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Abstract
The function of the retina is crucial, for it must encode visual signals so the brain can detect objects
in the visual world. However, the biological mechanisms of the retina add noise to the visual signal
and therefore reduce its quality and capacity to inform about the world. Because an organism’s
survival depends on its ability to unambiguously detect visual stimuli in the presence of noise, its
retinal circuits must have evolved to maximize signal quality, suggesting that each retinal circuit has
a specific functional role. Here we explain how an ideal observer can measure signal quality to
determine the functional roles of retinal circuits. In a visual discrimination task the ideal observer
can measure from a neural response the increment threshold, the number of distinguishable response
levels, and the neural code, which are fundamental measures of signal quality relevant to behavior.
It can compare the signal quality in stimulus and response to determine the optimal stimulus, and
can measure the specific loss of signal quality by a neuron’s receptive field for non-optimal stimuli.
Taking into account noise correlations, the ideal observer can track the signal to noise ratio available
from one stage to the next, allowing one to determine each stage’s role in preserving signal quality.
A comparison between the ideal performance of the photon flux absorbed from the stimulus and
actual performance of a retinal ganglion cell shows that in daylight a ganglion cell and its presynaptic
circuit loses a factor of ~10-fold in contrast sensitivity, suggesting specific signal-processing roles
for synaptic connections and other neural circuit elements. The ideal observer is a powerful tool for
characterizing signal processing in single neurons and arrays along a neural pathway.
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1. Introduction
A fundamental problem for all sensory systems is to detect a stimulus in the presence of noise.
Detection requires the stimulus to be distinguished from the background which may include
other stimuli. The problem is that noise in the evoked response introduces uncertainty about
the presence of the stimulus (Shannon, 1948). Neural signals are invariably mixed with noise
from a variety of sources, some in the external world, some from synaptic inputs, and some
from the neuron’s biochemical and biophysical properties. The noise limits the neural signal
quality and therefore its capacity to inform the brain (Geisler, 1989; Laughlin, 1989). This is
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exemplified in a retinal neuron such as a ganglion cell whose task is to transmit visual signals
crucial for an organism’s survival (Barlow, 1981, 1982). The task of inferring the presence of
a stimulus from the visual signal is easier when little noise is present, but when the noise
obscures the signal, the constraints of evolution are challenged (Figure 1).

Because vision and ultimately the organism’s survival depends on the ganglion cell’s signal
quality, which is limited by noise and dynamic range, circuits presynaptic to a ganglion cell
must have evolved, within the bounds of biological constraints, to maximize signal quality of
the ganglion cell’s spike train. This suggests that presynaptic components such as retinal layers,
local circuits within a layer, neurons within a circuit, and biophysical properties of the neural
compartments all have specific roles in determining the ganglion cell’s signal quality. For some
extensively-studied circuits of the vertebrate retina, such as the rod-bipolar pathway, much is
known about how signal and noise are processed to benefit the ganglion cell’s signal quality
(Barlow et al., 1971; Taylor & Smith, 2004; Dunn et al., 2006). However, although the general
response properties of retinal cell classes, e.g. horizontal, bipolar, amacrine and ganglion cells
are known, the exact functional role for most cell types and their specific circuits is not --and
investigation into their specific effects on the ganglion cell’s signal quality has only just begun
(Freed, 2005; Levine, 2007; Murphy & Rieke, 2008; Borghuis et al., 2009).

To determine the role of each circuit component, a method is needed to measure and compare
signal quality between different neurons and stages of the circuit. To be relevant to survival,
the measured signal quality must be a metric that can be related to a behavioral task performed
by the organism. A basic measure of the quality of a neural response is its signal-to-noise ratio
(SNR), the ratio of the amplitude of a signal to its associated noise (Figure 2) (Fechner,
1851;Hecht et al., 1942;Rose, 1942;Barlow, 1957,1978,1982;Green & Swets, 1988;Meister &
Berry, 1999;Dhingra et al., 2003,2005;Cohn, 2004). With accurate measurements of SNR from
recordings of the ganglion cell and neurons in its presynaptic circuit, their contribution to signal
quality might be determined. This goal seems achievable because a wide variety of methods
for testing specific points in the circuit are available, for example, multi-electrode recordings,
functional imaging, specific knockouts and pharmacological blockers, and biophysically-based
computational models. If signal quality in the ganglion cell and its presynaptic circuit could
be objectively compared, one might locate the noise sources that limit the ganglion cell’s
capacity to inform the brain, and determine the specific roles for each component of the
ganglion cell’s presynaptic circuit. Further, if one could identify the spatio-temporal
components of the evoked response that can inform about a behaviorally-relevant stimulus,
this would provide a tentative definition for the neural code, and these informative components
could be compared along a pathway. What is needed is a behaviorally-relevant method
applicable to a wide variety of signals, and a rationale for how to apply it.

In this synthesis, we describe a paradigm to objectively measure the SNR of a neural signal.
The basic ideal observer method we describe is widely used and well-matched for use on retinal
signals. We cannot claim that it is the best one for measuring neural signal quality, because
several appropriate methods exist and others are actively being developed (see Appendix). The
ideal observer’s advantage is that it accurately measures binary discriminations using a decision
rule defined by the sensory task, which provides a metric of signal quality in units of the tested
stimulus parameter (e.g. contrast sensitivity), and is therefore appropriate for comparison with
behavioral results (Parker & Newsome, 1998). However, to go beyond an understanding of the
basic method, i.e. to measure behaviorally-relevant SNR through the retina and identify
specific roles for circuit components, one must have an appreciation of the signal processing
roles of retinal circuitry, the effect of noise sources and receptive fields on SNR, and a basic
understanding of how to track sensitivity along a pathway. These principles and an introduction
to ideal observer analysis are included in this article. Although we present some practical
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details, this article is not intended to be a comprehensive “how-to” manual, but rather a
thorough introduction to the application of ideal observer analysis to the retina.

2. Ideal observer
An ideal observer determines the sensitivity of a neural system to an incremental change in a
stimulus. In a discrimination task, the ideal observer chooses the stimulus with the highest
probability given the neural responses. As a practical example for characterizing retinal signals,
we outline a method using a discriminant template. The following sections build on this
example to show how the ideal observer can objectively compare neural signals.

2.1. The sensory task
To evaluate the SNR of a specific system, one decides 1) what stimulus parameter to test, 2)
what sensory task is to be performed, and 3) how the responses are to be measured (Barlow,
1962; Geisler, 1989; Thibos & Levick, 1990; Parker & Newsome, 1998). For the visual system,
(1) stimulus contrast is a commonly tested parameter. (2) Classification of the response based
on amplitude is a common task. However, the best stimulus for a task is not always known at
the outset (Parker & Newsome, 1998; Johnson, 1980a,b). One can start by searching for a
stimulus that evokes the most sensitive response i.e. the one with the largest amplitude or the
highest SNR. (3) Next, one can analyze specific components of the response, for example,
transient or sustained components, or all components together. The SNR obtained will of course
depend on what components of the response are measured. The components of interest and
their associated noise must be measured under the same conditions, i.e. the noise is quantified
as any variability of the recorded signal that could obscure the evoked response (Field & Rieke,
2002a,b). In addition, because every method for measuring signal quality creates some bias,
either from the type of stimulus, the recording method, the signal components measured, or
inadequate sample size, a valid comparison between the quality of different signals can only
be made when these factors are taken into account. When the quality of different signals is
measured with identical stimulus and measurement paradigms, an unbiased comparison can
be made between different points in a neural pathway or between a neuron and behavior of the
whole organism. We will describe in more detail below how ideal observer analysis meets
these requirements.

2.2. Algorithm for measuring performance
The ideal observer is an algorithm that discriminates between neural responses to different
stimuli. It is presented with a system’s responses to repeated stimuli that differ in one parameter.
Because the responses contain noise, they may be difficult to distinguish (Figure 2). For each
response, the observer chooses which stimulus was most likely. The stimulus parameter is
varied, and consequently the observer’s performance varies: when the stimuli differ by a small
amount, the system’s responses are indistinguishable and therefore the observer chooses at
nearly chance level, but when the stimuli differ by a larger amount, the observer chooses the
correct stimulus more often. This relatively simple procedure quantifies how well the system’s
response discriminates between the stimuli (Figure 2) (Barlow, 1978;Johnson, 1980b;Fechner,
1851;Geisler, 1989;Geisler et al., 1991). By definition, an observer that measures the quality
of a response in this manner using all available signal components that can inform about the
stimulus is called “ideal” (Rose, 1942; DeVries, 1943; Barlow, 1962;Green & Swets,
1988;Geisler et al., 1991).

If the system under study is a theoretical model, the noise distributions can be precisely defined,
so the observer can readily achieve this perfect ideal. However, when the system under study
is a real neural circuit or a computational model of one, knowledge of the noise distributions
may be limited. In this case the observer can still be ideal in the sense that it uses all the available
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signal components, but it must learn the properties of the noise distributions from the system’s
responses. For most retinal responses, where the noise distributions are approximately
Gaussian and change little with a small change in the stimulus, the rules for discrimination are
relatively simple. Therefore, we present here a simple near-optimal method and explain for
typical retinal measurements how to approach optimality with incremental improvements
(Geisler et al., 1991; Dhingra & Smith, 2004; Chichilnisky & Rieke, 2005).

2.3. Definition of paradigm
A paradigm called “two-alternative forced choice” is widely used in psychophysics (Green &
Swets, 1988; Geisler, 1989), but it has also been used to assess the performance of neural
signals (Geisler et al., 1991; Dhingra et al., 2003; Dhingra & Smith, 2004; Chichilnisky &
Rieke, 2005; Dunn et al., 2006). A pair of stimuli, differing in one parameter, say, contrast, are
repeatedly presented to a neural system, and the responses are given to the ideal observer. In
the general case, to maximize accuracy the ideal observer chooses the stimulus category with
the highest probability given the neural responses (see Appendix A.2). In our example, the
ideal observer accumulates the probabilities for the binary discrimination by constructing a
pair of histograms of response amplitude during a training period (Figure 3). The responses
can be any physiological record, e.g. voltage, current, spike rate or spike time. Each stimulus
presentation and its associated response is called a “trial”, and for each trial the ideal observer
chooses which stimulus was presented on the basis of the probabilities from the histograms.
A plot of the fraction of correct responses vs. the contrast increment defines the performance
(Figure 3). An advantage of this experimental paradigm is that its measure of neural
performance allows a direct comparison with behavioral performance because both are a metric
for the same visual task.

Consider a specific example, the response of a brisk-transient (alpha/Y) ganglion cell to a flash
of light (Enroth-Cugell & Robson, 1966; Peichl & Wässle, 1983; Dhingra et al., 2003). The
response is noisy, evident in an intracellular recording of its graded potential and also in a
recording of its spike train. The graded potential response has an initial transient that decays
to a maintained depolarization, as modeled in Figure 4, and contains static and dynamic
nonlinearities. In this example, a non-stationary Poisson distribution generated the noise, which
passed through a saturating synapse, so the noise varied in a complex manner with stimulus
amplitude and time. Because a typical neural response contains noise that varies with the
synaptic release rates and the amount of saturation, the transient and sustained portions of the
response may contribute differently to the overall signal quality (Figure 4). Therefore the
response can inform the brain not only through changes in its amplitude but also in its temporal
pattern (Geisler, 1991). The objective for the ideal observer is to measure this ability to inform
about the stimulus.

The basic paradigm assumes that the average responses and their noise distributions do not
vary over the repetitions of the stimulus (Green & Swets, 1988). If these properties vary, the
performance measured may not approach the ideal maximum that would otherwise be possible.
This can be evaluated by comparing, for example, trials taken from the beginning and end of
the stimulus sequence (Appendix D in Geisler et al., 1991). Adaptation effects are a common
difficulty in use of the ideal observer, and must be carefully controlled by the experimenter.

2.4. Dimensional reduction and the ideal filter
For each trial, the observer makes the decision between the 2 stimuli on the basis of a single
comparison between their probabilities. Therefore, when an observation consists of a single
dimension, the observer directly compares the probabilities of the 2 responses (see Appendix
A.1). However, when an observation consists of multiple dimensions, for example, when
multiple time bins are defined to capture a response’s temporal components, each potentially
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informative, the observer must combine them. One way to accomplish this is dimensional
reduction using an ideal template filter (Figure 5; see Appendix, A.2; Duda et al., 2001). The
ideal filter is related to the theory of “matched filters” that optimally remove noise from a
known signal (Figure 5A; Turin, 1960; Baylor et al., 1980; Laughlin, 1996; Kay, 1998; Bialek
& Owen, 1990; Armstrong-Gold & Rieke, 2003). It is a “discriminant template”, or set of bin
weights, each multiplied with the corresponding response bin from each trial (Figure 5B,C).
The individual weighted bin products are summed across all the bins, and the total represents
the response amplitude for the trial (Figure 5C). The discriminant template is constructed to
optimally separate the pair of response sets on a one-dimensional scale (Figure 5D; Duda et
al., 2001). It removes any patterns of noise that are dissimilar to the responses, i.e. those that
cannot inform the brain about the discrimination task. The remaining noise components, which
cannot be removed from the signal by a linear filter because they comprise the same patterns
as the signal, therefore limit the response’s signal quality and SNR. The result is a set of
response amplitudes, one for each trial, transformed to maximize the set’s collective ability to
inform about the discrimination task (van Rossum & Smith, 1998; Dhingra & Smith, 2004;
Chichilnisky & Rieke, 2005). This procedure of dimensional reduction from many bins to one
greatly simplifies the process of discrimination between the pair of stimuli (see Appendix, A.
2; Duda et al., 2001; Thakur et al., 2007).

