steady
cortical NE levels proportional to average firing rates (Berridge
and Abercrombie, 1999). In the phasic mode, coherent LC firing
temporarily raises NE levels during task execution. Low tonic LC
rates accompany drowsy, unmotivated behavior; moderate tonic
LC rates, including those that precede phasic NE release, promote
vigilance and good performance (Aston-Jones, 2005; Aston-
Jones and Cohen, 2005); and high tonic LC activity correlates
with poor performance (Usher et al., 1999; Clayton et al., 2004)

and is associated with stress (Valentino et al., 1993; Rajkowski et
al., 1994; Aston-Jones, 2005; Berridge, 2008).

In vitro experiments show that cells in rat whisker barrel cor-
tex are more likely to spike in response to stimuli when NE con-
centrations are high (Waterhouse et al., 2000). In vitro and in vivo
work in waking animals reveals similar effects on sensory encod-
ing (Devilbiss and Waterhouse, 2004; Devilbiss et al., 2006), sig-
nal detection, and sensory discrimination (Aston-Jones et al.,
1994, 2007; Usher et al., 1999; Clayton et al., 2004; Rajkowski et
al., 2004). Experiments have also illuminated the relationship
between the LC–NE system and performance in multialternative
tasks [e.g., Rajkowski et al. (1994, 2004), Usher et al. (1999), and
Clayton et al. (2004)]. However, there are few explicit studies of
LC–NE effects on perceptual discrimination or decision-making
tasks [cf. Shadlen and Newsome (2001) and Roitman and
Shadlen (2002)], and related theoretical work has used abstract
Bayesian or connectionist models (Servan-Schreiber et al., 1990;
Usher et al., 1999; Usher and Davelaar, 2002; Yu and Dayan,
2005; Dayan and Yu, 2006; Shea-Brown et al., 2008). Biophysi-
cally realistic models (Hasselmo et al., 1997; Hoshino, 2005;
Moxon et al., 2007) have typically focused on sensory encoding
rather than decision making.

In this paper we employ a biophysically based spiking neural
network model (Wang, 2002) to study effects of the LC–NE sys-
tem on decision making in two-alternative forced-choice (2AFC)
tasks, as exemplified by the reaction time motion discrimination
task of Roitman and Shadlen (2002) and its delayed and cued
response version (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002). Allowing synaptic or membrane leak conduc-
tances to change with NE concentration, we find that perfor-
mance is most robust when excitation and inhibition are co-
modulated, and that the high performance region can be
extended by varying the ratio of modulation of excitation to in-
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hibition. Depending on this ratio, the
model exhibits diverse nonlinear single-
cell evoked responses, and at the ratio that
also provides near-maximum robustness,
it replicates inverted-U evoked responses.
Certain key physiological details of the
LC–NE system remain unknown, and we
evaluate implications of different possibil-
ities, illustrating the need for further
experiments.

Materials and Methods
The cortical microcircuit model for decision mak-
ing. We adopt an architecture that was origi-
nally developed to simulate working memory in
the prefrontal cortex of nonhuman primates
(Brunel and Wang, 2001) and has since been
adapted to describe temporal integration of
sensory information and sustained memory of
choice in decision making [e.g., in the lateral
intraparietal area (LIP) (Shadlen and New-
some, 2001; Roitman and Shadlen, 2002; Wang,
2002)]. The network consists of 2000 single-
compartment leaky integrate-and-fire neurons,
divided into four populations. Two of these,
each containing 240 excitatory pyramidal cells,
are preferentially selective to the stimuli (e.g.,
leftward or rightward visual motions in visual
discrimination tasks). A nonselective popula-
tion of 1120 excitatory neurons and a popula-
tion of 400 inhibitory interneurons complete
the circuit. See Figure 1 A.

All cells are connected to all others by recur-
rent synapses mediated by NMDA and AMPA,
both glutamatergic, and by GABAA. The pyra-
midal cells have NMDA and AMPA receptors
internally and for connections to inhibitory in-
terneurons, and the inhibitory population em-
ploys GABAA receptors internally and for con-
nections back to pyramidal cells. Each cell
receives noisy synaptic inputs from cells outside
its local microcircuit, mediated by AMPA re-
ceptors, at 2.4 kHz (e.g., as if from 800 neurons
with spontaneous firing rates of 3 Hz). These
are modeled by a Gaussian approximation to
the Poisson statistics that are typically assumed.
Samples are generated independently for each
neuron and for each trial (see supplemental
material, available at www.jneurosci.org). This
provides the main source of variability in neural
and behavioral outcomes among simulated tri-
als. Following Hebbian plasticity, connections
within each selective population are assumed to
be stronger than interconnections to other cell
populations. NMDA-mediated receptors are
assumed to have rise and decay time constants
of 2 and 100 ms. The relatively faster AMPA-
mediated and GABA-mediated receptors have
instantaneous rise time and decay time con-
stants of 2 and 5 ms, respectively.

During stimulus presentation the selective
populations receive additional external inputs,
representing outputs of upstream sensory path-
ways [e.g., middle temporal or MT/V5 cortical
neurons during visual motion discrimination tasks (Britten et al., 1993;
Gold and Shadlen, 2007)]. When stimulus 1 is displayed, cells selective to
stimuli 1 and 2, respectively, receive additional inputs with means r1 �
�0(1 � c�) and r2 � �0(1 � c�), where �0 � 40 Hz is the background

input and �1 � c� � 1 quantifies stimulus discriminability. The remain-
ing excitatory and inhibitory cells, being nonselective to the stimuli, re-
ceive no additional inputs.

