Skip to main content
AAPS PharmSciTech logoLink to AAPS PharmSciTech
. 2007 Dec 21;8(4):237–248. doi: 10.1208/pt0804110

In vitro and in vivo aspects of cascade impactor tests and inhaler performance: A review

Jolyon Mitchell 1,, Steve Newman 2, Hak-Kim Chan 3
PMCID: PMC2750696  PMID: 18181531

Abstract

The purpose of this review is to discuss the roles of cascade impactor (CI) data in inhaler assessment and to examine the relationship between aerodynamic particle size distribution (APSD) and the clinical response to inhaled drugs. A systematic literature search of studies linking APSD to clinical response was undertaken. Two distinct roles for CI-generated data were identified: (1) the control of inhaler/drug product quality; and (2) the provision of data that may be predictive of particle deposition in the respiratory tract. Method robustness is required for the former application, combined with simplicity in operation, resulting in rudimentary attempts to mimic the anatomy of the respiratory tract. The latter necessitates making the apparatus and its operation more closely resemble patient use of the inhaler. A CI cannot perfectly simulate the respiratory tract, since it operates at constant flow rate, while the respiratory cycle has a varying flow-time profile. On the basis of a review of studies linking APSD to clinical response of inhaled drugs, it is concluded that attempts to use CI-generated data from quality control testing to compare products for bioequivalence are likely to have only limited success, as links between laboratory-measured APSD, particle deposition in the respiratory tract, and clinical response are not straightforward.

Keywords: Cascade impactor, inhaler testing, clinical response

Full Text

The Full Text of this article is available as a PDF (321.9 KB).

References

  • 1.Mitchell JP, Nagel MW. Cascade impactors for the size characterization of aerosols from medical inhalers: their use and limitations. J Aerosol Med. 2003;16:341–377. doi: 10.1089/089426803772455622. [DOI] [PubMed] [Google Scholar]
  • 2.Section 2.9.18—Preparations for inhalation: aerodynamic assessment of fine particles. In:European Pharmacopeia. 5th ed. Strasbourg, France: European Pharmacopeia; 2005:2799–2811.
  • 3.US Pharmacopeia. Chapter USP. 601—Physical tests and determinations: aerosols. In:US Pharmacopeia 30—National Formulary 25. Rockville, MD: US Pharmacopeial Convention; 2007:220–240.
  • 4.Mitchell JP, Nagel MW. Particle size analysis of aerosols from medicinal inhalers. KONA: Powder Particle. 2000;22:32–65. [Google Scholar]
  • 5.Christopher D, Curry P, Doub B, et al. Considerations for the development and practice of cascade impaction testing including a mass balance failure investigation tree. J Aerosol Med. 2003;16:235–247. doi: 10.1089/089426803769017604. [DOI] [PubMed] [Google Scholar]
  • 6.Rudolph G, Kobrich R, Stahlhofen W. Modeling and algebraic formulation of regional aerosol deposition in man. J Aerosol Sci. 1990;21:S403–S406. doi: 10.1016/0021-8502(90)90266-Z. [DOI] [Google Scholar]
  • 7.Newman SP. How well do in vitro particle size measurements predict drug delivery in vivo? J Aerosol Med. 1998;11:S97–S104. [PubMed] [Google Scholar]
  • 8.Newman SP, Wilding IR, Hirst PH. Human lung deposition data: the bridge between in vitro and clinical evaluations for inhaled drug products? Int J Pharm. 2000;208:49–60. doi: 10.1016/S0378-5173(00)00538-X. [DOI] [PubMed] [Google Scholar]
  • 9.Marple VA, Liu BYH. Characteristics of laminar jet impactors. Environ Sci Technol. 1974;8:648–654. doi: 10.1021/es60092a003. [DOI] [Google Scholar]