The template for the discriminant filter can be constructed in several ways (Baylor et al.,
1980; Watson et al., 1983; Dhingra & Smith, 2004; Chichilnisky and Rieke, 2005; Dunn et al.,
2006; Thakur et al., 2007). Using the standard linear discriminant, if the noise is uncorrelated
and constant over the bins, the optimal template is equal to the average signal, the difference
between the mean responses to the pair of stimuli (Figure 5B, Template 1) (Duda et al.,
2001). If the noise varies over the bins, the optimal template is equal to the difference between
the means divided by the variance (Figure 5B, Template 2) (Duda et al., 2001). These templates
set the contribution of each bin according to its SNR. If the noise is correlated between bins,
the optimal template is equal to the difference between the means times the inverse covariance
matrix, calculated as the Fisher Linear Discriminant (“Fisher LDA”) (Figure 5B, Template 3;
see Appendix, A.2; Duda et al., 2001; Dhingra & Smith, 2004; Averbeck & Lee, 2006; Borghuis
et al., 2008). With an adequate number of trials, the Fisher LDA template is generally the most
accurate of the 3 because it takes into account noise correlations (Figure 5D). Often it is helpful
to try all 3 templates on full and partial data sets to compare the incremental improvements in
performance (Chichilnisky & Rieke, 2005; Averbeck & Lee, 2006; Borguis et al., 2008). A
comparison of the results of templates 1 and 2 will show the significance of changes in
variability across dimensions (bins). A comparison of templates 2 and 3 will show the
significance of taking correlations into account (Latham & Nirenberg, 2005; Averbeck & Lee,
2006). When sufficient data are available, some highly nonlinear responses may be optimally
discriminated by a nonlinear function of bin values (see Appendix, A.2). When only 1 bin is
considered, there is no need for dimensional reduction, and the ideal filter template reduces to
a single constant of unit value.

2.5. Likelihood and test sets
The histograms that determine the ideal observer’s choice are called the “likelihood
histograms” (Figure 3). They are constructed from the likelihood set, the trials that define for
each stimulus the response mean and variability, similar to the “probability of the response
given the stimulus” from Bayes’ Rule (Green & Swets, 1988;Duda et al., 2001;Geisler,
2004;Ma et al., 2006;Gold & Shadlen, 2007). Each likelihood histogram is normalized to unit
area, giving a pair of probability density functions (PDFs), which are look-up tables containing
the probability that a given response is evoked by a certain stimulus. Because each stimulus in
the paradigm is presented with equal frequency, the likelihood histogram probability for a
response is proportional to the probability that a stimulus evoked that response (Green & Swets,
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1988;Geisler et al., 1991). To measure discrimination performance one evaluates how well the
stimuli can be distinguished on a trial-by-trial basis using another set of trials, called the test
set. The likelihood and test sets must be different, and for best accuracy they should be as large
as possible (see Appendix A.2).

To generate the test set, the “jack-knife” paradigm is commonly used, in which the likelihood
set comprises all trials but one, and that one trial is tested against the likelihood set (Efron,
1981; Duda et al., 2001). Then the entire process is repeated, each time with a different
individual test trial removed from the likelihood set, so that all the trials are tested (Figure 3).
Because both likelihood and test sets comprise almost the entire set of trials, this paradigm
maximizes the sample size which improves accuracy. To find the accuracy of a certain number
of trials, one measures performance of a subset, e.g. one quarter of the trials, then compares
the performance of the resulting 4 shorter runs (Efron, 1981; Geisler et al., 1991; Dhingra &
Smith, 2004).

2.6. Likelihood rule and neurometric curve
As described above, for each response in the test set the ideal observer chooses the stimulus
with the highest probability in the likelihood set, i.e. the one that was most likely (Figure 3)
(Geisler, 1991;Dhingra & Smith, 2004). The choice, based on the ratio of the probabilities, is
called the likelihood ratio decision rule, a simplified Bayes’ Rule that is optimal because no
other decision rule reflects more accurately the probability of the stimulus given the response
(Green & Swets, 1988;Geisler, 1989;Duda et al., 2001). The choice of the most likely stimulus
is equivalent to comparing the likelihood ratio to a criterion, which for equal presentation
frequencies is set to 1. This decision rule makes no assumptions about the nature of the pair of
stimulus/response distributions except what is known about the stimulus, i.e. its temporal and
spatial position, and that the stimuli are presented with equal probability. To summarize the
system’s performance, the number of correct choices is plotted against the test parameter, e.g.
contrast. This produces a “neurometric” curve showing how much contrast is required to
generate a response with any given degree of reliability (fraction correct) (Figure 6) (Geisler
et al., 1991;Parker & Newsome, 1998;Dhingra et al., 2003). The threshold for distinguishing
the pair of stimuli is the amount of contrast that produces a predetermined criterion level of
performance. The criterion is normally set to 1 standard deviation, and the corresponding
performance (fraction correct) can be determined by integrating the noise distribution (Geisler,
2004). For Gaussian distributions and the paradigm described here (one stimulus of a pair
presented to a neural system), this criterion is equivalent to 68% correct responses (see
Appendix A.3;Geisler et al, 1991;Green & Swets, 1988).

2.7. Contrast sensitivity and gray levels
The difference in amplitude between two stimuli that produces a criterion level of performance
is a fundamental definition of the amount of noise in the system, and can be stated as an
equivalent “noise contrast” (Barlow, 1957; Pelli, 1990; Cohn, 2004; Dunn & Rieke, 2006).
When measured from zero (mean background), this is called the “contrast detection threshold”
because it is the smallest contrast signal that can be detected. When measured from an above-
zero contrast, this smallest increment is called the “increment threshold” or “just-noticeable-
difference” and represents one distinguishable signal level, or “gray level”, which is a
fundamental measure of a system’s ability to perform the discrimination task (Barlow, et al.,
1987; Geisler et al., 1991; Victor & Nirenberg, 2008). The increment threshold is equivalent
to the noise at a certain contrast divided by the slope of the response vs. contrast curve (Figure
7A). More generally, the increment threshold need not be measured as a function of contrast,
for it can be a metric of sensitivity for any stimulus parameter, e.g. background intensity,
wavelength, or spatial and temporal parameters such as size, position, direction, duration,
timing, frequency, and velocity.
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If the system were linear and the noise did not vary, the increment threshold would be the same
throughout the contrast range. However, neural responses typically have significant
nonlinearities, for example saturation in the response to high contrasts (Figure 7A), and their
noise can vary with signal amplitude (Dhingra and Smith, 2004). Therefore, to determine
sensitivity throughout the neuron’s dynamic range, increment thresholds are measured for each
of a series of contrasts (Figure 7B). The contrast sensitivity is defined as the inverse of the
increment threshold, e.g. an increment threshold of 1% means a contrast sensitivity of 100
(Figure 7B) (Enroth-Cugell & Robson, 1966), which is equivalent to the derivative of the
response vs. contrast curve divided by the noise level. If contrast sensitivity vs. contrast were
constant, it would define the total number of increment threshold steps or gray levels. More
generally, the total number of gray levels is computed as the integral of sensitivity over the
contrast range (Figure 7C) (Barlow et al., 1987; Dhingra & Smith, 2004). This is an overall
measure of the ability of the system over its full dynamic range to perform the binary
discrimination task (see Appendix A.4; Dhingra & Smith, 2004; Victor & Nirenberg, 2008),
and is similar to other aggregate measures of behavioral performance (Abrams et al., 2007).

The number of gray levels represents the system’s total sensitivity in the sense that it compares
signal gain and noise over the system’s dynamic range. Gain and noise are influenced by
physical properties of the neural circuit that can be further dissected by ideal observer analysis
of the neural components and their biophysical properties such as saturation and nonlinear
summation. When the noise in a neural response increases with contrast, or the response
saturates at high contrasts due to limited dynamic range (Figure 4), more gray levels are
generated at low contrasts at a cost of fewer gray levels at high contrasts (Figure 7A,C). We
quantify this as the amount of “gray level compression”, defined as the ratio of the contrast
sensitivity to the number of gray levels. Typically, the maximum gray level compression factor
for a brisk-transient ganglion cell is 3–5 (see Figure 4 of Dhingra & Smith, 2004).

3. The neural code
The signal quality determined by the ideal observer depends on the stimulus and on which
components are analyzed from the neural response. The ideal observer can analyze temporal
or spatial patterns from a variety of measures of neural activity such as graded potentials or
spikes. The ideal discriminant template provides a tentative definition of the “neural code”.

3.1. Measuring response components
A neuron may inform the brain in several ways, reflected in its responses evoked by different
stimuli (Johnson, 1980a,b; Rieke et al., 1997; Warland et al., 1997; Parker & Newsome,
1998; Meister & Berry, 1999; Fairhall et al., 2001; Machens et al., 2005; Victor, 2005a,b). For
each stimulus pair, the ideal discriminant template defines the pattern of response components
that best categorizes the evoked responses. This ideal discriminant template is called the “neural
code” for the stimulus (Johnson, 1980a,b), because it reflects the components of the evoked
response (the waveshape) that can inform the organism about the sensory task. In the example,
the initial transient response to a flash of light has a higher SNR than the later sustained portion
(Figure 4), so the template coefficients for the initial transient are larger. These components
may be analyzed together by reducing all the bins into a single dimension with the ideal filter
template as described above. Or they can be analyzed separately in single bins, to measure the
SNR of the response over time (Figure 8) (Dhingra & Smith, 2004). Because the single-bin
method uses the optimal likelihood decision rule without dimensional reduction, it provides a
useful comparison and check on the optimality of dimensional reduction methods.

Similarly, a spike train can be analyzed by the ideal observer according to the binned spike
rate over the entire response interval, in single bins to measure how performance changes with
time, or by measuring the statistics of spike timing or inter-spike intervals (Barlow & Levick,
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1969; Dhingra et al., 2003; Dhingra & Smith, 2004; Victor, 2005b; Davies et al., 2006; Chase
& Young; 2007; Thakur et al., 2007; Zeck & Masland, 2007; Gollisch & Meister, 2008a).
Higher-order spike statistics can also be analyzed, combining rate and timing codes (Geisler
et al., 1991; Victor, 2005a,b, 2006; Davies et al., 2006; Zeck & Masland, 2007). To check the
spike code for optimality, the observer can compare results from different levels of detail, e.g.
the spike count as a single sum, the binned spike rate, the spike intervals, and combinations of
intervals (Geisler et al., 1991; Dhingra et al., 2003). Therefore, the neural code is the set of
discriminant templates generated by the ideal observer to analyze the responses to variation in
a dimension of a specific stimulus (Johnson, 1980b). As in Section 2.1 above, where we
explained that the SNR varies with 1) the stimulus parameter to test, 2) sensory task, and 3)
how the responses are measured, the neural code depends on these as well.

3.2. Temporal bins, characteristic time constant
Another important factor in measurement of SNR by the ideal observer is the length of the time
bin. A bin length too long reduces SNR by averaging signal components of high SNR with
components of low SNR, or by averaging signal components of opposite sign, so short time
bins are required to register the discriminability in a transient or biphasic response (Figure 9).
Typically, with sufficient trials, when bin length is shortened beyond a certain duration,
performance does not increase further (Figure 9). This duration defines the “characteristic time
constant” of a neuron’s response, which is a fundamental component of the neural code related
to its temporal precision (Chichilnisky & Kalmar, 2003;Dhingra et al., 2003;Dhingra & Smith,
2004;Chichilnisky & Rieke, 2005; see also Butts et al., 2007). However, with insufficient trials,
bin lengths shorter than the characteristic time constant typically underestimate performance
because fewer data points are accumulated in each bin, causing inaccurate PDFs. Therefore,
to give a lower bound on performance for a given number of trials, one can bracket bin durations
around the characteristic time constant (Dhingra et al., 2003). A comparison of the
characteristic time constant of two different neural codes, for example for the graded potential
and spikes of a neuron, can give intuition about the neuron’s signal processing function. Thus,
the measurement mode (voltage, spike rate, timing, pattern), characteristic time constant, and
the set of discriminant templates for the specific stimulus along the test dimension are all
included in the “neural code”.

3.3. Spatial bins
The ideal observer can be generalized to include a set of spatial bins, each representing a
different point in space, for example, recordings from neighboring neurons (Borghuis et al.,
2008; Gollisch & Meister, 2008a). Each spatial bin may include temporal bins, and these can
all be included in the ideal template filter (Figure 10). With this paradigm, the neural code for
a specific stimulus is defined more generally as a spatio-temporal template across an array of
neurons (Parker & Newsome, 1998; Chen et al., 2006; Nicolelis & Ribeiro, 2006). Spatial and
temporal correlations can be taken into account as described above using template (3) made
with Fisher LDA (Figure 5B) or with a higher-order method (Appendix A.2). For example,
recordings from several cells made with a multi-electrode array can be analyzed with this
approach to determine the spatio-temporal code of a neuronal population. It is not necessary
to know in advance precisely which neurons receive the strongest signal evoked by the
stimulus, because the ideal template filter weights the spatial and temporal bins according to
their ability to inform about the discrimination task (Borghuis et al., 2008). Thus the ideal
observer can measure and compare the performance of single neurons and the collective
performance of arrays of neurons, using a variety of codes (Gollisch & Meister, 2008a).
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4. Tracking sensitivity
Geisler (1989) proposed to track the processing performed by the visual system by applying
the ideal observer sequentially to the visual system’s different stages. If one could measure the
level of performance available at each stage, a comparison between different stages would
show the effect of each stage’s processing. Measurements from the different stages can be
directly compared to behavioral performance because the ideal observer uses a decision rule
defined by the same visual task. With a focus on neurons and synaptic relationships in the
different retinal layers, this approach can be applied to retinal circuitry (Figure 11). To
accurately track discriminability from one neural array to the next, the ideal observer can track
the responses resulting from convergence and divergence.

To compare the signal quality of individual retinal neurons along a pathway, one must account
for how noise interacts with a neuron’s receptive field. A neuron’s sensitivity is set by noise
sources and signal processing mechanisms such as receptive field center and surround. These
receptive field mechanisms attenuate some components of the evoked response and thus
decrease the neuron’s ability to inform about the stimulus. Therefore, when comparing
sensitivity between neurons a useful concept is the optimal stimulus. This section expands
upon these topics, starting with a short overview of noise and receptive field mechanisms.
Later, the section gives several examples of ideal observer measurement of retinal performance
which show that in daylight the retina loses a factor of ~10-fold from stimulus to ganglion cell
spike train.