Stimuli initially raise both selective population activities from their
common baseline. Inhibition from the interneurons subsequently allows

Figure 1. Model architecture. A, The network contains three populations of excitatory pyramidal cells and one of inhibitory
interneurons. Each of the two excitatory populations has a response field selective to one stimulus (e.g., leftward or rightward
visual motion), and the third excitatory population is nonselective to both stimuli. Interneurons provide overall feedback inhibi-
tion to pyramidal cells. Excitatory (glutamatergic-mediated) and inhibitory (GABAA-mediated) synapses are respectively denoted
by filled and open ovals. All cells receive noisy background excitation from brain areas outside the local microcircuit. Each cell
connects to every other, and selective populations have relatively stronger local recurrent excitation among themselves. All
excitatory synapses are mediated by NMDA and AMPA, except the external stimulus and the noisy background, which are
mediated only by AMPA. B, Stimuli deliver excitatory inputs to both selective populations, but inhibitory cells typically suppress
one population, producing winner-take-all dynamics. A decision is made when the first selective population crosses a prescribed
threshold. See Materials and Methods and supplemental material (available at www.jneurosci.org) for further details.
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the firing rate of one selective population to continue increasing while
suppressing the other selective population, exhibiting winner-take-all
behavior (Fig. 1 B). When the firing rate of either population reaches a
prescribed decision threshold, a choice is made in favor of its response
field. The dimensionless parameter E � (r1 � r2)/(r1 � r2) (�c�), anal-
ogous to a signal-to-noise ratio, quantifies task difficulty: smaller differ-
ences �r1 � r2� connote harder tasks and E � 0 denotes maximum diffi-
culty. In visual motion discrimination tasks (Britten et al., 1993; Wang,
2002; Gold and Shadlen, 2007), E can be interpreted as the fraction of
coherently moving dots embedded in a random dot kinetogram (e.g.,
E � 0.032, 0.064, . . .), with E � 0 if the stimulus is in the response field of
the population, and E � 0 if opposite to it.

Due to inherent symmetry between the selective populations, we may
henceforth assume without loss of generality that E � 0, and with the
motion task in mind, bias strengths were selected from the set 0.032,
0.064, 0.128, 0.256. Using the parameters of Wang (2002), with synaptic
weights tuned to allow integration of sensory information and sustained
storage of decisions in working memory, the network reproduces the
data of Shadlen and Newsome (2001) and Roitman and Shadlen (2002),
and we therefore adopt these as “standard” parameter values. Figure 2
illustrates qualitatively similar results to those of Wang (2002), but we
allow a range of decision thresholds, and select a higher threshold than
Wang (2002) for subsequent use (see below, Reward rate dependence on
decision threshold). The governing equations and all parameter values
are specified in supplemental material (available at www.jneurosci.org).

Behavioral tasks and analysis of reward rate performance. In simulating
reaction time tasks, the decision time (DT) is defined as the interval from
stimulus onset to threshold crossing. If the threshold is crossed before
stimulus onset, the trial is labeled as “impulsive,” and if neither selective
population’s firing rate has crossed threshold when stimulus presenta-
tion ends, the trial is labeled as “no-choice.” The remaining valid trials

are correct if the choice is consistent with the
stimulus, and errors otherwise. After each re-
sponse or no-choice trial, firing rates of all pop-
ulations are reset to their spontaneous states
(Lo and Wang, 2006), and a response-to-
stimulus interval (RSI), or prestimulus period,
is imposed before the next stimulus appears,
during which the network is subject to noisy
nonstimulus inputs.

We simulate a block of 500 trials for each set
of network parameters and task conditions.
Each trial is a stochastic realization of a possible
outcome due to (pseudo)randomly generated
noise in the stimulus input and other brain ar-
eas, and it falls into one of our categories: cor-
rect, error, impulsive, or no-choice. Only cor-
rect trials are rewarded. No additional penalty
delay is imposed for errors or premature re-
sponses [mean decision times for errors exceed
those for correct decisions in this model (Wang,
2002; Wong and Wang, 2006)]. Accuracy is de-
fined as the fraction of correct trials in a block.

We define the reward rate for a block of trials
as the total number of rewarded (correct) trials
divided by the summed duration of all trials. In
the latter we include nondecision latencies
(NDLs) due to signal transduction and motor
preparation, which are assumed constant, so
that the reaction time is the sum DT � NDL:

Reward rate �

Total number of rewarded trials

Total time of all trials
�

Accuracy

�DT � NDL � RSI� , (1)

where � � implies an average over all trials. We
may absorb the constant NDL into the RSI without affecting the results.
We take RSI � 1750 ms and NDL � 250 ms (Roitman and Shadlen,
2002). DTs for impulsive decisions are negative, although the trial time
DT � NDL � RSI � 0, and DTs for no-choice trials are taken to be equal
to the maximum stimulus duration, here 2000 ms. Our definition of
reward rate generalizes that of Bogacz et al. (2006), Ditterich (2006), and
Lo and Wang (2006), which excluded impulsive and no-choice trials.

SEs for accuracy, mean decision times, and reward rate are found by
first calculating the quantity of interest for each trial. Accuracy is logged
either as 1 (correct) or 0 (error) for each trial. The total trial time is DT �
RSI � NDL, and the reward rate for a trial is therefore 1/(DT � RSI �
NDL) if correct and 0 if unrewarded. We then find the mean and unbi-
ased SD of the collection of results for each block of n � 500 trials, and
divide the SD by the square root of n, in this case �500.