  • 10.Marple VA, Willeke K. Inertial impactors: theory, design and use. In: Liu BYH, editor. Fine Particles. New York, NY: Academic Press; 1976. pp. 411–466. [Google Scholar]
  • 11.Byron PR, Cummings H, Nichols SC. Selection and validation of cascade impactor test methods. In: Dalby RN, Byron PR, Peart J, Suman JD, Farr SJ, editors. Respiratory Drug Delivery IX. Raleigh, NC: Davis Horwood International; 2004. pp. 169–178. [Google Scholar]
  • 12.Marple VA, Roberts DL, Romay FJ, et al. Next generation pharmaceutical impactor, Part 1. J Aerosol Med. 2003;16:283–299. doi: 10.1089/089426803769017659. [DOI] [PubMed] [Google Scholar]
  • 13.Dunbar C, Mitchell JP. Analysis of cascade impactor mass distributions. J Aerosol Med. 2005;18:439–451. doi: 10.1089/jam.2005.18.439. [DOI] [PubMed] [Google Scholar]
  • 14.Adams WP, Christopher D, Lee DS, et al. Product Quality Research Institute: evaluation of cascade impactor profiles of pharmaceutical aerosols: Part 2—evaluation of a method for determining equivalence.AAPS PharmSciTech [serial online]. 2007;8:E5. [DOI] [PMC free article] [PubMed]
  • 15.Adams WP, Christopher D, Lee DS, et al. Product Quality Research Institute: evaluation of cascade impactor profiles of pharmaceutical aerosols: Part 1—background for a statistical method.AAPS PharmSciTech [serial online]. 2007;8:E4. [DOI] [PMC free article] [PubMed]
  • 16.Christopher D, Adams W, Amann A, et al. Product Quality Research Institute: evaluation of cascade impactor profiles of pharmaceutical aerosols: Part 3—final report on a statistical procedure for determining equivalence.AAPS PharmSciTech [serial online]. 2007;8:E90. [DOI] [PMC free article] [PubMed]
  • 17.Heyder J. Deposition of particles in the human respiratory tract in the size range 0.005 to 15 µm. J Aerosol Sci. 1986;17:811–825. doi: 10.1016/0021-8502(86)90035-2. [DOI] [Google Scholar]
  • 18.Byron PR. Aerosol formulation, generation and delivery using non-metered systems. In: Byron PR, editor. Respiratory Drug Delivery. Boca Raton, FL: CRC Press; 1991. pp. 143–165. [Google Scholar]
  • 19.Dunbar CA, Hickey AJ. Evaluation of probability density functions to estimate particle size distributions of pharmaceutical aerosols. J Aerosol Sci. 2000;31:813–831. doi: 10.1016/S0021-8502(99)00557-1. [DOI] [Google Scholar]
  • 20.Majoral C, Le Pape A, Diot P, Vecellio L. Comparison of various methods for processing cascade impactor data. Aerosol Sci Technol. 2006;40:672–682. doi: 10.1080/02786820600796582. [DOI] [Google Scholar]
  • 21.Vaughan NP. The Andersen impactor: calibration, wall losses and numerical simulation. J Aerosol Sci. 1989;20:67–90. doi: 10.1016/0021-8502(89)90032-3. [DOI] [Google Scholar]
  • 22.Horton KD, Ball MHE, Mitchell JP. The calibration of a California Measurements PC-2 quartz crystal cascade impactor. J Aerosol Sci. 1992;23:505–524. doi: 10.1016/0021-8502(92)90020-V. [DOI] [Google Scholar]
  • 23.Rubow KL, Marple VA, Olin J, McCawley MA. A personal cascade impactor: design, evaluation and calibration. Am Ind Hyg Assoc J. 1987;48:532–538. doi: 10.1080/15298668791385174. [DOI] [PubMed] [Google Scholar]
  • 24.Picknett RG. A new method of determining aerosol size distributions from multistage sampler data. J Aerosol Sci. 1972;3:185–198. doi: 10.1016/0021-8502(72)90157-7. [DOI] [Google Scholar]
  • 25.Marple VA, Olson BA, Santhanakrishnan K, Mitchell JP, Murray S, Hudson-Curtis B. Next generation pharmaceutical impactor, Part II: calibration. J Aerosol Med. 2003;16:301–324. doi: 10.1089/089426803769017668. [DOI] [PubMed] [Google Scholar]