A variety of noise sources exist in neural circuits (van Rossum et al., 2003; Faisal et al.,
2008). Neural signals are carried and transmitted by discrete events such as photon absorptions,
ion channel gating, vesicles of neurotransmitter, and action potentials (spikes). The discrete
nature of these quantal signals limits their signal quality and ability to inform about a sensory
task because any quantization process adds noise and limits the number of possible different
messages (Shannon, 1948; Northrop, 2005). Random fluctuations in the rate or number of the
discrete events generates Poisson noise, which reduces SNR. Noise from Poisson mechanisms
is equal to the square root of the mean, called the “square root rule” (Rose, 1942; DeVries,
1943; Faisal et al., 2008) that applies for many biological noise mechanisms. In a pathway with
many independent noise sources, the largest tend to dominate because uncorrelated noise sums
as root-mean-square.

4.1 Noise in the stimulus
Absorption of light is described by a Poisson distribution, which generates noise according to
the square root rule (Rose, 1942; DeVries, 1943). The light level sets the mean number of
photons absorbed and therefore defines the SNR, which places an upper bound on the SNR
available for retinal signals. A first step in identifying this stimulus-associated noise is to
develop an “ideal model” of the stimulus (Barlow, 1962, 1977), equivalent to a “stimulus
defined exactly” (SDE) model (Geisler, 1989). The model precisely specifies the relevant
stimulus properties, including the spatio-temporal distribution of photon flux and absorption
by photoreceptors, and the associated random photon noise (Barlow, 1962; Barlow et al.,
1971; Banks et al., 1987; Geisler 1989; Kiorpes et al., 2003; Xu & Abshire, 2005; Dunn et al,
2006). The photon absorption by photoreceptors is estimated by calculating the known optical
factors, which include absorption and dispersion through the eye, retina, and in the outer
segment’s photopigment. The stimulus set and ideal model are presented to the ideal observer,
which then determines the maximum sensitivity available to the retina by calculating the signal
and noise for an individual photoreceptor and for the entire stimulated array using the square
root rule (Geisler, 1989; Kiorpes et al., 2003; Dunn et al., 2006).
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4.2. Noise in retinal circuitry
The release of neurotransmitter in synaptic vesicles is a major source of noise for the retina
(Ashmore & Copenhagen, 1983; Laughlin et al., 1987; Copenhagen, 1991; Croner et al.,
1993; Freed, 2000, 2005; Passaglia & Troy, Berntson & Taylor, 2003; Demb et al., 2004;
DeVries et al., 2006; Murphy & Rieke, 2006, 2008; Faisal et al., 2008). Vesicle release,
controlled by the local calcium level, carries most visual signals that reach ganglion cells and
the brain (Katz & Miledi, 1967; Sudhof, 2004; Heidelberger et al., 2005; Morgans et al.,
2005; Midorikawa et al., 2007; LoGiudice & Matthews, 2007). The ribbon structure at the
photoreceptor and bipolar cell synapse collects vesicles to form a release-ready pool allowing
higher transient release rates (Figure 12A) (Sterling & Matthews, 2005; Heidelberger et al.,
2005; Singer & Diamond, 2006; Midorikawa et al., 2007; Matthews & Sterling, 2008; Jackman
et al., 2009). The release mechanism is subject to the thermodynamic limitations of equilibrium
binding and diffusion, and some evidence points to Poisson release statistics (Barrett &
Stevens, 1972; Freed, 2000, 2005). However, there is also some evidence for refractory
mechanisms that could regularize release statistics (DeVries, 2001; Palmer et al., 2003; Freed
et al., 2003; also see Schein & Ahmad, 2005), and compound fusion on the ribbon may allow
multi-vesicle bursts of release (Singer et al., 2004; Matthews & Sterling, 2008). Further, vesicle
size at a release site varies, which adds to the quantal variability seen in the postsynaptic cell
(Hartveit & Veruki, 2006). The release rate at a typical ribbon synapse is thought to range
between 15–100/s for tonic release, but 10-fold higher for phasic release (Ashmore &
Copenhagen, 1983; Berntson & Taylor, 2003; Choi et al., 2005; Sterling & Matthews 2005;
Freed, 2005; DeVries et al., 2006; Sheng et al., 2007; LoGiudice & Matthews, 2007; Jackman
et al., 2009). A Poisson rate in this range at an individual release site will generate robust noise
(Figure 12B). However, a synapse’s contribution to ganglion cell signal quality depends on
how the synapse’s signal is combined with signals from other neurons (Sterling & Freed,
2007).

4.3. Convergence, divergence, and correlation
To make comparisons between the performance of different retinal layers, one must take into
account all signals received and transmitted by a neuron. These are defined by the convergence
and divergence, respectively (Figure 13A) (Sterling et al, 1988; Strettoi et al., 1992; Vardi &
Smith, 1996). Many bipolar cell types collect signals from several photoreceptors (Cohen &
Sterling, 1990b; MacNeil et al., 2004; Schein et al., 2004; Wassle et al., 2009), and a typical
ganglion cell collects signals from many bipolar cells (Sterling et al., 1988). This convergence,
along with lateral electrical coupling from gap junctions, averages the signal, improves SNR,
prevents aliasing, and removes uncorrelated signals (Lamb & Simon, 1976; Hare & Owen,
1990; Tsukamoto et al., 1990; Levitan & Buchsbaum, 1996; Mills, 1999; DeVries et al.,
2002; Trexler et al., 2005). A similar averaging action takes place temporally in bipolar cells,
where membrane capacitance along with a synaptic filter (in On-bipolar cells) comprises a
low-pass temporal filter (Copenhagen et al., 1983; Shiells & Falk, 1994; Bialek & Owen,
1990; Armstrong-Gold & Rieke, 2003; Burkhardt et al., 2007).

Successive retinal stages are also synaptically connected with divergence (Figure 13B)
(Sterling et al., 1988). A cone transmits a signal to more than one bipolar cell of a given type,
and several bipolar cells of different types (Cohen and Sterling, 1990b; MacNeil et al., 2004;
Schein et al., 2004; Wassle, 2004; DeVries et al., 2006; Wassle et al., 2009). Therefore the
noise components of photoreceptor signals are transmitted in common to neighboring bipolar
cells, adding correlations to the bipolar cell signals. Further, the AII amacrine makes gap
junction contacts with several bipolar cell types (McGuire et al., 1984; Cohen & Sterling,
1990a; Mills & Massey, 1995; Trexler et al., 2005; Massey, 2008), and the AII array is strongly
interconnected (Kolb, 1979; Smith & Vardi, 1995; Vardi & Smith, 1996; Bloomfield & Volgyi,
2004). The resulting correlations between bipolar cell signals are likely involved in correlations
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seen in ganglion cell spike trains (Perkel et al., 1967; Meister et al., 1995; Kenyon et al.,
2004; Shlens et al., 2006; Schneidman et al., 2003, 2006; Liu et al., 2007; Nirenberg & Victor,
2007; Trong & Rieke, 2008).

The noise correlations in an array’s collective signal must be taken into account when
measuring the performance of the array. This can be accomplished with the Fisher LDA
template (Figure 5D) or a higher-order discrimination method. Noise correlations in neurons
with similar evoked responses can reduce SNR and the discriminability of a stimulus (Johnson,
1980b; Zohary et al., 1994; Abbott & Dayan, 1999; Parker & Newsome, 1998; Latham &
Nirenberg, 2005; Chen et al., 2006; Murphy & Rieke, 2008; Borghuis et al., 2008, Trong &
Rieke, 2008), because the correlated noise components cannot be averaged to reduce
variability. However, correlated responses transmitted through diverging synaptic pathways
provide redundancy which can be useful (Trong & Rieke, 2008). For example, 2 adjacent
bipolar cells may receive correlated responses from a cone, but their ribbon synapses generate
additional uncorrelated noise that can then be averaged by re-convergence downstream in a
ganglion cell (see Figures 13 & 14). Signal correlations between neural responses can inform
about spatial components of the stimulus (Johnson, 1980b; Meister et al., 1995; Meister &
Berry, 1999; Schneidman et al., 2003; Latham & Nirenberg, 2005; Shlens et al., 2008). The
functional role of correlations within presynaptic circuits and between ganglion cells is not
fully understood (Trong and Rieke, 2008) and can be studied with the ideal observer.

4.4. Adaptation from receptive field components
A ganglion cell’s presynaptic circuit can collect signals of a much wider dynamic range than
can be transmitted through individual synapses (Figures 12 & 14). A typical ganglion cell
responds to a 10 log unit range of light signals (Sakmann & Creutzfeldt, 1969; Troy et al.,
1999), which is a challenge for the retina because the dynamic range of neural mechanisms is
much less (Figure 12). The dynamic range for gating of synaptic signals is ~20 mV, controlled
by calcium channels in the presynaptic terminal (Figure 12B) (Wu, 1994; Witkovsky et al.,
1997; Heidelberger et al., 2005). Therefore, synaptic release in a visual pathway without
adaptive modulation would saturate at membrane potentials outside the range of synaptic
gating. Further, a typical brisk-transient ganglion cell’s spiking is limited to ~300 Hz, and over
an integration time of ~100 ms, it saturates to a maximum of ~30 spikes (Dhingra et al.,
2003). Noise mixed with such a saturated signal at a later stage of processing would limit its
signal quality.

To reduce saturation, extend operating range, and maximize SNR, retinal neurons and circuits
dynamically adjust their response amplitude (Sakmann & Creutzfeldt, 1969; Enroth-Cugell &
Shapley, 1973; Shapley & Enroth-Cugell, 1984; Tranchina et al., 1984; Victor, 1987; Laughlin,
1989; Kaplan & Benardete, 2001;Manookin & Demb, 2006; Dunn & Rieke, 2006;Dunn et al.,
2006, 2007; Zaghloul et al., 2007; Gaudry & Reinagel, 2007; Clifford et al., 2007; Wark et al.,
2007). This process is called adaptation, and is usually accomplished through negative
feedback, a mechanism in which the output of an amplifier is inverted, then summed with the
incoming signal (Figure 14; van Hateren, 2007). Adaptation in the retina is implemented by
several types of mechanism, some biochemical, as in calcium feedback of the photoreceptor
outer segment (Burns & Arshavsky, 2005), some biophysical, as in auto-feedback of protons
released by synaptic vesicles (DeVries, 2001; Palmer et al., 2003), potassium channel
activation (Barnes and Hille, 1989; Maricq & Korenbrot, 1990a,b; Demontis et al., 1999; Mao
et al., 2002; van Rossum et al., 2003), sodium channel inactivation (Kim & Rieke, 2003), or
temporary depletion of the vesicle pool (von Gersdorff & Matthews, 1997; Singer & Diamond,
2003, 2006), and some through synaptic feedback, as in horizontal cell feedback to cones (Wu,
1994; Smith et al., 2001; Fahrenfort et al., 2005; van Hateren, 2007), or amacrine cell feedback
at GABAergic or glycinergic synapses on bipolar cell terminals (Freed et al., 2003; O’Brien

Smith and Dhingra Page 11

Prog Retin Eye Res. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



et al., 2003; Lukasiewicz, 2005; Molnar & Werblin, 2007; Zaghloul et al., 2007; Li et al.,
2007).

These types of adaptation are similar in form. In a process called “predictive
coding” (Srinivasan et al., 1982), the retina collects signals over a spatially and/or temporally
extended “surround” region, and subtracts them from the “center” signal. Retinal synaptic
transfer functions are nonlinear, with a threshold and an exponential transfer function (Figure
12), and therefore the center-surround subtraction in some neurons imparts a divisive
adaptational component (Merwine et al., 1995). Because the surround overlaps with the center,
the two signals are partially correlated, and the subtraction reduces the magnitude of the
resulting “center-surround” signal. The feedback signal from the surround opposes any change
in the center signal, reducing the signal transmitted about the background illumination and
effectively giving the circuit a greater operating range (Eliasmith & Anderson, 2003; Molnar
& Werblin, 2007; van Hateren, 2007). Thus, negative feedback from horizontal cells to cones,
and from amacrine cells to bipolar cell terminals in the inner plexiform layer (IPL) removes
signal excursions before they are transmitted through the feedforward synapse (Figure 14)(van
Hateren, 1993; Smith, 1995, 2008; DeVries et al., 2002). This feedback regulates release of
glutamate by the cone and bipolar ribbon synapse to prevent saturation and vesicle depletion
(Lukasiewicz, 2005; Dunn et al., 2006; Zaghloul et al., 2007; see also Veruki et al., 2006;
Singer & Diamond, 2006; Smith, 2008).

Although the correlated center and surround signals subtract, any uncorrelated noise in the
surround signal adds to the center with the root-mean-square rule. Therefore the spatio-
temporal extent of the optimal predictive surround region, and the location of the underlying
feedback circuit, is inversely related to the SNR in the visual signal: the lower the SNR, the
wider the surround should extend (Srinivasan et al., 1982; Atick & Redlich, 1990; Dunn et al.,
2007; Smith, 2008). As a result of the pathway’s multiple adaptation mechanisms, the output
from retinal ganglion cells is exquisitely sensitive without much saturation (Sakmann &
Creutzfeldt, 1969; Enroth-Cugell & Shapley, 1973; Shapley & Enroth-Cugell, 1984; Atick &
Redlich, 1990; Harris et al., 2000; Fairhall et al., 2001; van Hateren & Snippe, 2001; Jin et al.,
2005; Clifford et al., 2007; Durant et al., 2007; Li et al., 2007). The ideal observer can measure
and compare the performance of center and surround, before and after adaptation has occurred,
to explore hypotheses about how such processing maximizes signal quality.

4.5. Optimal stimulus and efficiency
Although some neural responses may be evoked by more than one stimulus, each stimulus
interacts with a neuron’s spatio-temporal receptive field in a different way. Therefore, it is
useful to define the concept of a neuron’s optimal stimulus, the one that evokes a neural
response with highest efficiency (Barlow, 1962, 1978). As we will explain below, this concept
is useful when comparing signals along a pathway (Geisler, 1989; Pelli, 1990; Thibos & Levick,
1990). The classical definition of efficiency is “quantum efficiency” for which the optimal
stimulus evokes the largest ratio of the “equivalent photon count” to the actual photon count,
where the equivalent photon count is the number of photons that would produce the SNR
evident in the neural response, and the actual photon count is the number of photons absorbed
from the stimulus (Barlow, 1962, 1978; Barlow & Levick, 1969; Barlow et al., 1971; Watson
et al., 1983; Geisler, 1989; Pelli, 1990; Thibos & Levick, 1990; Hemila et al., 1998; van Rossum
& Smith, 1998; Field & Rieke, 2002a; Schein & Ahmad, 2006).