In delayed-response tasks, we wish to study how neuromodulation
affects memory-dependent decisions. The network must sustain a mem-
ory of a categorical choice that has just been made over a delay period that
follows stimulus offset. Sustenance of memory in the form of persistent
firing rates of the winning population during the delay period requires
strong recurrent reverberation. To probe the network dynamics, we use
two different tasks, in one of which the response is cued at stimulus offset,
and in the other after a delay period. For delayed-response tasks, we
employ a fixed stimulus duration of 1000 ms, and a fixed delay, when
applicable, of 1000 ms. Only accuracy is recorded, since mean decision
time is fixed (and thus reward rate depends linearly on accuracy). To
isolate the accuracy due to memory-dependent decisions, we directly
compare accuracy in the two cases.

Reward rate dependence on decision threshold. Since decision thresholds
affect accuracy, response times, and reward rates (Lo and Wang, 2006;
Bogacz et al., 2006; Simen et al., 2006), we begin by examining network
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Figure 2. Reward rate dependence on task difficulty and threshold. Difficulty is varied by changing stimulus bias, E. In A and B,
decision threshold is fixed at 20 Hz with E � 0.032 (red), 0.064 (mauve), 0.128 (black), and 0.256 (yellow). A, Psychometric
function, showing that percentage of rewarded trials increases with E, with data fitted by a Weibull cumulative distribution
(dotted). B, Mean trial time decreases with E; data are fitted linearly (dotted). C, Reward rate dependence on decision threshold
and difficulty. All performance curves decline steeply for low thresholds, but remain close to their maxima for a range of higher
thresholds, and optimal thresholds (�12 Hz) vary little with E. The color convention is as in A and B. RSI is 1750 ms and
nondecision latency is assumed to be 250 ms. Error bars denote SEs, and vertical dotted line marks 20 Hz decision threshold used
in the remainder of the paper. Parameters are as in the study by Wang (2002).
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performance with different decision thresholds (assumed identical for
both alternatives), using the parameters of Wang (2002).

Figure 2, A and B, reproduces stereotypical behavior in 2AFC reaction
time tasks, using the parameters of Wang (2002), as detailed in supple-
mental material (available at www.jneurosci.org). The percentage of re-
warded trials increases as the task becomes easier; simultaneously, reac-
tion times and mean trial times decrease. The reward rate (Eq. 1)
combines accuracy and reaction time, and Figure 2C shows that thresh-
olds strongly affect this quantity, resulting in steep declines below �9 Hz
and above �40 Hz. At low thresholds, noise triggers decisions before
stimulus onset, causing impulsivity. The percentage of rewarded trials
grows as thresholds increase, but decision times also grow. These effects
balance at an optimal threshold (�12 Hz for all values of E tested here),
and thereafter increases in decision time dominate increasing accuracy,
but reward rates remain within �10% of their maxima until �40 Hz,
defining a range of robust behavior. Above 45 Hz, successively fewer
trials reach threshold, resulting in no-choices.

We henceforth adopt a 20 Hz decision threshold, since it lies near the
middle of the robust performance range in Figure 2C, and can be held
constant as we modulate the network over a wide range of values without
getting too close to failure mode [the original model of Wang (2002) used
a threshold of 15 Hz]. The effect of stimulus bias E is primarily to rigidly
translate the reward rate curve. We did not attempt to covary thresholds
and gain, as these can have confounding effects.

A simpler definition of reward rate as the quotient of accuracy and
decision time exhibits a similar form for a spiking model (Lo and Wang,
2006) and in lower-dimensional models (Bogacz et al., 2006; Simen et al.,
2006). However, the reward rate in Equation 1 remains high over a larger
threshold range than that in the study by Lo and Wang (2006), and there
is no significant rightward shift in optimal reward rate as E increases, as in
the studies by Bogacz et al. (2006) and Lo and Wang (2006). This may be
due to (1) a longer RSI [1750 ms cf. 750 ms in the study by Lo and Wang
(2006)]; (2) our exclusion of penalty delays: error penalties would make
reward rate maxima more distinct; and (3) our inclusion of impulsive
and no-choice trials.

Modeling tonic NE modulation. Three types of adrenoreceptors gener-
ally mediate NE: �1 and � postsynaptically, and �2 presynaptically and
postsynaptically (Berridge and Waterhouse, 2003). Higher NE levels re-
duce membrane leak conductances, allowing cells to further depolarize
(Foehring et al., 1989; McCormick and Pape, 1990). The GABAA-
mediated chloride current is enhanced in the somatosensory cortex via
�-adrenoreceptors (Waterhouse et al., 1982; Sessler et al., 1995), as are
the amplitudes of glutamatergic-mediated EPSPs via �1 (Mouradian et
al., 1991; Devilbiss and Waterhouse, 2000).