  • 26.Mitchell JP, Dalby R. Characterization of aerosol performance. In: Bechtold-Peters K, Lüssen H, editors. Pulmonary Drug Delivery—Basics, Applications and Opportunities for Small Molecules and Bio-Pharmaceuticals. Aulendorf, Germany: Editio Cantor Verlag; 2006. pp. 282–305. [Google Scholar]
  • 27.Canadian Standards Association . Spacers and holding chambers for use with metered dose inhalers. Mississauga, ON: Canadian Standards Association; 2002. [Google Scholar]
  • 28.Dolovich MB, Mitchell JP. Canadian Standards Association standard CAN/CSA/Z264.1-02:2002: a new voluntary standard for spacers and holding chambers used with pressurized metered-dose inhalers. Can Respir J. 2004;11:489–495. doi: 10.1155/2004/497946. [DOI] [PubMed] [Google Scholar]
  • 29.Dolovich M, Rhem R. Impact of oropharyngeal deposition on inhaled dose. J Aerosol Med. 1998;11:112–115. [PubMed] [Google Scholar]
  • 30.de Boer AH, Bolhuis GK, Gjaltema D, Hagerdoorn P. Inhalation characteristics and their effects on in vitro drug delivery from dry powder inhalers: Part 3—the effect of flow resistance increase rate (FIR) on the in vitro drug release from the Pulmicort 200 Turbuhaler. Int J Pharm. 1997;153:67–77. doi: 10.1016/S0378-5173(97)00097-5. [DOI] [Google Scholar]
  • 31.Copley M, Smurthwaite M, Roberts DL, Mitchell JP. Revised internal volumes of cascade impactors for those provided by Mitchell and Nagel. J Aerosol Med. 2005;18:364–366. doi: 10.1089/jam.2005.18.364. [DOI] [PubMed] [Google Scholar]
  • 32.O’Connor DK, Tougas T. Controlling analytical variability: a cascade impactor case study.Am Pharm Rev. March/April, 2007. Available at: http://www.americanpharmaceuticalreview.com/articleDetail.asp?SID=ADD0C710FE3344558D9F5676C525AADE&ArticleID=486. Accessed July 17, 2007.
  • 33.Olsson B, Borgström L, Asking L, Bondesson E. Effect of inlet throat on the correlation between measured fine particle dose and lung deposition. In: Dalby RN, Byron PR, Farr SJ, editors. Respiratory Drug Delivery V. Buffalo Grove, IL: Interpharm Press; 1996. pp. 273–281. [Google Scholar]
  • 34.Berg E. In vitro properties of pressurized metered dose inhalers with and without spacer devices. J Aerosol Med. 1995;8:S3–S11. doi: 10.1089/jam.1995.8.Suppl_3.S-3. [DOI] [PubMed] [Google Scholar]
  • 35.Finlay WH, Zuberbuhler P. In vitro comparison of salbutamol hydrofluoroalkane (Airomir) metered dose inhaler aerosols inhaled during pediatric tidal breathing from five valved holding chambers. J Aerosol Med. 1999;12:285–291. doi: 10.1089/jam.1999.12.285. [DOI] [PubMed] [Google Scholar]
  • 36.Mandhane P, Zuberbuhler P, Lange CF, Finlay WH. Albuterol aerosol delivered via metered-dose inhaler to intubated pediatric models of 3 ages with 4 spacer designs. Respir Care. 2003;48:948–955. [PubMed] [Google Scholar]
  • 37.Morton RW, Mitchell JP. Design of facemasks for delivery of aerosol-based medication via pressurized metered dose inhaler with valved holding chamber: key issues that affect performance. J Aerosol Med. 2007;20:S29–S45. doi: 10.1089/jam.2007.0571. [DOI] [PubMed] [Google Scholar]
  • 38.Fink JB, Dhand R. Laboratory evaluation of metered-dose inhalers with models that simulate interaction with the patient. Respir Care Clin N Am. 2001;7:303–317. doi: 10.1016/S1078-5337(05)70035-6. [DOI] [PubMed] [Google Scholar]
  • 39.Foss SA, Keppel JW. In vitro testing of MDI spacers: a technique for measuring respirable dose output with actuation in-phase or out-of-phase with inhalation. Respir Care. 1999;44:1474–1485. [Google Scholar]