The most natural definition of efficiency for exploration by the ideal observer is based on SNR.
For this definition, the optimal stimulus evokes the highest ratio of measured SNR to ideal
SNR, where the ideal SNR is determined by a model of the stimulus based on Poisson
absorption of photons by the photoreceptor outer segments (Barlow, 1962; Watson, 1983;
Geisler, 1989, 2004). Because the SNR of a light stimulus with Poisson statistics is equal to
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the square root of the photon count, the ratio of measured to ideal SNR is equal to the square
root of the quantum efficiency (Barlow, 1978; Watson et al., 1983; Geisler, 1989, 2004). For
example, for a flashed spot stimulus that evokes a threshold response measured by the ideal
observer in a retinal ganglion cell, the SNR is unity, and the ideal SNR (mean/s.d.) is equal to
the square root of the absorbed photon flux from the spot stimulus. When the spot’s spatio-
temporal dimensions and contrast maximize the ratio of measured to ideal SNR, that
combination of stimulus parameters is optimal. Further, a measurement of efficiency need not
include a measurement of ideal SNR, nor does it require the optimal stimulus, because the ideal
observer can measure and compare sensitivity to any stimulus at any 2 points along a neural
pathway.

Although a full description of how to find the optimal stimulus is beyond the scope of this
article, a good starting estimate for many retinal neurons is the linear spatio-temporal receptive
field derived from a reverse correlogram (Watson et al., 1983; Jones & Palmer, 1987; Sakai et
al, 1988; Rowe & Palmer, 1995; Edin et al., 2004; Dhingra & Smith, 2004; Ringach & Shapley,
2004; Victor, 2005a; Werblin & Roska, 2007; Benda et al., 2007). Automatic methods can
estimate an optimal stimulus efficiently (Klein, 2001; Alcalá-Quintana et al., 2005; Machens
et al., 2005; Lewi et al., 2006; Benda et al., 2007). For nonlinear responses such as those of
On-Off ganglion cells, higher order methods can determine the optimal stimulus (Fairhill et
al., 2006; Schwartz et al., 2006; Gollisch & Meister, 2008b).

4.6. Loss of sensitivity in receptive field circuit
A neuron’s receptive field can be considered a neural filter that attenuates some components
of the signals it receives (Figure 15A; Pelli, 1990; Hemila et al., 1998). However, performance
measured by an ideal observer is unaffected when processed by a linear filtering function,
because this type of function is invertible. For example, a low-pass filter applied to a neural
signal attenuates high frequencies, which one might expect to modify the signal’s performance.
But being an invertible function, such a filter reduces the high frequency components of both
signal and noise in an identical way, narrowing the 2 PDF peaks and reducing their separation
proportionately (Figure 3), so the sensitivity as measured by the ideal observer does not change.
The rule applies both in time and space, so linear filtering operations such as temporal low-
pass filtering by capacitance and spatial averaging by gap junction coupling per se have no
effect on performance measured by the ideal observer (DeVries et al, 2002). One might wonder,
therefore, whether a neuron’s performance should be affected by its receptive field. However,
performance can decline when nonlinearities or noise are inserted between the linear filter and
the ideal observer (Figure 15A) (DeVries et al., 2002; Chichilnisky & Kalmar, 2003; Borghuis
et al., 2009). Also, sampling operations such as optical diffraction and binning (Figure 9) are
irreversible and therefore can affect SNR (Levitan & Buchsbaum, 1996).

The signal and noise components attenuated by a neuron’s linear receptive field may also be
attenuated by a static nonlinearity such as a threshold or saturation. When downstream noise
is mixed with the attenuated components, it masks them and reduces the performance measured
by the ideal observer. The receptive field filter thus becomes a source of “specific” performance
loss (Figure 15A). Because noise mechanisms distributed throughout the circuit reduce
performance in all signal components, the circuit also contributes a “non-specific” performance
loss (Figure 15A). Therefore when measuring loss of performance with the ideal observer, the
amount of loss measured from one point to the next in a circuit depends on which stimulus
dimensions are probed, which signal components are studied, and to what extent they are
specifically attenuated by receptive fields (Pelli, 1990; Hemila et al., 1998).

Typically, a retinal neuron has one optimal stimulus for which its performance is the greatest
(Figure 15B,C). Performance for this stimulus is limited by the non-specific loss, i.e. the
accumulated losses from all the noise sources in the circuit that mix with the evoked response.
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As described above, to evaluate the amount of non-specific loss, one constructs an ideal model
which determines the noise level intrinsic to the stimulus, using the optical factors of the eye
and pigment absorption (Geisler, 1989). When probed with non-optimal stimulus parameter
values, performance is reduced because of the receptive field’s specific losses which have a
characteristic shape (Figure 15B,C).

At each stage of processing along a sensory pathway, inevitably SNR is reduced from noise,
gradually reducing performance in later stages (Figure 16) (Banks et al., 1987; Davila &
Geisler, 1991; Abshire & Andreou, 2001; DeVries et al., 2002; van Rossum et al., 2003; Victor,
2006; Sterling & Freed, 2007). Therefore, SNR and stimulus discriminability measured by an
ideal observer along a sensory pathway cannot be increased. This is known as the data
processing inequality (Cover & Thomas, 1991). Although SNR compared from one stage to
the next in a pathway may appear more concentrated when carried by a smaller number of
quanta (Sterling & Freed, 2007), the pathway’s performance is always reduced by the synaptic
noise. To determine the role of each signal-processing mechanism in generating noise and
reducing SNR requires measuring the performance at each stage in the pathway (Geisler,
1989).

4.7. Optimal stimuli differ in pathway
Neurons in a pathway differ in their optimal stimuli for SNR because their receptive fields and
noise sources differ, causing different specific losses (Figure 17). The specific loss induced by
a presynaptic neuron’s receptive field can sum with losses in other neurons in the pathway to
generate a non-specific loss for a postsynaptic neuron. For example, small bipolar cell receptive
fields presynaptic to a ganglion cell contribute to its larger receptive field by convolution with
the spatial weighting function of their synapses onto its dendritic tree (Figure 14) (Freed &
Sterling, 1988; Smith & Sterling, 1990). Because the bipolar cell’s receptive field is smaller
(Berntson & Taylor, 2000), its optimal stimulus will be too, but this stimulus is not optimal
for the ganglion cell (Figures 14, 17). In response to the ganglion cell’s larger optimal stimulus,
the bipolar cell’s surround will subtract most of its center signal, and the resulting signal
transmitted from the bipolar cell will have a lower SNR than if its optimal stimulus were larger.
A similar situation of bias from receptive field size exists when comparing performance of
horizontal cell and ganglion cell. Although the apparent mismatch between specific losses in
two neuron types in a pathway may seem paradoxical, it is a consequence of the different local
circuits responding to a specific stimulus.

4.8. Bias in comparing performance
When comparing performance between two neurons at different points in a circuit, in order to
establish that the comparison is unbiased, several caveats are necessary. One might attempt to
use identical experimental paradigms, for example, to analyze the responses to identical sets
of stimuli, with identical time bins. While the ideal performance of the stimulus will be the
same, the interaction of the stimulus with the different receptive fields of the two neurons
causes a bias in the measurement of their performance (Figure 17). Each neuron’s performance
is biased from the extent of its receptive field, which reflects convergence from different
numbers of signal and noise sources in its presynaptic circuit.

Similarly, the time bin duration will interact with the potentially differing temporal waveshape
of the two neural codes to cause a bias. One might attempt to eliminate the bias by determining
the optimal stimulus and the characteristic time constant for each neuron, then measure each
neuron’s performance with the appropriate stimulus and time bin duration. However this will
induce a bias in the comparison due to the difference in ideal performance associated with each
stimulus, and due to a different variability associated with each bin duration (Figure 9). The
reason is that a larger stimulus will give a higher ideal performance by the square root law
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because it has a greater photon flux, and a longer time bin will reduce the measured variability
because it averages responses from more time steps. A similar bias exists if spikes are being
measured, because the spiking mode analyzed (rate, interval, timing) can be be optimized for
each neuron (Geisler et al., 1991;Dhingra & Smith, 2004). One can determine the bias through
several comparisons, for example for neurons with small and large receptive fields, a
comparison of their performances for a) the optimal stimulus for each neuron, b) the optimal
stimulus for the smaller neuron, or c) the optimal stimulus for the larger neuron (Figure 17).

To compare performance between neural stages, one can track either convergence or
divergence. To track the performance of the presynaptic circuit for a ganglion cell, one
compares the collective performance of the converging neurons (Figures 18, 19). But the
converging neurons may differ in receptive field extent from the ganglion cell (Figures 13, 14),
so individually their optimal stimulus will differ (Figure 17). For example, the performance of
each converging bipolar cell is biased by its smaller receptive field size. However, when the
performance of all the bipolar cells presynaptic to a ganglion cell is measured together, their
collective performance will be greater than that of the ganglion cell (Figure 17). This
comparison is unbiased because it tracks the collective performance of all the signals
responsible for the ganglion cell’s performance.

To track the total available performance between neural stages, one compares the collective
performance of the neurons diverging from the stimulus, i.e. all the neurons at each stage that
produce an evoked response (Figure 13B). As above, the diverging neurons in different stages
may differ in size and also in their optimal stimuli. The ideal observer can measure the
performance of an array of neurons by including for each neuron a spatial bin that is analyzed
with the appropriate template filter (Figure 10; Borghuis et al, 2008). For this measurement it
is not necessary before starting the recording to know the spatial extent of the neural code, i.e.
precisely which neurons can inform about the stimulus, because the neural code is
automatically computed by the discriminant filter algorithm. Any neurons that do not convey
stimulus discriminability are ignored by the template filter (Parker & Newsome, 1998). When
the performance of arrays of cells in two or more stages of the diverging network is measured,
a comparison of the stages’ performance will determine the overall loss between stages, as
originally conceived by Geisler (1989). Because the performance measured by the ideal
observer of a diverging array of neurons is greater than the performance of one of them, the
network converging from a stimulus to a single neuron typically can show a greater loss than
the network diverging from the same stimulus.

When all signal convergence and divergence are taken into account, performance tracked
between retinal layers is approximately independent of the size of neurons or arrays. For
example, for a large spot of light that stimulates an array of 2000 cones, the performance loss
across one synaptic connection from a cone to the 8–10 bipolar cells that receive its signal
(Cohen and Sterling, 1990b; MacNeil et al., 2004; Wassle et al., 2009) is the same as the loss
from the stimulated array of cones to the array of bipolar cells that receive their collective
signal. The reason is that taking the ratio of performances between different layers normalizes
by the array size.

4.9. Examples of tracking retinal sensitivity
To understand the importance of making correct comparisons without bias in ideal observer
measurements, consider some recent studies that tracked sensitivity of retinal circuits. A study
of gain control in the rod circuit converging to mouse alpha ganglion cells used the ideal
observer to measure ganglion cell thresholds at backgrounds where mainly rods are active
(Figure 18; Dunn et al., 2006). Although there is evidence that in the dark a mammalian
ganglion cell maintains nearly ideal performance, signaling single photons (Barlow et al.,
1971; Mastronarde, 1983), how the scotopic rod pathway to the ganglion cell preserves the
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single photon signal and how the pathway regulates its sensitivity with background is not
known (Smith and Vardi, 1995; van Rossum et al., 1998; Schein & Ahmad, 2005, 2006).

To evaluate this sensitivity, the ideal observer measured performance of real ganglion cell
responses and compared it to performance of a model of the ganglion cell’s scotopic rod circuit.
The model consisted of a statistical description of a single rod’s response to a dim flash in the
presence of a background, which included previously measured noise sources in the rod (Field
& Rieke, 2002b), and a description of how responses were combined in the ganglion cell. The
model also contained a threshold nonlinearity which removed the baseline noise in each rod’s
signal before it was summed by convergence through the rod bipolar pathway to the ganglion
cell (van Rossum & Smith, 1998; Field & Rieke, 2002a). The ideal observer used a two-interval
forced-choice task, which consisted of 2 trials, one containing a flash stimulus, and the other
containing no flash (see Section A.3). A discrimination template was constructed from the
average response, and the threshold was based on which trial gave a response greater than the
standard deviation, giving a measurement of threshold flash intensity.

Thresholds measured from the real ganglion cell were ~3-fold higher than for the model for
dim backgrounds, but real and model performance converged when backgrounds approached
moonlight (~1 R*/rod/s). This result implies that in dim backgrounds, the real circuit for rod
convergence has other noise sources beyond those included in the rod response model, such
as synaptic noise (see Figures 16,17; Taylor & Smith, 2004; Schein & Ahmad, 2005, 2006),
but that at brighter backgrounds the real system’s gain control reduces the effect of the extra
noise (Dunn et al., 2006).

A recent study measured the loss in sensitivity from the stimulus through the cones’ synaptic
response to the ganglion cell’s spike train (Figure 19; Borghuis et al., 2009). Simultaneous
recordings of horizontal cells and ganglion cell responses to a flashed spot of light (500 μm
dia, 100 ms), were presented to an ideal observer to determine the contrast threshold of both
cells. A preneural model of photon absorption by rods and cones applied to a simple square-
root rule ideal observer (see Appendix) set a benchmark for comparison with the measured
thresholds. Although the contrast thresholds for horizontal cell and ganglion cell were similar
(~1–2%), the receptive fields of the 2 neuron types differed, which induced a bias into the
comparison. To estimate the bias, a low-contrast full-field stimulus allowed measuring the loss
in sensitivity induced for a spot stimulus by gap junction coupling between horizontal cells.
In response to the full-field stimulus no lateral current flowed through the gap junctions, which
allowed a greater evoked response in the horizontal cell. This gave an estimate of the extent
of coupling, which then allowed estimating the effect of the coupling on reducing synaptic
input noise. The result implied that although the coupling between horizontal cells reduced the
synaptic input noise, it reduced the response evoked by the spot even more due to the mismatch
between the stimulus and the receptive field size (Figures 15C,17B), for an overall reduction
in SNR due to coupling of ~2-fold.