Differing single-cell behaviors have been observed in various systems
and experimental protocols. In Figure 1 of Waterhouse et al. (1988) and
Figure 6 of Waterhouse et al. (1990), gating effects are seen during NE
iontophoresis as neurons respond to previously subthreshold stimuli,
and Figure 4 of Waterhouse et al. (1988) shows NE gating of an inhibitory
response to GABA. Other iontophoresis experiments reveal that neurons
exhibit a diversity of responses to NE, with some initially facilitated and
then suppressed and others monotonically suppressed [Devilbiss and
Waterhouse (2000), their Fig. 1]. Figures 2 and 3 of Waterhouse et al.
(2000) show that these different responses can be related to the layers in
which the apical dendritic tree resides. Finally, moving from NE ionto-
phoresis to LC stimulation, suppression or initial facilitation of evoked
responses, increase of postexcitatory inhibition, and increased stimulus-
evoked inhibition can all appear in different neurons in both cortex and
thalamus [Devilbiss and Waterhouse (2004), their Figs. 1–3, 7]. These
behaviors are not directly implemented into the current model, although
similar results can be obtained with the simpler model features described
below.

We do not specifically model adrenoreceptors, merely the effective
change in cellular or postsynaptic conductances, thus greatly reducing
the computational cost of simulations. NE modulation of EPSPs is incor-
porated by changing the peak synaptic conductances of NMDA- or
AMPA-mediated synapses. Inhibitory GABA-mediated synapses and
membrane leak conductances are modulated similarly. The concentra-
tion of NE release depends approximately linearly on tonic LC firing rate

(Berridge and Abercrombie, 1999) (for quantitative details, see supple-
mental Fig. 1, available at www.jneurosci.org as supplemental material),
and in the absence of experimental evidence to the contrary, we also
assume a linear relationship between NE level and the consequent con-
ductance changes. Changes in the membrane leak conductance gL,i of cell
i and the peak conductance gsyn,j of synapse j of cell i are modeled by
multiplying by the factors �L,i and �syn,j, respectively. These parameters
enter the evolution equations for the subthreshold membrane potential,
Vm,i, of the ith pyramidal cell or interneuron in the following form:

Cm, i

dVm, i

dt
� � gL, i�L, i	Vm, i � EL, i
 �

�
1

Ci

gsyn,jssyn,j�syn,j	Vm, i � Esyn, j
 (2)

(see supplemental material, available at www.jneurosci.org). Here Cm,
ssyn, EL, and Esyn are the membrane capacitance, fraction of open chan-
nels due to presynaptic spikes, rest potential, and reversal potentials of
ionotropic receptors, and j labels the jth presynaptic neuron.

The conductance factors � are the major parameters varied in our
tonic NE studies: � � 1 indicates that the original parameters of Wang
(2002) are retained; 1.1 means an increase in that conductance over
standard by 10%, etc. All conductances can be changed independently,
but we shall assume that NMDA- and AMPA-mediated synapses are
identically modulated because they are both glutamatergic, and no ex-
periment has yet distinguished separate modulatory effects (Berridge and
Waterhouse, 2003).

Modeling phasic LC–NE modulation. The temporal dynamics of phasic
NE release in the cortex are not well characterized. Latency and variabil-
ity of peak LC discharge and the types of adrenoreceptors involved are
likewise uncertain, although LC responses can occur in trials with reac-
tion times so short that much of them is occupied by motor response. For
longer trials, there may be more time for NE to influence the decision
network, but this is determined by unknown time scales spanning acti-
vation of adrenoreceptors to modulation of conductances.

In place of the spiking neuron models of Usher et al. (1999), Usher and
Davelaar (2002), and Shea-Brown et al. (2004), we therefore adopt a
simple linear model with three time scales: 	g,delay combines delays from
stimulus arrival in the microcircuit to LC peak firing and slow signal
propagation along noradrenergic fibers, and 	g,decay accounts for the
postpeak decay in LC firing and for NE reuptake. Along with a factor

Figure 3. Phasic LC–NE modulation of conductances. A, Steady-state peak conductance g�(t)
of Equation 3 that would result if synapses responded instantaneously to phasic NE levels. B,
Changes in peak conductance g(t) due to Equation 4.
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syn,j that scales the effect of NE level on gain change, analogous to �syn,j

in Equation 2, these prescribe a profile

ḡsyn, j	t
 � 
syn, jexp� � 	t � 	g, delay


	g, decay
� (3)

that synapse conductances would follow if they equilibrated instanta-
neously to NE levels (Fig. 3A). The actual conductance time course dur-
ing phasic release, shown in Figure 3B, is described by a leaky integrator:

	g, rise

dgsyn, j

dt
� ḡsyn, j	t
 � gsyn, j, (4)

(cf. Shea-Brown et al., 2005), in which the third time scale, 	g,rise, deter-
mines the initial conductance rise due to NE release.

Various values of 	g,delay were tried before settling on 200 ms. This
accommodates noradrenergic fiber transmission from LC to cortex
(60 – 80 ms) and is long enough to allow signal detection to induce an LC
phasic response (Clayton et al., 2004) and yet short enough to ensure NE
release before motor response (or, for long decision times, during the
decision process itself). LC stimulation experiments suggest an increase
in excitatory response in cortex within 200 ms (Waterhouse et al.,
1998b), so we set 	g,rise � 100 ms, which matches this when combined
with the 60 – 80 ms noradrenergic fiber delay. Given that the network is
reset following responses, we found single-trial behavior to be insensitive
to the third time constant, 	g,decay, which we set at 300 ms.

For phasic studies we reduce RSI � NDL to 1250 ms to steepen reward
rate curves and better reveal maxima, and, since phasic LC discharge can
produce higher cortical NE levels than tonic LC activity (Florin-Lechner
et al., 1996), we explore a wider range than for tonic modulation.

Results
Tonic NE modulation can influence robustness
of performance
To examine changes in simulated task performance with respect
to tonic NE levels, we first modulate peak GABAA synaptic con-

ductances alone, fixing all other parame-
ters at the standard values and stimulus
bias at E � 0.128. Pyramidal cells and in-
terneurons are modulated separately.