  • 40.Janssens HM, De Jongste JC, Fokkens WJ, et al. The Sophia anatomical infant nose-throat (Saint) model: a valuable tool to study aerosol deposition in infants. J Aerosol Med. 2001;14:433–441. doi: 10.1089/08942680152744640. [DOI] [PubMed] [Google Scholar]
  • 41.Finlay WH, Stapleton KW. Undersizing of droplets from a vented nebulizer caused by aerosol heating during transit through an Andersen impactor. J Aerosol Sci. 1999;30:105–109. doi: 10.1016/S0021-8502(98)00024-X. [DOI] [Google Scholar]
  • 42.Marple VA, Olson BA, Miller NC. The role of inertial particle collectors in evaluating pharmaceutical aerosol systems. J Aerosol Med. 1998;11:S139–S153. [PubMed] [Google Scholar]
  • 43.Olson BA, Marple VA, Mitchell JP, Nagel MW. Development and calibration of a low-flow version of the Marple-Miller impactor. Aerosol Sci Technol. 1998;29:307–314. doi: 10.1080/02786829808965571. [DOI] [Google Scholar]
  • 44.Annals of the International Commission on Radiological Protection (ICRP) Human Respiratory Tract Model for Radiological Protection. Tarrytown, NY: Pergamon Press (Elsevier Science); 1994. [Google Scholar]
  • 45.Pitcairn GR, Reader S, Pavia D, Newman S. Deposition of corticosteroid aerosol in the human lung by Respimat soft mist inhaler compared to deposition by metered dose inhaler or by Turbuhaler dry powder inhaler. J Aerosol Med. 2005;18:264–272. doi: 10.1089/jam.2005.18.264. [DOI] [PubMed] [Google Scholar]
  • 46.Laube BL, Edwards AM, Dalby RN, Creticos PS, Norman PS. The efficacy of slow versus faster inhalation of cromolyn sodium in protecting against allergen challenge in patients with asthma. J Allergy Clin Immunol. 1998;101:475–483. doi: 10.1016/S0091-6749(98)70376-8. [DOI] [PubMed] [Google Scholar]
  • 47.Lipworth BJ. New perspectives on inhaled drug delivery and systemic bioactivity. Thorax. 1995;50:105–110. doi: 10.1136/thx.50.2.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Pritchard JN. The influence of lung deposition on clinical response. J Aerosol Med. 2001;14:19–26. doi: 10.1089/08942680150506303. [DOI] [PubMed] [Google Scholar]
  • 49.Howarth PH. Why particle size should affect clinical response to inhaled therapy. J Aerosol Med. 2001;14:27–34. doi: 10.1089/08942680150506312. [DOI] [PubMed] [Google Scholar]
  • 50.Bames PJ, Pedersen S, Busse WW. Efficacy and safety of inhaled corticosteroids: new developments. Am J Respir Crit Care Med. 1998;157:S1–S53. doi: 10.1164/ajrccm.157.3.157315. [DOI] [PubMed] [Google Scholar]
  • 51.Dolovich MA. Influence of inspiratory flow rate, particle size and airway caliber on aerosolized drug delivery to the lung. Respir Care. 2000;45:597–608. [PubMed] [Google Scholar]
  • 52.Rees PJ, Morén F, Clark TJH. The importance of particle size in response to inhaled bronchodilators. Eur J Respir Dis. 1982;63:73–78. [PubMed] [Google Scholar]
  • 53.Persson G, Wiren JE. The bronchodilator response from inhaled terbutaline is influenced by the mass of small particles: a study on a dry powder inhaler (Turbuhaler) Eur Respir J. 1989;2:253–256. [PubMed] [Google Scholar]
  • 54.Padfield JM, Winterborn IK, Pover GM, Tattersfield A. Correlation between inertial impactor performance and clinical performance of a bronchodilator aerosol [abstract]J Pharm Pharmacol. 1983;35:10P.
  • 55.Evans AE, Ward S, Prowse K. Respirable fraction and clinical response in relation to orifice size of aerosol inhalers [abstract]Thorax. 1992;47:239P.