To make an unbiased comparison of the performances of horizontal cell and ganglion cell, the
contrast threshold of the horizontal cell was scaled appropriately to give the corresponding
threshold for the signal from a single cone (see Figure 17; Hemila et al., 1998). This single
cone synaptic threshold was then re-scaled for the number of cones converging to the ganglion
cell and the reduction in sensitivity due to the ganglion cell’s specific losses (Figure 17). This
calculation depended on the knowledge that the horizontal cell array collects from all cones
(Borghuis et al., 2009), that the horizontal cells recorded (type A) are closely coupled, and that
the array of bipolar cells projecting to the ganglion cell also collects from the same cone
synapses as the horizontal cells (Freed & Sterling, 1988; Cohen & Sterling, 1990; Wassle et
al., 2009). One also expects additional losses in the bipolar cell associated with synaptic
variability, e.g. inhibitory feedback from amacrine cells. The loss in sensitivity at background
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levels in the range of mesopic (twilight) through mid-photopic (daylight) was similar to
psychophysical measurements (Geisler, 1989), and was consistent with a simple model of
vesicle release at the cone synapse showing greater discriminability at lower release rates
(Choi et al., 2005). Overall, the measurements showed a loss of 4.2-fold from the preneural
model to the cone output, and 3.5-fold from the cone output to the Off-brisk-transient ganglion
cell spike train (Figure 19). This result implies that in twilight and daylight, retinal circuits
limit the contrast sensitivity of the visual system, and further that sensitivity is lost
incrementally by each synaptic stage (Borghuis et al., 2009).

To track performance of a retinal circuit from one point to the next, often one must compare
performance of a synaptic signal to a spike train (Figure 20; Dhingra & Smith, 2004; Murphy
& Rieke, 2006). This is a challenge because of the different signal modes: graded potentials
are continuous and spike trains are discrete and often discontinuous. For example, the ganglion
cell spike generator is transient so the the spike train may have a different optimal stimulus
and a different characteristic time constant than the synaptic potentials driving it (Figures 9,
15; Lankheet et al., 1989; van Rossum et al., 2003; Dhingra & Smith, 2004). Further, its signal
code may include spike intervals and patterns not available in an analog code (Victor, 2005).

In our study of the brisk-transient ganglion cell (Dhingra & Smith, 2004), the optimal bin length
for spikes was ~20 ms, whereas for graded potentials it was ~40 ms (see Figure 9 legend).
However, the performance for both graded potential and spikes varied only slightly over bin
lengths in the range 20–50 ms, so we chose a bin length of 40 ms. Applying the ideal observer
for graded potential and spikes recorded simultaneously from the same cell, we found that the
contrast sensitivity of the graded potential was consistently 2-fold higher (Figure 20; Dhingra
& Smith, 2004). Similarly, the number of gray levels in the graded potential was ~2-fold higher.
We attribute the difference in performance of graded potential and spikes to 2 factors: ion
channels in the ganglion cell which add noise (van Rossum et al., 2003; Dhingra & Smith,
2004, Dhingra et al., 2005; Demb et al., 2004; Margolis & Detwiler, 2007), and the limited
sampling (spike) rate (Demb et al., 2004; Dhingra & Smith, 2004). In a similar study, the ideal
observer measured the effect of blocking Na+ channels on the performance of the ganglion cell
(Dhingra et al., 2005).

A recent study of simultaneous recordings of spike trains in ganglion cell pairs highlighted the
use of the ideal observer to compare the performance of single and multiple neurons (Figure
21; Borghuis et al, 2008). A small spot of light was flashed at different locations across the
receptive fields of two adjacent On-brisk-transient ganglion cells in guinea pig retina. The spot
evoked different firing rates at different positions, and the summed firing rate of both cells
peaked between their receptive field centers (Figure 21A). Contrast detection performance
measured by the ideal observer for each cell also varied with position (Figure 21B). However,
when the performance of the pair of cells was analyzed together, using a discrimination
template that contained both spatial and temporal bins, the detection performance was
relatively constant with position (see Figures 10, 17). The study determined that the
performance of the On-brisk-transient ganglion cell array diverging from such a small-spot
stimulus is equal to the performance of one cell (see Figure 13B). The study went on to explore
the effect of spatial separation between Gaussian receptive field centers, showing that a
separation of ~2-sigma maximizes the information transmitted by an array of ganglion cells
(Borghuis et al., 2008).

4.10. Comparisons with behavioral results
The final step is to compare the performance of different neural stages of the visual system
with behavioral performance (Geisler, 1989). Although in starlight the performance of
mammalian ganglion cells and behavior is nearly ideal (Barlow et al., 1971; Barlow, 1972), in
twilight and daylight the efficiency of the cone pathways drops (Figure 19; Borghuis et al.,
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2009; Geisler, 1989). To measure the efficiency between retina and behavior, a multi-electrode
array can measure signals diverging from a small spot of light covering one ganglion cell
receptive field center or from a more extended stimulus (Warland et al., 1997; Segev et al.,
2004; Shlens et al., 2006; Borghuis et al., 2008). An observer looking at the responses of an
array of ganglion cells is analogous to a cortical cell receiving the same responses. The decision
rules of the brain are thought to comprise an evaluation similar to the observer in a Bayesian
discrimination task (Geisler, 1989; Johnson, 1980a; Rieke et al., 1997; Chen et al., 2006; Gold
& Shadlen, 2007), so with the same set of stimuli, the cortical cell could in principle derive the
same performance. Therefore, when the visual discrimination task is identical, ideal observer
measurements of performance of single neurons or arrays can be directly compared with
behavioral measurements (Barlow et al., 1971; Parker & Newsome, 1998). The optimal
stimulus for the behavioral task defines the convergence through the retina to the cortical center
responsible, i.e. the behavioral receptive field (Figure 13; Watson et al., 1983).

Using ideal observer measurements with specific stimuli, one can tentatively assign and
compare losses for the sequential stages of the retinal to cortical projection. Contrast threshold
measured by the ideal observer in a ganglion cell spike train for a small flashed spot is ~0.5–
1% (Dhingra et al., 2003; Dhingra & Smith, 2004; Borghuis et al., 2008, 2009), which is similar
to psychophysical threshold for a similar stimulus (Watson et al., 1983; see also Kiorpes et al.,
2003). If this comparison were unbiased without caveat, it would suggest that little performance
for this threshold stimulus is lost in the integration of the ganglion cell spike train by the brain
(Barlow et al., 1971; Barlow, 1972). However, retinal and cortical circuitry and therefore signal
integration and sensitivity would be expected to vary between species. Assuming similar
species, for a measured loss between retina and cortex there could be many possible
explanations, including incomplete convergence or synaptic noise in cortex, a difference in the
characteristic integration time, or some other loss in efficiency of the cortical mechanism (see
Section A.3; Barlow, 1962).

As described above, efficiency of signal coding and integration depends on the specific
stimulus. A large stimulus that extends over many ganglion cells can be coded in retina as
efficiently as a smaller one because of the parallel structure of retinal circuitry, but cortical
integration of a large stimulus, especially one that requires a complex pooling mechanism,
seems likely to include some additional loss. One would therefore expect that cortical signal
integration for small brief stimuli would be more efficient than for complex stimuli extended
in time and space (Watson et al., 1983; Chen et al., 2006). However, irrespective of which
stimulus is integrated most efficiently for behavior, the losses associated with transmission of
its evoked response through retina, and in its projection to and within cortex, can be measured
by the ideal observer and compared with behavioral performance (Chen et al. 2006).

5. Discussion
Ideal observer analysis is a powerful method for determining a neural pathway’s performance.
For a binary discrimination task, it finds the smallest distinguishable stimulus increment, and
over the response’s full dynamic range it measures the number of distinguishable signal levels.
These metrics of performance represent fundamental quantitative measures of neural signal
quality that allow comparisons to be made between different loci along a pathway. In this
section, we evaluate the ideal observer and its use in exploring the function of retinal circuitry.

5.1. Overview of the observer
Our use of the term “ideal observer” follows Geisler (1989) who described ideal-observer
analysis for comparing performance of different stages of the visual system (Figure 11). A
stimulus is presented to a system, and the system’s responses are given to the ideal observer,
which measures the performance available in a specific binary discrimination task. The
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responses can be taken from a real neuron, a simulation that includes sources of noise, or a
theoretical model of a noise distribution such as the number of photons absorbed from a
stimulus (Barlow, 1962; Geisler, 1989). The observer need not know any details about the
system that generated the response, because in each of the above cases knowledge about the
noise distribution is derived from the data set. In the case of a real neuron, the duration of the
recording session limits the number of trials and thus the accuracy with which the neural
response can be analyzed. In the case of a simulation, the limitation is from its relevancy, i.e.
how accurately it represents the real neural circuit. In the case of a theoretical model of the
stimulus (ideal model), the stimulus and optical absorption factors can be specified to some
accuracy, so the noise distribution is known to a corresponding accuracy. Whether or not the
precise noise distribution is known, the ideal observer’s power rests in its ability to measure
and objectively compare the performance of the data sets it is given.

The ideal observer has been used for a variety of purposes, and for each it may require a different
algorithm. For a theoretical model that defines a Poisson distribution, the observer can be very
simple, consisting of the square root rule. For the responses of a neural circuit or a realistic
model, the properties of the noise distributions are learned from the data set so the algorithm
must be more complex (see Appendix A.2). To find the appropriate algorithm and level of
accuracy, the observer is tested incrementally (Geisler et al., 1991). For constant uncorrelated
noise, the ideal discriminant template can be as simple as the average evoked response, but it
can be elaborated to take into account variable or correlated noise. These incremental
comparisons allow an evaluation of different properties of the noise distributions, e.g. the gain
in performance when correlations are taken into account. If the responses are highly nonlinear
and the amount of data is sufficient, potentially more accurate higher-order methods for
discriminating the stimulus can be incrementally applied. The duration of the time bins can be
bracketed to determine the characteristic temporal summation time in the neural code. Different
signal modes can be analyzed, for example, graded potential, spike count, rate, timing,
intervals, and higher-order patterns (Geisler et al., 1991; Dhingra et al., 2003; Dhingra & Smith,
2004; Chichilnisky & Rieke, 2005). The single-bin mode allows tracking the performance
available at different times or different response components. The overall concept is that the
observer can be incrementally optimized, depending on the type of measurement for which it
is applied (Geisler et al., 1991).

Although other measures of performance will differ from a Bayesian ideal observer decision
rule, the paradigm outlined here for tracking performance and discovering the role of neural
circuits does not depend critically on the exact measure because any method for measuring
SNR of neural signals reflects the neural circuit’s convergence, divergence and noise
mechanisms. Many other methods are possible with the same discrimination task (Victor &
Nirenberg, 2008). For example, Shannon information could be substituted for the Bayesian
measurement of average performance (see Appendix A.4). The advantage of ideal observer
analysis is the analogy to a behavioral trial-by-trial decision. The Bayesian method employed
by the ideal observer uses a decision rule defined by the visual task which provides a metric
of signal quality referenced to the tested stimulus parameter (e.g. contrast threshold), allowing
measurements from models and retinal responses to be compared directly to behavioral
performance (Barlow et al., 1971; Banks et al., 1987; Geisler, 1989). Although one could argue
that Bayesian performance measured from models and real neurons cannot be compared with
behavior of different species because the comparison has so many confounding factors, we
believe such comparisons are not moot because they have provided useful insight (Barlow et
al., 1971; Geisler, 1989, 2004; Parker & Newsome, 1998; Dhingra et al., 2003; Chichilnisky
& Rieke, 2005; Dunn et al., 2006; Borghuis et al., 2009).
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5.2. The discriminant template and neural code
The ideal observer example presented here uses the likelihood decision rule, based on the
probabilities of the responses to 2 stimuli, to decide which one to choose. However, when
observations of neural responses are made in several dimensions (bins), a variation of the
likelihood decision rule is necessary. When noise in the response dimensions is uncorrelated
the likelihood probabilities over all the bins are independent and therefore can be multiplied,
which is the basis for one type of ideal observer (Geisler et al., 1991; Geisler, 2004). However
when the distributions of noise in response dimensions are correlated, the decision rule must
be more complex (see Appendix, A.2). The Fisher LDA discriminant template is one way to
solve this problem. The linear discriminant template is a set of coefficients multiplied with an
individual multidimensional response that reduces the response into one dimension, to
optimally separate responses to a pair of stimuli (Figure 5). However, the discriminant need
not be linear, and for some highly nonlinear responses a nonlinear template or other higher-
level methods may be more accurate (see Appendix, A.2). Using an appropriate dimensional
reduction method, the ideal observer can measure the sensitivity of one neuron or an array of
neurons, taking into account their temporal and spatial correlations (Latham & Nirenberg,
2005).

We have chosen to illustrate Fisher LDA as an example because it is a relatively simple first-
order method and has been used to analyze retinal responses (Duda et al., 2001; Dhingra &
Smith, 2004; Foffani & Moxon, 2004; Chichilnisky & Rieke, 2005; Borghuis et al., 2008,
2009). Fisher LDA optimally separates two arbitrary noise distributions in the projected single
dimension, and is optimal for multidimensional Gaussian distributions of equal covariance.
Therefore it is nearly optimal for discriminating retinal responses, because their noise
distributions typically comprise a single mode near the mean, and even with substantial
nonlinearities, their noise distributions change little with a small change in the stimulus
(Murphy & Rieke, 2008), e.g. when measuring the increment threshold. However, as with any
analysis method, the Fisher LDA template may be inaccurate when the data do not adequately
sample the noise distributions (see Appendix, A.2; Victor, 2005a).