When conductances from interneu-
rons to pyramidal cells change by only 4%,
performance degrades dramatically (Fig.
4, turquoise curves), by increases in the
fraction of either no-choice trials (Fig. 4A,
turquoise dotted curve) or impulsive trials
(Fig. 4A, turquoise dashed curve). These
poor performance modes reverse if self-
inhibitory synapses of interneurons are
modulated (Fig. 4A, orange dashed and
dotted curves), but performance still dete-
riorates rapidly. The range of correct trials
is severely limited and reward rates drop to
zero outside the 1 � 0.04 factor range (Fig.
4B–D, turquoise and orange curves). Such
sensitivity is expected for a globally con-
nected network, small changes in conduc-
tance being effectively multiplied by the
total number of presynaptic connections
(2000, for our model). Performance is
more robust when GABAA synapses are si-
multaneously modulated in pyramidal
cells and interneurons (Fig. 4, violet
curves): reward rates drop by �20% for a
factor change of 1.2 and optimal reward
rates remain approximately constant (Fig.
4D). These results hold for all stimulus bi-
ases E (data not shown here; compare Fig.

6B). Independent modulation and comodulation of NMDA- and
AMPA-mediated conductances and membrane leak conduc-
tances produce similar results, as shown in Figure 4E–G. Sample
firing rates of selective cells in the three regimes are shown in
Figure 5, in which, to illustrate asymptotic behavior, they have
not been reset after crossing thresholds.

Network performance can be understood by examining be-
haviors of individual populations. When their self-inhibitory
synaptic weights are strengthened, interneurons self-suppress
more than they suppress the pyramidal cells, resulting in impul-
sivity (see jumps across threshold in Fig. 5C, due to increased
pyramidal activity). Increases in inhibitory synaptic strength to
pyramidal cells have the opposite effect, suppressing the latter
more than the interneurons, so that both selective populations
are less likely to reach threshold. Performance might not degrade
as fast if thresholds were changed for each case, but the imbalance
has a strong effect. Under equal modulation there is an effective
increase in excitation, since there are approximately three times
as many excitatory as inhibitory cells.

Three phenomena emerge here. First, unless synapses within
and across the cell populations are modulated concurrently,
small changes in NE levels can significantly degrade performance.
Second, the characteristic inverted-U in task performance as a
function of LC firing rate follows from linear dependence of peak
synaptic conductance on NE concentration. Third, optimal re-
ward rates need not be sacrificed for robustness. Modulation of
each conductance in a population of one cell type yields brittle
performance, while simultaneous modulation of both produces
robustness. Simultaneous modulation of all glutamatergic and
GABAergic synapses yields similar results: with equally varying
excitatory and inhibitory conductances (��E/��I � 1), perfor-
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mance is slightly more robust to decrease in conductances and
substantially more so to conductance increases (Fig. 6A, black
and violet curves). Figure 6B shows that the primary effect of
stimulus bias on performance is to raise reward rates as the task
becomes easier, with little effect on robustness (compare Fig. 2).

If glutamatergic- and GABAergic-mediated synapses are
modulated by different adrenoreceptors (Waterhouse et al.,
1982, 2000; Mouradian et al., 1991; Sessler et al., 1995; Berridge
and Waterhouse, 2003), then excitatory and inhibitory synapses
may not be equally affected by NE. Allowing differential changes,
we find that robustness is further enhanced if glutamatergic syn-
apses change less than GABAergic synapses, being greatest when
��E/��I 
 1/2 and dropping again for ��E/��I � 1/3, implying
that an optimal ratio exists (Fig. 6A, compare green, brown, and
black curves).

Transient and steady-state dynamics: single-unit and
population responses
We next examine how different tonic NE levels affect the neural
dynamics as all peak synaptic conductances for NMDA, AMPA,
and GABAA are changed by a common factor. Figure 7A shows
firing rates averaged over neurons in each of the four populations
and over 500 simulated trials for the conductance factors 0.85, 1,
1.5, and 2.0 (top to bottom). Here neural activities were not reset
to their spontaneous activities upon reaching the decision thresh-
old, so that dynamical evolutions to steady states are revealed.

For the conductance factor 0.85, which simulates a low LC
firing rate, there is little spontaneous prestimulus activity, and the
selective populations ramp up slowly during stimulus presenta-

tion for both correct and error trials, suggesting unmotivated
performance (Fig. 7A, blue and red curves in top panels). Error
trials show lower activity on average than correct trials, resulting
in longer decision times, and in many cases firing rates fail to
reach threshold before stimulus cutoff. Impulsive trials are rare
or nonexistent. In contrast, with NE levels exceeding standard by
factors of 1.5 and 2, decisions are faster but accuracy suffers,
approaching chance as impulsive trials prevail. Figure 7A shows
that neural activities tend to split slightly before stimulus onset
even in valid trials (not impulsive or no-choice), so that the de-
cision depends largely on which population is winning at stimu-
lus onset, determined by random fluctuations, rather than the
stimulus itself.

Figure 7B illustrates how averaged single-cell responses vary
with tonic NE level and stimulus bias. Equal increases in conduc-
tances of pyramidal cells and interneurons raise spike counts
monotonically (black curve), and responses also increase with
stimulus bias E, due to faster ramping (gray, mauve, and black
curves). However, if pyramidal cell conductance changes are half
those of interneurons, spike counts exhibit an inverted-U shape
(green curve), while for ��E/��I � 1/3, they decay almost mono-
tonically (maroon curve). We recall that the ratio ��E/��I � 1/2
also maximizes robustness (Fig. 6A).

This nonlinear inverted-U response is obtained with simple
linear relations between LC firing activity, NE concentration, and
peak synaptic conductances. Hence, unlike Hoshino (2005), we
suggest that the diverse neuronal responses observed in experi-
ments such as that of Devilbiss and Waterhouse (2004) may be
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due solely to network effects. Specifically, our model predicts
that, when local networks have high affinity for NE, applying
more NE should reduce the signal-to-noise ratio as in region III
of Figure 7B (green). In contrast, if network NE affinity is mod-
erate, NE can enhance signal-to-noise as in region II. If NE affin-
ity is sufficiently low and application of NE high, we expect tran-
sitions from regime I to regimes II or III, as exhibited by gating
neurons. Thus, for ��E/��I 
 1/2, our predictions agree with
physiological results of Hasselmo et al. (1997) and Moxon et al.
(2007), although those works concern cortical areas that encode
sensory stimuli rather than signal integration and decision mak-
ing. Our model parameters are tuned to capture decision making
and working memory rather than sensory encoding. Further
work with a sensory-encoding network model similar to that of
Hasselmo et al. (1997) would be required for better comparison
with experimental data.

Phasic LC–NE modulation affects neuronal dynamics and can
further enhance performance
As noted above, phasic NE and conductance dynamics are poorly
characterized. In particular, since receptors that modulate
GABAergic and glutamatergic synapses could have different ac-
tivation rates and/or affinities for NE, it is important to test
whether such variations can significantly affect performance. In
the absence of quantitative affinity and timing information, we
first examine modulation of glutamatergic synapses alone, corre-
sponding to either a relatively higher affinity or faster activation
of adrenoreceptors that modulate glutamatergic synapses than
those modulating GABAergic synapses. We also employ a wider
range of peak [NE], since Florin-Lechner et al. (1996) show that
phasic LC discharge could release significantly more extracellular

NE than the same tonic discharge rate. However, that study uses
in vivo microdialysis, which has low temporal resolution.

Figure 8 illustrates the effects on population firing rates. In-
terestingly, during phasic modulation the activity of interneu-
rons increases transiently (by �3.5 for a factor change of 1.8),
thus allowing more rapid winner-take-all behavior and hence
faster decisions as selective neural activities (blue) cross thresh-
old. However, since conductances decay (Fig. 3B), the longer
time asymptotic dynamics remain similar (compare neural activ-
ities 1500 –2000 ms after stimulus onset).

In terms of network behavior, Figure 9, A and B, show that
accuracy and mean trial durations decrease with NE level, the
latter falling rapidly toward the RSI plus LC delay. Decrease in
trial time initially dominates the drop in accuracy, and reward
rates increase; they subsequently fluctuate and can even drop as
accuracy continues to decrease (Fig. 9C). Since RSI contributes to
the trial duration, it can alter this: small RSIs emphasize the in-
fluence of decreased decision times, so that reward rates can re-
main nearly constant, but it is clear that phasic modulation of
only glutamatergic synapses can improve reward rates, especially
for more difficult tasks. In contrast, Figure 9D shows that phasic
NE release is no longer beneficial when glutamatergic and
GABAergic synapses are equally modulated, with other parame-
ters as before.

Tonic NE affects accuracy and working memory in cued
response tasks
Finally we briefly address the cued response protocol: a hard limit
of deadlined responding in which stimuli are displayed for a fixed
period, after which the subject must respond either immediately
or following a delay (Shadlen and Newsome, 2001; Roitman and
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Shadlen, 2002). Delayed responses invoke working memory, re-
quiring sustained neural activity in the absence of stimuli. The
present network with standard (optimal) parameters, in particu-
lar strong recurrent excitation, exhibits sustained activity charac-
teristic of working memory (Wang, 2002; Wong and Wang,
2006), which could be returned to baseline by additional inhibi-
tory inputs (Lo and Wang, 2006), or by reduced NE levels.

Figure 10A shows firing rates throughout the prestimulus,
stimulus presentation, and delay periods. For low tonic LC activ-
ity (Fig. 10A, top), accuracy is significantly better when subjects
respond directly after stimulus offset than 1000 ms later, but most
decisions are slow and poststimulus activity is not sustained, as in
unmotivated behavior. When tonic LC activity is higher (Fig.
10A, center, with standard parameters), the network can inte-
grate and sustain memory during the delay period, while for very
high tonic LC activity (Fig. 10A, bottom), neural activities split
before stimulus onset, promoting storage of impulsive decisions,
so that accuracy is poor for both immediate and delayed
responses.

Previous work has revealed the importance of NMDA-
mediated recurrent synapses for integration and working mem-
ory (Wang, 1999, 2002; Brunel and Wang, 2001; Wong and
Wang, 2006), so we also tried changing NMDA peak synaptic
conductances alone. The dashed curves in Figure 10B show that

the model’s performance deteriorates more dramatically in this
case.

Discussion
Inverted-U modulation of decision performance
The neural network developed here reproduces the observed
inverted-U curve of behavioral performance (Yerkes and Dod-
son, 1908) under different levels of LC–NE modulation (Usher et
al., 1999; Aston-Jones and Cohen, 2005). It exhibits unmotivated
behavior and fading memory at low tonic NE levels, and impul-
sive response and poor accuracy at high NE levels. The latter may
be related to breaking of fixation and saccades during the pre-
stimulus period observed in monkeys [cf. Roitman and Shadlen
(2002) and Ditterich (2006), his Fig. 8b]. A robust range of near-
optimal reward rates exists at intermediate tonic NE levels.

Our model shows that phasic LC activity can further improve
performance, if only glutamatergic synapses are affected. Equal
excitatory and inhibitory modulation does not improve reward
rates, in contrast to multilayer connectionist models (Usher and
Davelaar, 2002). We therefore predict that, if the phasic LC mode
is to improve performance over its tonic mode (as found in ex-
periments on behaving animals), then phasic modulation of ex-
citation must dominate changes in inhibition. This can be
achieved either by a relatively higher NE affinity or faster activa-
tion of adrenoreceptors associated with excitation. Relative acti-
vation dynamics and NE affinities of �1 and � adrenoreceptors,
which may be responsible for phasic NE modulation of glutama-
tergic and GABAergic synapses, respectively, could be compared
to test this prediction.

The inverted-U performance curve should be differentiated
from the inverted-U effect of output signal-to-noise ratio
(evoked vs spontaneous neural activity) in sensory cortical and
thalamic areas that has been exhaustively investigated in experi-
ments and computational studies. We implicitly include modu-
lation of stimulus input by modulating AMPA-mediated syn-
apses from incoming stimuli to a decision network, but do not
explicitly model NE effects on upstream processing areas. Nor do
we investigate the effects of modulating input synapses alone,
thereby changing input signal-to-noise ratios. This would pri-
marily influence inputs to the selective populations, thus adjust-
ing reward rates correspondingly (compare Figs. 2, 6B, 7B, 9).

Implications of robust decision performance
The brain is noisy in many aspects and on many levels (Faisal et
al., 2008). Probabilistic behavior, as in the present model, can
arise due to fluctuations in synaptic conductances (e.g., synaptic
noise outside the local microcircuit) and noisy external stimuli.
Our all-to-all connected network is especially sensitive: modest
increases or decreases in recurrent excitatory synaptic strengths
can cause impulsive choices or indecisiveness, respectively (Fig.
4). Small heterogeneities or synaptic plasticity can therefore be
disastrous for performance.

Our study is the first to show how NE modulation can tune
behavioral performance without sacrificing robustness. Specifi-
cally, when excitatory and inhibitory cells are modulated simul-
taneously, the model maintains high reward rates over a wide
range of synaptic conductances (Fig. 4). Furthermore, for fixed
decision thresholds, increased robustness does not reduce opti-
mal performance levels. To our knowledge, no experiments have
investigated NE effects on interneurons in the parietal cortex,
although there is evidence for modulation of interneurons in
other brain areas [e.g., frontal cortex (Kawaguchi and Shindou,
1998)], but we predict that, if tonic NE modulation is to play an

0 1000 2000
0

20

40

0 1000 2000
0

20

40

F
iri

ng
 r

at
e 

(H
z)

0 1000 2000
0

20

40

Time from stimulus onset (ms)

1.4

1.8

1

B

A

C

Figure 8. Neural dynamics under phasic LC activity. Trial- and population-averaged firing
rates of the four neural populations, for rewarded trials, with different phasic LC discharge
magnitudes. As in Figure 7A, firing rates are not reset to spontaneous states after reaching 20 Hz
decision threshold (dashed black lines). A, Standard parameters (
syn,j � 1). B, Modulation of
only glutamatergic synaptic conductances with a peak factor of 
syn,j � 1.4. C, As in B, but with

syn,j � 1.8. Shown are correct selective population (blue), incorrect selective population (red),
nonselective population (black), and inhibitory interneurons (green); vertical black lines denote
start of NE release in cortex. Stimulus bias E � 0.128.
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important role in network behaviors such as robust decision
making, interneurons and pyramidal cells should be
comodulated.

Glutamatergic and GABAergic synapses in pyramidal cells
and interneurons may not be equally modulated by NE. Our
differential modulation studies reveal that robustness is greatest

when excitatory conductances change by
approximately half as much as inhibitory
ones (Fig. 6). This may be due to the pre-
dominance of excitatory cells in the model:
greater increases in inhibition could imply
more balanced tuning of overall excitatory
and inhibitory synaptic currents. This may
help the network maintain robustness
against heterogeneities, and is consistent
with in vivo studies of gain modulation, in
which excitatory and inhibitory synaptic
conductances are found to be modulated
proportionally (e.g., Haider et al., 2006).

Switching, resetting, and heterogeneity
of neural circuits
Robustness is necessary to reject small per-
turbations in neuromodulator levels, but
behavior must also respond to meaningful
concentration changes. In this regard, our
network permits unmotivated, optimal,
and impulsive behaviors, allowing NE lev-
els to switch it among different functional
modes. Specifically, changes in the net-
work’s multiple steady states (Wong and
Wang, 2006; Wong et al., 2007) as NE level
increases allow adaptation to different be-
havioral requirements. It can move from a
single spontaneous state, to bistable states
characteristic of working memory, to deci-
sion making, and ultimately to impulsive,
inaccurate, but potentially exploratory
choices. These transitions in neural activi-
ties and network performance are most
clearly seen in the cued response protocol
of Figure 10. They differ from the connec-
tionist model of Usher and Davelaar
(2002), in which it was shown, under a dif-
ferent experimental protocol, that low
(high) tonic LC–NE activity is good (bad)
for working memory.

Interestingly, we did not obtain
inverted-U behavior in working memory
as observed in the literature (e.g., Arnsten,
2007). Instead, sustained activities in-
crease monotonically with increasing
tonic NE, mainly due to the fact that our
model includes only one adrenoceptor
type associated with either excitatory (�1)
or inhibitory (�) conductances. Other ad-
renoreceptors certainly exist. For example,
working memory in prefrontal cortex is
enhanced by �2A but suppressed by �1 and
�1 receptors (Ramos and Arnsten, 2007),
while posterior cortical systems are en-
hanced. Multiple receptor types could
greatly diversify the switching and reset-

ting of cortical functions.
The fact that the LC–NE system can trigger varied cellular and

network functional modes may have deeper implications. If dif-
ferent microcircuits contain diverse adrenoreceptors or cell types
and some have lower affinity for NE than others (Arnsten, 2007),
the former would be inhibited at low LC activity, while decisions
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Figure 10. Accuracy and neural dynamics with cued responses. A, With increasing tonic NE levels (top to bottom), the network
passes through different functional states: from lack of integration and sustained memory, to an integrator with memory, to an
impulsive integrator with memory of poor decisions. Vertical black dotted lines denote onset and offset of stimulus. Horizontal
dashed black lines show decision thresholds. Color codes are as in Figure 8. B, Black, All peak synaptic conductances are modulated
equally. Green, Only NMDA-mediated synapses are modulated. Accuracy is obtained by interrogation either immediately after
stimulus offset (solid curves, 1000 ms) or after an additional 1000 ms delay to test working memory-aided decisions (dashed
curves). Memory-aided decisions are significantly less accurate under low tonic LC activity, an effect increased when only NMDA-
mediated synapses are modulated.
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are made and memories stored in other microcircuits. Higher LC
rates would activate previously dormant microcircuits while
other, formerly active ones could be silenced. The network of
Wang (2002) exhibits such behavior, consistent with network
resetting by neuromodulators as conjectured by Marder and Thi-
rumalai (2002) and Bouret and Sara (2005).

The ability to appropriately change network settings is impor-
tant in the behavioral context of exploitation versus exploration
(Aston-Jones and Cohen, 2005). Exploitation would occur when
a task with “old rules” is repeatedly performed well with interme-
diate tonic NE or in the phasic LC mode. The present network
with high tonic NE, coupled with a learning algorithm [e.g.,
Soltani and Wang (2006) and Fusi et al. (2007)], may be able to
explore new behavioral states by making more impulsive errors
under the old rules; reward schedules could then reshape it to
adapt to new rules. The effects of high tonic LC on exploration are
examined by Aston-Jones et al. (1997) and McClure et al. (2005).

At the cellular level, stimulus-evoked responses display a
range of behaviors at different tonic NE levels (e.g., Devilbiss and
Waterhouse, 2004), which may be due to cellular or network
effects or to both. Our model can exhibit nonmonotonic single-
cell responses such as gating and inverted-U behaviors. It was not
specifically tuned to achieve these results, and they are by no
means obvious, since we assume linear dependence of conduc-
tance on NE level. These results suggest that nonlinear variation
of stimulus-evoked cellular responses with NE can arise from
network effects alone.

Summary and future work
We have drawn on recent in vitro and in vivo data on LC–NE
modulation to model and analyze the effects of tonic and phasic
NE release on a cortical microcircuit, through modulation of
individual neural populations and synapse types. Our study illus-
trates the importance of including biophysical details, suggests
possible bridges to more abstract optimality studies [e.g., Bogacz
et al. (2006) and Bogacz (2007)], and identifies crucial experi-
mental data that are currently lacking. Since we model a generic
cortical microcircuit, modulated only at the synaptic level, our
methods may generalize to other types of neuromodulators and
cognitive tasks.

Although we neglect heterogeneities, our cortical microcircuit
is relatively detailed. However, the LC–NE system is represented
simply by proportional modulation of synaptic conductances in
the tonic mode and by a stereotypical impulse response in the
phasic mode. In both cases, the mapping from LC firing rates to
NE release is linear, and phasic mechanisms are assumed to act
and reset within a single trial. We also neglected the suppression
of LC firing that follows enhancement in some experiments
(Clayton et al., 2004). More detailed descriptions of population
dynamics such as conductance-based integrate-and-fire models
(Destexhe, 1997; Usher et al., 1999) or phase-reduced models
(Shea-Brown et al., 2004) are needed to capture this phenome-
non and to include longer-term effects, such as the slow dynamics
of calcium currents and molecular cascades activated by adreno-
receptors. Across-trial sequential effects and learning may also
involve long-term potentiation by NE modulation (Berridge and
Waterhouse, 2003; Bouret and Sara, 2005), but despite some
studies of learning in decision networks (Simen et al., 2006;
Soltani and Wang, 2006; Fusi et al., 2007; Eckhoff et al., 2008),
mechanistic biophysical modeling of how LC–NE system affects
them is still lacking.

We have considered only a single cortical microcircuit, but
decision making may be distributed over several brain regions,

including the posterior parietal area, frontal eye fields, superior
colliculus, and dorsolateral prefrontal and secondary somatosen-
sory cortices (Gold and Shadlen, 2007). Further electrophysio-
logical data from such areas under NE modulation could sub-
stantially improve understanding. It would be interesting to learn
how the LC–NE system affects not only macroscopic behaviors,
but also their multiple neural correlates.
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