  • 56.Srichana T, Suedee R, Maunpanarai D, Tanmanee N. The study of in vitro-in vivo correlation: pharmacokinetics and pharmacodynamics of albuterol dry powder inhaler. J Pharm Sci. 2005;94:220–230. doi: 10.1002/jps.20218. [DOI] [PubMed] [Google Scholar]
  • 57.Weda M, Zanen P, de Boer AH, et al. Equivalence testing of salbutamol dry powder inhalers: in vitro impaction results versus in vivo efficacy. Int J Pharm. 2002;249:247–255. doi: 10.1016/S0378-5173(02)00533-1. [DOI] [PubMed] [Google Scholar]
  • 58.Weda M, Zanen P, de Boer AH, Barends DM, Frijlink HW. An investigation into the predictive value of cascade impactor results for side-effects of inhaled salbutamol. Int J Pharm. 2004;287:79–87. doi: 10.1016/j.ijpharm.2004.08.017. [DOI] [PubMed] [Google Scholar]
  • 59.Busse WW, Brazinsky S, Jacobson K, et al. Efficacy response of inhaled beclomethasone dipropionate in asthma is proportional to dose and is improved by formulation with a new propellant. J Allergy Clin Immunol. 1999;104:1215–1222. doi: 10.1016/S0091-6749(99)70016-3. [DOI] [PubMed] [Google Scholar]
  • 60.Gabrio BJ, Stein SW, Velasquez DJ. A new method to evaluate plume characteristics of hydrofluoroalkane and chlorofluorocarbon metered dose inhalers. Int J Pharm. 1999;186:3–12. doi: 10.1016/S0378-5173(99)00133-7. [DOI] [PubMed] [Google Scholar]
  • 61.Vidgren M, Silvasti M, Vidgren P, Laurikainen K, Lehti H, Paronen P. Physical properties and clinical efficacy of two sodium cromoglycate inhalation aerosol preparations. Acta Pharm Nord. 1991;3:1–4. [PubMed] [Google Scholar]
  • 62.Vidgren P, Silvasti M, Vidgren M, Paronen P, Tukiainen H, Lehti H. In vitro inhalation behaviour and therapeutical response of salbutamol particles administered from two metered dose inhalers. Pharmazie. 1991;46:41–43. [PubMed] [Google Scholar]
  • 63.Dolovich M, Ryan G, Newhouse MT. Aerosol penetration into the lung: influence on airway responses. Chest. 1981;80:834–836. [PubMed] [Google Scholar]
  • 64.Ryan G, Dolovich MB, Obminski G, et al. Standardisation of inhalation provocation tests: influence of nebuliser output, particle size and method of inhalation. J Allergy Clin Immunol. 1981;67:156–161. doi: 10.1016/0091-6749(81)90012-9. [DOI] [PubMed] [Google Scholar]
  • 65.Hadfield JW, Windebank WJ, Bateman JRM. Is driving gas flow clinically important for nebulizer therapy? Br J Dis Chest. 1986;80:50–54. doi: 10.1016/0007-0971(86)90009-4. [DOI] [PubMed] [Google Scholar]
  • 66.Douglas JG, Leslie MJ, Crompton GK, Grant IWB. Is the flow rate used to drive a jet nebuliser clinically important? BMJ. 1985;290:29–29. doi: 10.1136/bmj.290.6461.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Douglas JG, Leslie MJ, Crompton GK, Grant IWB. A comparative study of two doses of salbutamol nebulised at 4 and 8 litres per minute in patients with chronic asthma. Br J Dis Chest. 1986;80:55–58. doi: 10.1016/0007-0971(86)90010-0. [DOI] [PubMed] [Google Scholar]
  • 68.Mitchell DM, Solomon MA, Tolfree S, Short M, Spiro SG. Effect of particle size of bronchodilator aerosols on lung distribution and pulmonary function in patients with chronic asthma. Thorax. 1987;42:457–461. doi: 10.1136/thx.42.6.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Clay MM, Pavia D, Clarke SW. Effect of aerosol particle size on bronchodilatation with nebulised terbutaline in asthmatic subjects. Thorax. 1986;41:364–368. doi: 10.1136/thx.41.5.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Johnson MA, Newman SP, Bloom R, Talaee N, Clarke SW. Delivery of albuterol and ipratropium bromide from two nebuliser systems in chronic stable asthma: efficacy and pulmonary deposition. Chest. 1989;96:1–10. doi: 10.1378/chest.96.1.1. [DOI] [PubMed] [Google Scholar]