In our example of the ideal observer, the template coefficients represent the weight given to
each bin, i.e. the relative sensitivity of each bin for the stimulus discrimination task. Neurons
or bins that contain more signal and/or less noise are weighted with a larger coefficient, and
those that contain only noise are ignored. The template defined in this manner is a candidate
for the neural code, because it represents the optimum spatio-temporal pattern for a noiseless
set of downstream neurons or an observer to measure the SNR of a response evoked by a
specific discrimination task (Johnson, 1980b). Although this code measured in a sensory
neuron may not be precisely the one employed by the organism, it is of interest to the
investigator because it is objectively derived from the neural response and conveys maximal
SNR about the stimulus discrimination task. The neural code actually employed by the
organism to generate its behavior may differ from the neural code measured in a sensory neuron
or array because the spatio-temporal extent of the response and its divergence and noise
properties vary along a pathway. But if the neural code for the decision-making neurons
involved in a visual task could be measured using a Bayesian method similar to the one
described here, we argue that this would approach the neural code for the organism (Chen et
al., 2006).

5.3. Intuition from ideal observer measurements
One can derive valuable intuition about the functional role of circuit mechanisms by comparing
loss of performance with known synaptic release rates. The losses determined by Borghuis et
al. (2009), ~4-fold from photon absorption to photoreceptor output, and ~4-fold from
photoreceptor output to ganglion cell spikes, raise the question of how the loss occurs and what
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trade-offs it implies about retinal function (Schellart & Spekreijse, 1973; Levine, 2007). The
retinal pathway from cones to a ganglion cell carries the visual signal with a decreasing number
of quanta at each stage (Sterling & Freed, 2007). In daylight, a just-noticeable response in a
large brisk-transient ganglion cell is carried by thousands of photons, several hundred vesicles
released from cones, possibly as few as several dozen vesicles released from bipolar cells, and
one ganglion cell spike (Ashmore & Copenhagen, 1983; Berntson & Taylor, 2003; Choi et al.,
2005; Sterling & Matthews 2005; Freed, 2000,2005; DeVries et al., 2006; Sheng et al., 2007;
Sterling & Freed, 2007). One might wonder how this feat is accomplished. One might imagine
that the later stages, e.g. vesicle release by bipolar cells, would dominate the loss, because their
lower quantal release rate would, by the root-mean-square rule, carry a less distinguishable
signal (Freed, 2000, 2005).

However, the known synaptic parameters suggest that a lower vesicle release rate from bipolar
cell ribbons is compatible with the measured losses (Choi et al., 2005; Dunn et al., 2006;
Borghuis et al., 2009). Compared to the cone response, the bipolar cell response amplitude is
greater, typically by 2–5-fold (Belgum & Copenhagen, 1988; Wu, 1994; Pang et al., 2007). If
both cone and off-bipolar cell ribbon synapses release vesicles with a similar gain (vesicles
released/mV of evoked response), the bipolar cell’s evoked release of vesicles will be larger
than the cone’s, and the modulation of its vesicle release rate will be greater. This suggests the
hypothesis that the evoked signal can be carried by fewer quanta in successive stages because
at each stage it modulates a larger fraction of the maintained rate. If correct, this would imply
that for each sequential synaptic stage along the visual pathway, fewer quanta carry the signal,
but less performance is lost. The exact balance between amplification and noise, which sets
how much performance is lost at each stage, is likely to be constrained as described below by
evolutionary pressure to minimize the total loss.

This design, in which the first stage of a signal processing system generates most of the noise,
is a widely employed system engineering principle (Pelli, 1990; Sarpeshkar, 1998; Dobkin,
2005). The rationale is that the first stage carries the smallest signals, and therefore is the one
most challenged by its own intrinsic noise limitations. However the amplification of the first
stage improves the ratio of the signal to intrinsic noise for later stages, which can then be
constructed with noisier components. This hypothesis was tested with the ideal observer by
comparing the sensitivity of an ideal model to the sensitivity of the cone synaptic output (in
horizontal cells) and to the ganglion cell’s spike output (Borghuis et al., 2009). It could be
further tested by ideal observer measurements of sensitivity in photoreceptors and bipolar cells.

Because many noise sources along the pathway from photoreceptors to ganglion cell are
thought to be independent in the absence of an evoked response, noise may accumulate along
the sequential pathway as the root-mean-square rule that applies to Poisson and Gaussian
distributions (Hemila et al., 1998; Hopfner & Brodda, 2006). This would imply that the larger
noise sources of a pathway tend to dominate. However, evolutionary pressure to maximize
sensitivity of a sensory system would be expected to reduce the largest noise sources in line
with all the others as found between 2 retinal layers (Figure 19; Borghuis et al., 2009). Therefore
the apparent domination of synaptic noise suggests that either it cannot be reduced or there is
some other reason for maintaining relatively low rates of vesicle release.

This raises a related question, why has neural circuitry evolved to depend on vesicle release
for synaptic transmission, when less-noisy alternatives for release of neurotransmitter, such as
transporters, are commonly present at synapses (Schwartz, 2002; Lukasiewicz, 2005;
Heidelberger et al., 2005). One possibility is that vesicle release by synaptic ribbons is not
independent but can be temporally correlated within or between presynaptic terminals (Schein
& Ahmad, 2005). This might be the case if, for example, release at bipolar cell ribbon synapses
is reliably synchronized by voltage transients (Freed, 2005; Sterling & Freed, 2007). This and
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similar possibilities could be tested with the ideal observer by comparing performance of
presynaptic and postsynaptic signals. Another possibility is that noise in ganglion cells is
maintained to desynchronize spike trains between neighboring cells, allowing greater coding
accuracy in cortical processing (Perkel et al., 1967; Knight, 1972; van Rossum et al., 2002;
Levine, 2007; Ermentrout et al., 2008). Finally, the noisiness of exocytotic vesicle release might
be the cost for a presumed higher gain and greater speed, or a higher metabolic efficiency
(Attwell & Laughlin, 2001; Schreiber et al., 2002; Vincent & Baddely, 2003; Niven &
Laughlin, 2008). Constraints such as metabolic costs can be included in the ideal observer
(Geisler, 2004). Resourceful use of the ideal observer can play an important role in exploring
these issues.

5.4. Conclusions and Future Directions
Using an objective method for measuring signal quality, the neurophysiologist can discover
how signals are processed and transmitted in the retina and other neural circuits in the brain.
In one paradigm, the ideal observer tracks performance for a specific stimulus between neurons
or arrays in a pathway to discover the loss of performance from the pathway’s signal processing
mechanisms (Figure 11). The loss can then be linked with the specific amplification and noise
properties of the pathway, e.g. synaptic processing (Figure 13). The performance of a real
neuron or array can be compared with the performance of a model, either to validate the model
or to provide intuition or constraints about the real circuit’s function (Figure 19).

The function of an array of neurons, e.g. ganglion cells, can be explored using a multi-electrode
array to measure the performance of the individual cells’ spike trains, their collective
performance, and their spatio-temporal neural code for a stimulus discrimination task. In a
similar way, measurement of calcium concentration in a compartment of a specific cell type,
for example, the presynaptic axon terminals of a transgenically labeled bipolar cell type, will
allow the ideal observer to analyze a different metric of the array’s synaptic release. This could
provide, for example, a measurement of synaptic performance across the array of bipolar cell
ribbon synapses onto the ganglion cell array. Imaging the activity of cortical circuits with
voltage-sensitive dyes has already accomplished a similar measurement of performance (Chen
et al., 2006). An essential point is that to discover the spatial extent of the neural code and how
performance extends from one layer to the next, a measurement of the evoked signal in the
arrays extending just beyond the divergence from the stimulus is sufficient (Figures 11, 13).

A model that includes noise allows the ideal observer to link a measurement of performance
to the underlying neural circuit. Many models of the ganglion cell have been derived that
generate noisy spike trains. In the simplest models, consisting of a temporal receptive field
filter followed by a compressive nonlinearity modulating a noisy spiking mechanism, the spike
train approaches realism (Passaglia & Troy, 2004; Carandini et al., 2005; Pillow et al., 2005,
2008; Zhong et al., 2005; Greschner et al., 2006). When parameters for the noise sources are
determined from biophysical properties and a second noise mechanism is added before the
nonlinearity, the model simulates a realistic ganglion cell graded potential, and its performance
measured by the ideal observer can be compared with real recordings to provide intuition about
mechanisms.

Further intuition is provided by an explicit link from phototransduction through synaptic
release to spike initiation. As more mechanisms are included, their effect on performance will
provide intuition about their function in the real circuit. For example, when realistic synaptic
gains and noise properties are included, the level of performance measured in a bipolar or
ganglion cell can be linked deterministically to the synaptic release rates and signal processing
in the presynaptic circuit (Figure 19; Dunn et al., 2006; Appendix of Borghuis et al., 2009;
Jackman et al., 2009). Spatial receptive field components may extend the performance of the
circuit. For example, we hypothesize a specific role of the surround in the cone and bipolar
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cells’ local circuits. The feedback from horizontal cell to cone and from amacrine cell to bipolar
cell may maximize SNR of the synaptic input signal to the ganglion cell over a wider range of
background illuminance (Figure 22). Therefore to explore the rationale for local circuit
properties such as electrical coupling and the surround, one must develop more realistic models
that link synaptic gains, nonlinearities, and noise sources over different background levels
(Levine, 2007), evaluated by ideal observer measurements of performance.

In another paradigm, the ideal observer can compare the performance of intact and modified
circuits (Figure 23). This allows determining the function of circuit mechanisms such as
anatomical divergence and convergence, gap junction coupling, center-surround subtraction,
and nonlinear effects such as adaptation in feedforward and feedback pathways. These can be
tested with experimental protocols that vary the the state of the preparation, e.g. the amount of
center vs. surround stimulation or the state of adaptation. These mechanisms can also be tested
by ideal observer measurement of the performance of animal models with pharmacological
block, or deletions of neuron types or specific mechanisms, e.g. connexins or synaptic proteins
(Soucy et al., 1998; Strettoi et al., 2002; Shelley et al., 2006; Pang et al., 2007; Wang et al.,
2007; Dedek et al., 2008; Kerschensteiner et al., 2008; Kim et al., 2008; Umino et al., 2008;
Fadool & Dowling, 2008), or knock-ins of novel mechanisms (Bi et al., 2006). The ideal
observer can explore models that include different noise sources, can determine the effect of
each noise source on performance, and can compare their effects with a variety of circuits and
stimuli.

The ideal observer can determine the neural code for a variety of stimuli and test dimensions
and can explore how signal processing mechanisms such as feedback, adaptation, and noise
sources modulate the neural code. Because these mechanisms are unique for each type of
neuron along a pathway and in parallel pathways, each has a different receptive field containing
a unique proportion of signal and noise. Therefore the ideal observer will determine for each
neuron type a different optimal stimulus and a different neural code. That the optimal stimulus
and neural code differ for neurons along a pathway suggests that each neuron’s local circuit is
uniquely designed to maximize its signal quality. The signal collection and weighting of
synaptic inputs performed by each neuron represents a template to optimize its function over
a range of stimuli (Tsukamoto et al., 1990). This suggests the hypothesis that the characteristic
shape of a neuron’s specific loss (Figures 15–17, 21) selects signal components optimal for
the neuron’s function in the local circuit. However, what is good for a cone is good for a bipolar
cell, and what is good for bipolar cell is good for the ganglion cell. If this hypothesis is correct,
it implies that the classic center-surround receptive field organization of retinal neurons is
driven by the need for the local circuitry to optimize the quality of the visual signal at each
stage.
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Appendix

Appendix: Comparison to other methods
Many methods exist for measuring signal quality. The example ideal observer presented above
is an excellent choice for most retinal signals because it is simple, powerful, and can be directly
compared with behavioral performance. However, it is not necessarily the best choice for
measuring signal quality, and for some purposes other methods could be substituted. The ideal
observer was originally developed from signal detection theory, which is similar but has
slightly different assumptions. Both are derived from Bayes’ theorem which defines for a
specific task the probability of a stimulus given a particular response (Gold & Shadlen,
2007). An alternative to Bayesian methods is Shannon mutual information, which is widely
used as a measure of signal quality and offers some advantages. These comparisons provide
background on the fundamental nature of the ideal observer and the visual discrimination task.

The form of the ideal observer is based on the properties of the noise distributions it is given.
When given a theoretical model which precisely defines the noise distributions in advance, the
observer can be very simple. For example, when given Poisson noise distributions from an
ideal model, the ideal observer can be based on the “square root rule”: the distributions are
discriminable if they differ by more than the square root of their mean (1 standard deviation).
When the properties of the noise distributions are not known in advance, but the observations
consist of a single dimension, the observer can still be very simple because the discrimination
consists of a simple comparison between 2 probability values.

A.1. Signal detection methods
Ideal observer methods were originally derived from signal detection theory and receiver
operating characteristic (ROC) analysis (Rose, 1942; DeVries, 1943; Barlow, 1957, 1962;
Barlow et al., 1971; Johnson, 1980a,b; Green & Swets, 1988; Parker & Newsome, 1998; Levick
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et al., 1983; Duda et al., 2001; Gold & Shadlen, 2007). Signal detection implies a “yes-no”
decision based on an observation in one dimension, which can be stated as a ROC detection
task, and can be converted to an equivalent ideal observer discrimination task (Parker &
Newsome, 1998). ROC analysis defines performance of a sensory detection task as the relation
between the true positive rate (or “hits”) vs. the false positive rate (or “false alarms”), where
the detection criterion is varied over the range of possible responses (Barlow et al., 1971;
Parker & Newsome, 1998). The area under the resulting ROC curve is a measure of the
detectability of the stimulus (Barlow et al., 1971; Green & Swets, 1988; Parker & Newsome,
1998). The equivalent ideal observer sums the total correct choices without reporting separate
false positive and false negative rates (Green & Swets, 1988). The parameter d′ (criterion SNR)
used in signal detection and ROC analysis is a measure of the detectability of the signal: d′ =
difference between the means/standard deviation. Another common method is to measure,
sometimes in combination with spectral analysis, the standard deviation of the response, setting
threshold at 2 standard deviations (Barlow & Levick, 1969; Derrington & Lennie, 1982; Troy,
1983). This is more stringent than the ideal observer method presented here (d′ = 1), and has
lower false positive and higher false negative rates.

A.2. Other likelihood methods
When the noise distributions of a neural response comprise several dimensions, to compute
the likelihood ratio the ideal observer must utilize a method for dimensional reduction, which
is known in a more general context as “categorization” or “classification” of distinct
populations (Duda et al., 2001; Victor, 2005a). The critical concept is that multiple dimensions
can provide more discriminability than one if they are reduced to one using an appropriate
method.

The most straightforward method, a multiple-dimension probability density function (PDF),
is the easiest to grasp and free from assumptions: each response is summed into a multi-
dimensional frequency histogram, and when enough points to define smooth distributions have
been collected, the histogram is normalized into a PDF, then directly evaluated with the test
set (Geisler et al., 1991; Dhingra et al., 2003; Victor, 2005a). However to be accurate this
method requires a very large sample size, so for most studies it is impractical. To improve the
method, the noise distributions can be approximated by fitting to a Gaussian, and the bias from
an inadequate sample size can be approximated (Victor, 2006).

The best method for dimensional reduction and classification to include in the ideal observer
depends on the nature of the noise distributions, which may vary according to the neural circuit
and recording mode. Some methods, e.g. Fisher LDA, reduce the dimensions before the
discrimination, and others classify in the original multi-dimensional space or in a higher-
dimensional space (Duda et al., 2001; Victor, 2005a). They all share the problem that to classify
populations defined in many dimensions requires some simplifying assumptions and a large
sample size (Friedman, 1989; Foffani & Moxon, 2004). Fisher LDA sets the template weights
and projection angles to optimally separate two populations by simultaneously maximizing the
difference between the means and minimizing the variances of the distributions in the final
projection to one dimension (Figure 5C,5D)(Duda et al., 2001). For Gaussian distributed noise
distributions with equal covariance Fisher LDA is optimal, and for typical noise distributions
recorded from retinal neurons, Fisher LDA in combination with the likelihood decision rule is
near optimal (Dhingra & Smith, 2004; Chichilnisky & Rieke, 2005; see Victor, 2005a).

For some types of neural response other methods may be more appropriate. An alternate
simplified method that obviates a template can be used if the response variability is known to
be uncorrelated. For example, when analyzing spike train responses where the response noise
is uncorrelated beyond one bin, the simplified method generates a pair of PDFs for each bin.
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Then, to test a trial, for each stimulus the probabilities for all the bins are multiplied and the
most likely stimulus is determined from the ratio of the products (Geisler et al., 1991; Dhingra
et al., 2003; Geisler, 2004).

An ideal observer can calculate performance from an ideal model by constructing and
evaluating the PDFs analytically. Alternately, it can evaluate theoretical performance from
empirical PDFs without a test set (Appendix A in Geisler et al., 1991). However, in this case
the limited sample size (number of trials) in the empirical data set upwardly biases the
performance obtained. This is due to the limited size of the data set which generates a noisy
PDF that does not correctly represent the original noise distribution (Duda et al., 2001). This
issue is partially corrected by the use of separate likelihood and test sets, because in this case
the performance bias from a limited sample size is conservative, i.e. downwards biased.

Another possibility, useful when the number of dimensions is high and noise distributions are
correlated between bins, is to perform principal components analysis (PCA) on the binned
responses (Duda et al., 2001; Chichilnisky & Rieke, 2005; Victor, 2005a; Thakur et al.,
2007), reducing the number of dimensions to generate a smaller set of PCA components that
are uncorrelated. To further reduce to one dimension, one possibility is to employ a template
to generate PDFs and test as described above. Alternately, the PCA components can be reduced
with the “alternate simplified method” described above to directly estimate the probability ratio
defining the most likely stimulus (Geisler et al., 1991). PCA may thus allow the separation of
the two populations by a discriminant template to be more accurate (Duda et al., 2001;
Chichilnisky & Rieke, 2005).

When analyzing highly nonlinear systems, in which responses to a pair of stimuli cannot be
distinguished when projected onto a line, a higher-order discriminant method to classify noise
distributions over multiple dimensions may be more accurate. There are many higher-
dimensional nonlinear methods which can be more accurate than LDA methods for
discriminating some types of neural response, but they require more data and are generally
more complex than one-dimensional methods (Foffani & Moxon, 2004; Friedman, 1989). For
example, more complex discrimination methods can distinguish highly nonlinear responses
that cannot be separated by projection into one dimension because their noise distributions are
non-monotonic or concave in N-space (Friedman, 1989; Duda et al., 2001; Meyer et al.,
2003; Victor 2005a,b, 2006; Murphy & Rieke, 2006). However, in comparison to higher-
dimensional methods, the dimensional reduction by Fisher LDA is an advantage when the
sample size is limited by recording time, because one-dimensional PDFs are more easily filled,
allowing them to be more complete and therefore more accurate (Wahl & Kronmal, 1977;
Dhingra & Smith, 2004; Victor, 2005a). Therefore, in typical retinal recordings where the
number of trials is adequate, Fisher LDA is often simpler and close to optimal.

To correctly compute the Fisher LDA template the number of trials should exceed the number
of dimensions, for best accuracy by several-fold (Duda et al., 2001). The reason is due to a
limitation on solving the inverse matrix for Fisher LDA, and also to “overfitting” which gives
incorrect results when the Fisher LDA template attempts to fit spurious correlations that occur
with a limited number of trials (Duda et al., 2001). This will not usually be a problem for
recordings from single neurons or pairs, but when recording from an array, with some
combinations of multiple time (t) and space bins (s), the Fisher LDA discriminant may require
a prohibitively large (s*t) number of trials, depending on the noise distributions and the
correlations between them. Thus for some experimental studies the spatial and temporal
resolution may require a trade-off.
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A.3. Other ideal observer methods
An advantage of the ideal observer presented above, a single-interval two-alternative task, is
that it allows a direct comparison between neural and behavioral performance (Geisler,
1989; Geisler et al., 1991; Dhingra et al., 2003; Kiorpes et al., 2003). However, when a human
observer is presented a stimulus which is visible on some presentations but not on others (i.e.
one stimulus of the pair is zero contrast), typically there is psychological bias either for or
against reporting detection, originating in the decision criterion (Green & Swets, 1988; Klein,
2001). To reduce this type of bias, an equivalent “two-interval” forced choice paradigm is
commonly used in which each observation consists of both stimuli, randomly ordered either
side-by-side in space or sequentially in time (Green & Swets, 1988; Klein, 2001). Compared
to a “single-interval” task, such a “two-interval” task is inherently more symmetrical because
for each observation both stimuli are visible (Johnson, 1980a; Green & Swets, 1988; Klein,
2001; Kiorpes et al., 2003). This reduces psychophysical detection bias because the decision
is comparative. Two-interval paradigms have also been utilized with a computer-based
decision algorithm similar to the likelihood method described above (Kiorpes et al., 2003).
Threshold criterion for two-interval tasks is usually set at 75% (Kiorpes et al., 2003; Green &
Swets, 1988), which is equivalent to 68% for a single-interval task (Green & Swets, 1988;
Geisler et al, 1991) because the two-interval likelihood distributions (PDFs), being the result
of 2 signals, are narrower. Multiple-alternative paradigms are possible and are typically applied
to measure performance of cortical neurons that are highly selective over a small region of
parameter space (Geisler & Albrecht, 1997; Geisler, 1989, 2004; Klein, 2001). However, when
testing discriminations along one dimension the two-alternative paradigm is often preferable
because of its simplicity.

A further complication is that human observers have an innate uncertainty about the spatial
location and time of the stimulus, which reduces behavioral performance. Uncertainty can be
readily added to the ideal observer, and the performance reduction depends on the stimulus
extent and envelope of the uncertainty window (spatial and temporal duty cycle) (Geisler et
al., 1991; Dhingra et al., 2003). For measurement of neural performance without the need for
a direct comparison to behavioral performance, this type of uncertainty is usually disregarded.
A variety of ideal models have been constructed for use with analytical ideal observers, for
example to compare with psychophysical results (Williams et al., 1993; Geisler, 2004; Brainard
et al., 2006; Knill, 1998, 2007). Another form of the ideal observer calculates Fisher
information, a measure of performance approximately equivalent to the likelihood method
described above (Abbott & Dayan, 1999; Xu & Abshire, 2005; Durant et al., 2007).

A.4. Comparison to information theory
The method of information theoretic analysis is widely used to characterize the signal quality
of neural systems (Shannon, 1948; Cover & Thomas, 1991; Rieke et al., 1997; Brenner et al.,
2000). Shannon information is a measure of the reduction in uncertainty (entropy) about the
stimulus. It bears some resemblance to performance for a Bayesian ideal observer (Thomson
& Kristan, 2005; Victor, 2006; Victor & Nirenberg, 2008). Shannon information represents an
average performance over a sequence of stimuli, and in this respect is analogous to the average
performance of a Bayesian observer. Information theory computes the mutual Shannon
information between the stimulus and response, which quantifies how closely the response
corresponds to the stimulus (Schneidman et al., 2003; Thomson & Kristan, 2005; Shlens et al.,
2007). The Bayesian ideal observer in a multiple-alternative paradigm can also quantify how
closely the response corresponds to the stimulus. However, the methods differ because of how
they convert the measured stimulus-response joint probabilities into a single number that
measures performance (Victor & Nirenberg, 2008). The Shannon mutual information is
calculated as the entropy of the response minus the entropy of the response given the stimulus:
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I(X;Y) = H(Y) − H(Y|X), where X is the stimulus and Y the response, and thus is computed
as a function of all the probabilities in a multi-level response. In contrast, Bayesian methods
use a decision rule which depends only on the most likely probabilities. Thus for the same set
of stimulus-response joint probabilities, the Bayesian and Shannon measures will differ (Victor
& Nirenberg, 2008). The ideal observer distinguishes distributions hit-or-miss on the basis of
the likelihood, whereas Shannon information takes into account near misses and different levels
of uncertainty (Victor & Nirenberg, 2008).

With identical stimulus paradigms and Gaussian response noise distributions, the two methods
are equivalent, but for different stimulus paradigms or more complex response noise
distributions the performances may diverge substantially (Thomson & Kristan, 2005; Victor
& Nirenberg, 2008). Although the Bayesian ideal observer is commonly preferred for a sensory
discrimination task because of its simplicity and correspondence to typical behavioral
discrimination tasks, its reduction of the neural response to a binary decision represents a
potential loss of Shannon information available to the brain that could be used for other sensory
tasks (Victor & Nirenberg, 2008). The analogous ideal observer measure to Shannon
information is the number of gray levels, estimated as the dynamic range divided by the noise
level (see Figure 7), which is a fundamental measure of discriminability for the specific
stimulus that generated the measurement. However, the measure of gray levels need not
correspond to the potential mutual Shannon information available because each gray level is
discriminated with a binary decision and is dependent on an arbitrary level for the threshold
criterion (d′). Shannon information can readily be calculated with the same stimulus pairs used
by the ideal observer, and in that case, the mutual information I = H(both stimuli) − [H(A) +
H(B)]/2, where H(x) means the entropy of the response given stimulus × (Victor & Nirenberg,
2008). Both methods have the disadvantage that in practice it is difficult to present a stimulus
sequence long enough to fully populate the stimulus-response probability histogram, but in
some cases the resulting bias can be partially corrected (Victor, 2006).
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Figure 1.
A lizard at the center of image (delineated by white bars at edge) appears camouflaged by its
visually noisy environment, making it difficult for a predator to detect. Eye and twig motion,
rain, photon fluctuation, and biological sources add to the noise. Although the detection process
in mammals is likely cortical, noise from retinal circuitry is a limiting factor for fine contrast
discrimination in daylight (Borghuis et al., 2009).
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Figure 2.
A fundamental task for a sensory system is to detect a stimulus in the presence of noise. The
ideal observer analyzes the responses to a pair of stimuli (A,B) to discriminate between them
on the basis of a statistical description of the signal to noise ratio (SNR). As the amplitude of
stimulus B is increased, its probability of being detected in the neural response increases, which
characterizes the neural system’s performance (right). In this example, stimulus A is null, and
the visual task is called “detection”. For the purpose of this example SNR is the amplitude of
the signal of interest (the evoked response) divided by the standard deviation of the associated
noise.
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Figure 3.
Ideal observer single-interval two-alternative forced choice method for neural responses. Top,
responses to a pair of repeated stimuli (A, B) are multiplied by a template to produce an
ensemble of filtered responses (trials = A1…An, B1…Bn). Stimulus A has low contrast but for
a detection experiment would have zero contrast. Middle, for all but one trial, make
“likelihood” PDF histograms, then look up probability for that trial to find most likely stimulus.
Bottom, repeat over all trials, tally correct responses, and plot as a neurometric function. In
this conceptual example, responses A and B are from model data, but the ideal observer
similarly analyzes real data.
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Figure 4.
Model of alpha cell response to light flash (500 ms duration) shown without spikes. (A)
Responses to different contrasts (1% – 25%) show a ~100 ms transient at stimulus onset, with
a low-amplitude sustained plateau, and a relatively high level of noise. The transient at light
off has a reduced amplitude but also reduced noise. The smallest detectable response is ~5%,
but without ideal observer measurements, it is difficult to discern. (B) The contrast response
curve shows a threshold nonlinearity near zero and saturation above 0.5 contrast. Overall, the
response is nonlinear, but within a small contrast increment the response noise distributions
change by only a small amount. The model was constructed to provide conceptual data for
figures 3–10 in this article.
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Figure 5.
Discriminant templates for dimensional reduction. (A) Average response and noise from Figure
4A (25% contrast) as a function of time. (B) Three linear templates which take into account
progressively more statistical detail from the responses. The templates are constructed from
the difference between the average responses. (C) Individual responses are multiplied bin-for-
bin by one of the templates, and the products (Pn) are summed to give the ideal filtered response
amplitude. (D) Geometrically, the template is a vector that sets a projection angle for each
dimension (bin). It optimally projects the multidimensional responses onto one dimension to
maximize SNR. The two figures show the same 2 sets of 2D points, showing dimensional
reduction and projection onto lines pointing in different directions. The directions of the lines
are defined by the templates. The points are correlated in the two dimensions, and most
projections do not separate them (left, overlapping curves), but Fisher LDA optimally separates
them in the projection at right. After Duda et al., (2001).
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Figure 6.
The neurometric data for a contrast detection task (zero vs. above-zero) for the model that
produced the responses in Figure 4. For a decision based on a single stimulus presentation
(single-interval task), threshold criterion is set at 68%, giving a contrast detection threshold of
~4.5%. The curve was fit by eye.
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Figure 7.
Determining the number of distinguishable stimulus levels or “gray levels”. (A) Response vs.
contrast curve from Figure 4B. The increment threshold or just noticeable difference is the
minimum contrast increment that produces a discriminable response given the noise present.
It is equal to the derivative of the response vs. contrast curve divided by the noise level as
measured by the ideal observer. (B) An increment threshold is measured by the ideal observer
for each level of contrast from the model data of Figure 4. The dip in threshold at 0.1–0.2
contrast is due to the nonlinearity in the contrast response near zero from (A). (C) The contrast
sensitivity is the inverse of the increment threshold. Integrating the area under the contrast
sensitivity curve gives the number of gray levels. The gray level compression is the contrast
sensitivity divided by the number of gray levels; in this example, the maximum gray level
compression (at 0.05 contrast) = ~3. The curves were fit by eye.
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Figure 8.
Performance of the response over time determined by single-bin analysis. Top, single response
to flash of 25% contrast (500 ms) from Figure 4. Bottom, performance of individual time bins
when comparing 0% vs. 25% contrast from Figure 4. Two peaks are evident, showing that both
the depolarizing transient at stimulus onset and the hyperpolarizing transient at stimulus offset
provide substantial discriminability. The depolarizing transient has much greater noise but also
considerable amplitude. The hyperpolarizing transient has a lower amplitude, but also
considerably reduced noise. Single-bin analysis uses the optimal likelihood decision rule and
thus is a check for other discrimination methods.
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Figure 9.
Effect of different bin durations on performance for model shown in Figure 4. For long bins
(500–1000 ms), performance is reduced because the excitatory and inhibitory components of
the biphasic response are averaged together and therefore subtract. For shorter bins,
performance improves down to 10 ms (the characteristic time constant), where the transient
response fills one bin, allowing its template coefficient to be given greater weight. A data set
generated with insufficient trials (not shown) reduces performance for short bins <
characteristic time constant. Response to contrast 0.05. trials=200, template=2.
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Figure 10.
The ideal observer can measure performance in multiple neurons. Each neuron is assigned a
space bin which comprises time bins and a corresponding template. Individual responses
(shown from Figure 4A) are multiplied bin-for-bin by the templates, and the products are
summed as for single neuron responses. Comparing analysis from template 2 (mean/var) and
template 3 (mean*covar−1) (Figure 5B) gives crucial insight into importance of noise
correlations for sensitivity.
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Figure 11.
One paradigm for use of ideal observer: identify sources of behaviorally-relevant loss of
performance step-by-step. The visual system is a series of stages which process the response
evoked by the stimulus. Early stages affect the performance of later stages. The ideal observer
is applied sequentially to each stage, either real or modeled, and the resulting performances
are compared to discover the stages’ signal-processing roles. The stimulus, optical factors, and
activation of rhodopsin (R*) are often included in an ideal model of the preneural factors that
defines the maximum performance. Accuracy of this paradigm depends on the capture of all
the response components evoked by the stimulus available at each stage. After Geisler
(1989).
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Figure 12.
The synaptic release mechanism is noisy, with limited dynamic range. (A) Vesicles (V) diffuse
through presynaptic terminal and tether to ribbon (R). Calcium channels (C) sense the
membrane voltage and open, allowing calcium entry, which causes vesicles to bind and fuse
with cell membrane, releasing quanta of glutamate. The quanta diffuse across the synaptic cleft
and bind to postsynaptic receptors (P), opening postsynaptic ion channels. (B) The synaptic
release rate follows calcium L-type channel voltage activation, which is approximately
exponential within the physiological range (redrawn from Witkovsky et al., 1997). Assuming
a Poisson rate of 15–100 ves/s, the noise level calculated by the square root rule at an active
release site over a 100 ms integration period (1.5–10 ves) ranges from 30–100% of the mean
signal (SNR = ~1–3). A step in light level can evoke a much higher rate of phasic release (100–
1000 ves/s) and thus can transmit a light response with higher SNR (Jackman et al., 2009).
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Figure 13.
Consequences of anatomical convergence and divergence from an extended stimulus. (A)
Convergence to a neuron defines its receptive field. Signal from a spot of light over ganglion
cell receptive field center converges from ~2000 cones through ~500 bipolar cells to one large
brisk-transient ganglion cell, such as found in cat. Noise in ganglion cell’s presynaptic circuit
is averaged by dendritic summation and electrical coupling. Cones are electrically coupled, as
are AII amacrines and cone bipolars. To track performance of the converging circuit for the
ganglion cell center response, one must measure performance of signals in cone and bipolar
cell arrays in the ganglion cell’s presynaptic circuit and compare with ganglion cell
performance. For a full accounting, circuitry conveying surround (not illustrated here) must
also be included. (B) Divergence from a stimulus defines the neural code. From same spot of
light, signal diverges from ~2000 cones through ~750 bipolar cells to ~7 brisk-transient
ganglion cells. Noise in neighboring ganglion cells is correlated to some extent because the
divergence causes them to share some presynaptic circuitry and noise sources. To fully track
behaviorally-relevant performance from the stimulus, one must measure performance of all
bipolar and ganglion cells that receive the signal from the stimulus.
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Figure 14.
Adaptation in a visual pathway prevents deterioration of SNR. Arrays of rods, cones (P) and
bipolar cells (B) transduce a noisy stimulus and transmit their response through noisy synapses
(N). The ganglion cell collects signals from many cones to reduce noise (Tsukamoto et al.,
1990). The synapses would saturate (S) without adaptation, which originates in biochemical
feedback in the outer segments of rods and cones, potassium channels in cones and bipolar
cells (looped arrows), and feedback from horizontal cells and amacrine cells (dashed arrows).
Center-surround receptive fields for 2 layers of neurons presynaptic to ganglion cell are
generated by their local circuits, for the purpose of adaptation to prevent saturation of synapse
and and masking by noise. The 2 layers of center-surround processing both contain subtractive
and divisive components and therefore interact in a complex manner. The ganglion cell center-
surround receptive field is the convolution of the presynaptic receptive fields and their synaptic
weighting functions (Smith & Sterling, 1990). Spike generator adds noise when creating spike
train that saturates at high spike rates.
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Figure 15.
Noise mechanisms in a neural circuit cause different types of loss in performance. (A) Noise
mixed with the signal before and after a neural filter induces a “non-specific” loss. After the
neural filter attenuates some signal components, downstream noise and nonlinearities generate
a “specific” loss. B) Conceptual plot of SNR of a neuron’s response evoked by varying one
dimension of the stimulus, in this case the neuron’s contrast sensitivity for a small spot. The
contrast sensitivity varies when the stimulus is varied across a second dimension (e.g. spatial
position), giving a characteristic shape (solid line). The maximum possible performance
(dashed line) is determined from an ideal model of the stimulus. The optimal stimulus has the
highest ratio of SNR in the response to SNR in the stimulus, which defines the non-specific
loss. In addition, suboptimal stimuli induce specific losses generated by the receptive field.
Both center and surround generate sensitivity but their specific losses differ. Compare to Figure
21. (C) Contrast sensitivity of same neuron plotted vs. the diameter of a centered spot. In this
case, ideal performance varies with the size of the spot. A small spot evokes little response,
and noise present in the circuit reduces SNR. The optimal size spot generates the largest SNR
relative to ideal. Larger spots than optimal evoke a reduced response along with robust noise,
reducing SNR relative to ideal. Shape of the contrast sensitivity curve relative to ideal defines
the pattern of specific performance loss.
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Figure 16.
Loss of SNR in a non-converging pathway. (A) A bipolar cell (neuron 1) collects a center-
surround receptive field and transmits it with some loss in performance (contrast sensitivity)
to a ganglion cell (neuron 2). Figure omits inhibition from amacrine cells to the bipolar and
ganglion cells that modifies performance of their centers and surrounds. (B) The optimal
stimulus induces a non-specific loss in the bipolar cell and the ganglion cell, and non-optimal
stimuli induce specific losses. The optimal stimulus for both neurons is nearly identical because
the receptive field center profiles are similar. Synaptic noise at the bipolar cell ribbon synapse
causes all contrast sensitivities for the bipolar cell to be greater than the corresponding contrast
sensitivities for the ganglion cell. The ganglion cell’s non-specific loss is equal to the bipolar’s
non-specific loss plus the pathway (synaptic) loss. For clarity, the neural performances are
shown magnified relative to ideal; the actual losses are 2–10-fold.
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Figure 17.
Loss of SNR for neurons in a converging pathway. (A), (B) Contrast sensitivity compared for
a ganglion cell (neuron 2) and its converging presynaptic array of bipolar cells (array 1). When
probed with a small flashed spot across the receptive field (A), and with different diameter
centered spots (B), the converging bipolar cell array has a larger optimal stimulus and greater
performance than the ganglion cell. The ganglion cell’s non-specific loss comprises the bipolar
array’s non-specific loss plus the loss in synaptic transmission to the ganglion cell. (C), (D)
Contrast sensitivity compared for the ganglion cell and a single presynaptic bipolar cell (neuron
1). The bipolar cell (dotted black) has the same optimal stimulus position as the ganglion cell
because it is centered in the ganglion cell receptive field. (C) Bipolar cells have greater non-
specific loss than the ganglion cell because they collect fewer inputs. Bipolars with offset
position (dotted gray) show the same non-specific loss, but differ in their optimal stimulus
(gray dashed arrow). Note that for the same stimulus, some of the bipolar cell performances
are greater than the ganglion cell performances. (D) the optimal stimulus for a bipolar cell is
smaller than for the ganglion cell. For small spots the bipolar cell performance is greater than
the ganglion cell’s because the ganglion cell receives noise from bipolars outside the stimulus.
Figure omits inhibition from amacrine cells that will modify performance of ganglion cell
center and surround. As in the previous figure, the neural performances are shown magnified
relative to ideal for clarity.
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Figure 18.
Comparison of performance of mouse ganglion cell and model. The experimental task was to
detect a dim flash of light at different backgrounds, measured as the threshold photon flux (R*)
that produced a response equal to the standard deviation (Dunn et al., 2006). Left, model of
rod convergence to the ganglion cell, including 4096 rods, each converging through a synaptic
nonlinearity, summation, and gain control. Right, gray trace shows threshold of ganglion cell
(+/−SEM), and black trace shows threshold photon flux of model. At low backgrounds,
threshold of the ganglion cell was ~3-fold higher than the model. At higher backgrounds, as
gain was reduced, performance of the model approached the performance of the ganglion cell.
This suggested that an extra noise source must exist in the pathway, for example, at the rod
bipolar to AII amacrine synapse. Threshold curves were identical for a site after summation
(1) and for a site after the gain control (2). The reason is that the gain control was noiseless.
Performance of the array of rods was greater than the ganglion cell. The ideal observer allows
an unbiased comparison between real cell and model at different stages. Compare this model
to Figure 17. Redrawn from Dunn et al. (2006).
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Figure 19.
Retinal circuitry progressively loses contrast sensitivity from one layer to the next.
Simultaneous recordings from A-type horizontal cells (HA, intracellular) and brisk-transient
ganglion cells (BT OFF, BT ON, extracellular spikes) analyzed by the ideal observer compare
the contrast threshold between an ideal model of preneural factors, horizontal cells, and
ganglion cells. The total loss of sensitivity from the stimulus through the retinal circuit
converging to a ganglion cell’s spike train is ~10-fold. Sensitivity varies with background light
level, and the optimal background for both horizontal and ganglion cells is in the low photopic
range. At the optimal background, the ganglion cell and HA both lose sensitivity from their
presynaptic layer by a factor of ~4-fold. Synaptic noise at cone and bipolar cell ribbon synapses
is the likely candidate for the measured losses. Stimulus was a flashed spot of light (500 μm
dia, 100 ms, 2 Hz). Compare to Figures 15–17. Redrawn from Borghuis et al., 2009.
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Figure 20.
Threshold for spikes in a guinea pig ganglion cell in vitro is 2-fold higher than graded potential
(Dhingra & Smith, 2004). The experimental task was to detect a spot of light (100 ms, 500
μm, 2 Hz) from background in a single-interval two-alternative forced-choice task. Threshold
was defined the contrast that gave 68% correct. The ideal observer allowed a a relatively
unbiased comparison between simultaneously recorded spikes and graded potential (see text).
Compare to Figure 6. Redrawn from Dhingra & Smith (2004).
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Figure 21.
Simultaneous recordings from neighboring ganglion cells show that contrast sensitivity across
the array is spatially invariant (Borghuis et al. 2008). A spot was flashed at different locations
across the receptive fields of a pair of On-brisk-transient ganglion cells. A, At suprathreshold
contrast (3.2%), firing rate of a cell increased when the spot was close to its receptive field
center. The sum of the firing rates of the cells varied with spot position and peaked halfway
between the 2 cells. B, An ideal observer measured detection performance based on the
response of either cell, or both combined. Performance varied across the receptive field when
measured for each cell alone, but was constant when measured for both together. Arrowheads
show receptive field centers. Compare to Figures 15–17. Redrawn from Borghuis et al.
(2008).
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Figure 22.
Hypothesis: adaptational components extend performance (contrast sensitivity) over a wide
range of background at the cost of lower optimal performance. (A) Ganglion cell circuit with
adaptation and inhibitory feedback. Performance of a ganglion cell in a contrast discrimination
task extends over a wide range of backgrounds. At low backgrounds, performance is low, but
relatively high compared to ideal. At high backgrounds, performance drops relative to ideal.
(B) Performance of ganglion cell in a circuit without adaptation or feedback will be limited to
a narrow range because it thresholds at low backgrounds and saturates at high backgrounds.
Adaptation and surround antagonism reduce performance at optimal background. Ideal
performance (dashed line) is defined by square root law.
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Figure 23.
Identify the specific role of components in the circuit. Use pairs of stimuli that vary in one
parameter to measure the system’s performance. Then perturb the system, measure its
performance, and compare to the original to find the role of the perturbed component in signal
quality of the system’s output. This paradigm can probe the performance of a single neuron or
an array.
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