  • 71.Fiel SB, Fuchs HJ, Johnson CJ, Gonda I, Clark AR. Comparison of three jet nebulizer aerosol delivery systems used to administer recombinant human DNase I to patients with cystic fibrosis. Chest. 1995;108:153–156. doi: 10.1378/chest.108.1.153. [DOI] [PubMed] [Google Scholar]
  • 72.Shah PL, Scott SF, Geddes DM, et al. An evaluation of two aerosol delivery systems for rhDNase. Eur Respir J. 1997;10:1261–1268. doi: 10.1183/09031936.97.10061261. [DOI] [PubMed] [Google Scholar]
  • 73.Geller DE, Eigen H, Fiel SB, et al. Effect of smaller droplet size of domase alfa on lung function in mild cystic fibrosis. Pediatr Pulmonol. 1998;25:83–87. doi: 10.1002/(SICI)1099-0496(199802)25:2<83::AID-PPUL2>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  • 74.Ruffin RE, Dolovich MB, Wolff RK, Newhouse MT. The effects of preferential deposition of histamine in the human airway. Am Rev Respir Dis. 1978;117:485–492. doi: 10.1164/arrd.1978.117.3.485. [DOI] [PubMed] [Google Scholar]
  • 75.Ruffin RE, Dolovich MB, Oldenberg FA, Newhouse MT. The preferential deposition of inhaled isoproterenol and propranolol in asthmatic patients. Chest. 1981;80:904–907. doi: 10.1378/chest.80.6.904. [DOI] [PubMed] [Google Scholar]
  • 76.Ryan G, Dolovich M, Roberts R, et al. Standardisation of inhalation provocation tests: two techniques of aerosol generation and inhalation compared. Am Rev Respir Dis. 1981;123:195–199. doi: 10.1164/arrd.1981.123.2.195. [DOI] [PubMed] [Google Scholar]
  • 77.Hultquist C, Wollmer P, Eklundh G, Jonson B. Effect of inhaled terbutaline sulphate in relation to its deposition in the lungs. Pulm Pharmacol. 1992;5:127–132. doi: 10.1016/0952-0600(92)90030-K. [DOI] [PubMed] [Google Scholar]
  • 78.Mitchell JP, Nagel MW, Nichols S, Nerbrink O. Laser diffractometry as a technique for the rapid assessment of aerosol particle size from inhalers. J Aerosol Med. 2006;19:409–443. doi: 10.1089/jam.2006.19.409. [DOI] [PubMed] [Google Scholar]
  • 79.Zanen P, Go LT, Lammers JWJ. The optimal particle size for beta-adrenergic aerosols in mild asthmatics. Int J Pharm. 1994;107:211–217. doi: 10.1016/0378-5173(94)90436-7. [DOI] [Google Scholar]
  • 80.Zanen P, Go LT, Lammers JWJ. The optimal particle size for parasympathicolytic aerosols in mild asthmatics. Int J Pharm. 1995;114:111–115. doi: 10.1016/0378-5173(94)00224-S. [DOI] [Google Scholar]
  • 81.Zanen P, Go LT, Lammers JWT. Optimal particle size for beta-agonist and anticholinergic aerosols in patients with severe airflow limitation. Thorax. 1996;51:977–980. doi: 10.1136/thx.51.10.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Usmani OS, Biddiscombe MF, Nightingale JA, Underwood SR, Barnes PJ. Effects of bronchodilator particle size in asthmatic patients using monodisperse aerosols. J Appl Physiol. 2003;95:2106–2112. doi: 10.1152/japplphysiol.00525.2003. [DOI] [PubMed] [Google Scholar]
  • 83.Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of beta-2 agonist particle size. Am J Respir Crit Care Med. 2005;172:1497–1504. doi: 10.1164/rccm.200410-1414OC. [DOI] [PubMed] [Google Scholar]
  • 84.Dolovich MB, Ahrens RC, Hess DR, et al. Device selection and outcomes of aerosol therapy: evidence-based guidelines. Chest. 2005;127:335–371. doi: 10.1378/chest.127.1.335. [DOI] [PubMed] [Google Scholar]
  • 85.Woodcock J. The concept of pharmaceutical quality. Am Pharm Rev. 2004;7:10–15. [Google Scholar]
  • 86.Fink JB, Rubin BK. Problems with inhaler use: a call for improved clinician and patient education. Respir Care. 2005;50:1360–1375. [PubMed] [Google Scholar]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES