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Abstract
Antimicrobial peptides (AMPs) are multi-functional peptides whose fundamental biological role in
vivo has been proposed to be the elimination of pathogenic microorganisms, including Gram-positive
and -negative bacteria, fungi, and viruses. Genes encoding these peptides are expressed in a variety
of cells in the host, including circulating phagocytic cells and mucosal epithelial cells, demonstrating
a wide range of utility in the innate immune system. Expression of these genes is tightly regulated;
they are induced by pathogens and cytokines as part of the host defense response, and they can be
suppressed by bacterial virulence factors and environmental factors which can lead to increased
susceptibility to infection. New research has also cast light on alternative functionalities, including
immunomodulatory activities, which are related to their unique structural characteristics. These
peptides represent not only an important component of innate host defense against microbial
colonization and a link between innate and adaptive immunity, but also form a foundation for the
development of new therapeutic agents.
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I. Introduction
The innate immune system provides organisms with a rapid, non-specific first line of defense
against colonization by pathogenic microorganisms. The components of innate immunity
include the barrier function of the skin, reduced pH of the stomach, the sweeping motion of
the cilia in the airway to remove inhaled pathogens, and chemical defenses which include host
defense peptides. These gene-encoded defense molecules, initially known as antimicrobial
peptides (AMPs), are a diverse collection of peptides that participate in several aspects of innate
immunity, and may also provide the basis for the design of novel therapeutic agents. Numerous
reviews have been written on the diversity of these peptides, their structure and activities in
vitro and in vivo, and genetics and gene regulation (see, for example, [1-6]).

While the antibiotic properties of secretions were observed as early as Fleming [7], the presence
of broad-spectrum antimicrobial activity in blood cells was first described in the 1950s [8].
Subsequently, it was discovered that phagocytic cells produce intracellular cationic AMPs in
response to infection [9], as did innate immune cells in insects [10]). In 1983, Lehrer and Selsted
purified two AMPs with three intralinked cysteines from rabbit lung macrophages, which were
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later named defensins [11]. Subsequent examination of different cell types, including those of
the myeloid lineage and epithelium have uncovered a wide variety of AMPs both from
mammals as well as amphibians [12] fish [13], insects [14], birds [15], and plants [16]. The
varied structural and functional attributes of the hundreds of AMPs identified to date have been
reviewed in detail (see, for example [17], and updated information may be obtained at one of
several AMP databases ([http://www.bbcm.univ. trieste.it/∼tossi/amsdb.html];
[http://aps.unmc.edu/AP/main.php]; and
[http://research.i2r.a-star.edu.sg/Templar/DB/ANTIMIC/] [18]. In this review, after a brief
discussion of AMP structure and function, we will attempt to incorporate new information
regarding the varied activities of AMPs in mammals, which may help understand their roles
in host defense.

II. AMP Structure
Although AMPs are commonly classified by variation in structural characteristics, there are
some structural features that AMPs share, including a length of less than 60 amino acids, broad-
spectrum antimicrobial activity at physiological conditions, and an overall positive charge
(reviewed in [6,19]). The fundamental structural principle underlying this class of peptides is
the ability to adopt an amphipathic shape in which clusters of hydrophobic and hydrophilic
amino acids segregate [6]. AMPs can be divided into five sub-categories on the basis of their
amino acid composition and structure including anionic peptides, linear amphipathic α-helical,
cationic peptides enriched for specific amino acids, peptide fragments, and peptides with
cysteines that form intramolecular bonding (reviewed in [1,20]). Some examples of these
classes are shown in Table 1.

The first subgroup is composed of anionic peptides similar to the charged-neutralizing
propeptides of larger zymogens. These small peptides are present in surfactant extracts,
bronchoalveolar lavage fluid, and airway epithelial cells [1]. Produced in millimolar (mM)
quantities they require zinc as a cofactor and display activity against both Gram-positive and
-negative bacteria. Examples include dermcidin in humans [21] and maximin H5 from
amphibians [22].

The second, and most evolutionarily diverse subgroup contains ∼290 linear cationic α-helical
peptides, most of which are less than 40 amino acids in length and possess a three dimensional
structure with a kink or hinge in the middle. Although disordered in solution, these molecules
adopt an α-helical secondary structure while in contact with membranes [1]. A direct
correlation has been discovered between α-helical content and antimicrobial activity. Examples
of these peptides include cecropins [23], magainin [12], pleurocidin from the winter flounder
[13], and melittin from bee venom [24].

The third group contains approximately 44 peptides all of which are linear in shape and enriched
in specific amino acids. Members from this group include 1) bactenecins and 2) proline-
arginine-rich peptide (PR-39), both of which are rich in proline (33-49%) and arginine
(13-33%); 3) proline rich (38%) abaecin from bees; and 4) indolicidin from cattle, rich in
tryptophan [1]. This group lacks cysteine residues, making it very flexible and fluid in solution
as well.

The fourth group is comprised of charged peptides that are fragments of larger peptides. These
peptides possess antimicrobial activity and are similar in shape and size to other AMPs. For
example, lactoferricin, [25] is a peptide derived from the digested N-terminal portion of
lactoferrin. Similarly, cathelicidins are peptides which are found at the C-terminus of
precursors whose N-termini share a homology with a porcine serine protease known as cathelin
[26].
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The fifth group is composed of ∼380 members which all contain conserved 6-cysteine residue
motifs forming intramolecular disulfide bonds and β-sheets [1]. This is an extremely diverse
group of proteins known as defensins [20], which is hypothesized to have originated in
prokaryotes [27]. This has diverged into plant defensins, arthropod defensins, and the β-
defensins found in higher animals, including birds, reptiles and mammals (reviewed in [28]).
At some point in mammalian evolution the α-defensins diverged from the β-defensin family.
A third defensin subfamily, the θ-defensins are found only in rhesus monkeys, having
apparently evolved from a mutation in α-defensins [29]. Similar to the defensins is a liver-
specific peptide, hepcidin, which exhibits both antimicrobial activity and iron-regulatory
activity [30]. Hepcidin is also cysteine-rich, with two β-sheets.

Other peptides with specific antimicrobial activities, such as the antifungal histatins [31] and
the antiviral zap proteins [32], are characterized by diverse structures, demonstrating the wide
variety of antimicrobial host defense peptides. While the exact details of these mechanisms
remain unknown a dissection of the physical characteristics of each class of peptide allows us
to speculate as to what must occur at each of the specific steps to result in the induction of
bacterial killing. AMPs are traditionally broken into four structural classes: linear, beta-sheet,
loop, and extended structures [33]. There are some peptides that do not fit any of these
categories and there are some that only display this type of secondary structure while
aggregated or interacting with membranes; e.g. the bovine neutrophil peptide indolicidin is
unstructured in aqueous environments but adopts a boat-like conformation after interacting
with membranes [34]. Human defensins share several distinct structural folds that are unique
when compared to the rest of the known AMPs. The structural frame of the molecules is formed
by triple stranded antiparallel beta-sheet, restrained by three disulfide bridges [35,36],
commonly referred to as the defensin-like fold [37]. The structure of HNP3 is identified as its
archetype [38]. Even the cyclic θ-defensins, retrocyclin-1 and RTD1, posses a similar beta-
hairpin tertiary structures with the internal disulfide bonding [39,40].

Despite the structural conservations found among human defensins the triple stranded
antiparallel beta-sheet is the most conserved feature. One very notable physical characteristic
of this feature is a beta-bulge located in the middle of the second beta-strand [41]. This bulge,
which accentuates a twist for this strand, initiates a beta-hairpin between the second and third
strands of the antiparallel beta-sheet [42]. Studies have confirmed that due to backbone torsion
angles the energetically significant placement of the glycine residue in the G16X17C18

(according to HNP2 numbering) is the only natural structure for the beta-bulge motif [43]. The
Gly residue has been successfully substituted with the use of a D-amino acid [43]. Named the
GXC motif this structure is conserved in all known alpha- and beta-defensins.

While AMPs share many conserved structural characteristics the intermolecular differences
can vary dramatically, especially amongst the defensin family. This is most prominent when
the molecular surfaces are compared as the inherent variability is a direct result of differences
in the physical composition of the proteins (i.e. length, amino acids, distribution of charged
residues) [35]. Wieprecht et al. showed a relationship between overall hydrophobicity and lipid
affinity for magainin analogs [44]. They found that the ability of hydrophobicity to modulate
membrane activity increased with decreasing electrostatic peptide-lipid interactions and an
increasing role of hydrophobic interactions [44]. Structure function studies using amino acid
substitution have shown the varied impact of the addition or subtraction of overall positive
charge from the antimicrobial ability of the molecules [45-47]. Szyk and collaborators surveyed
the arrangement of charged residues in regions of α-defensins in the amino and carboxy termini
and found little difference in the distribution of electrostatic potential over the remainder of
the molecule [48]. Although the surface properties of defensins are potentially at the core of
their biological importance elucidation of the subtleties of their mechanism may be too
monumental of a task at this time.
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III. Spectrum of Antimicrobial Activity
From their initial isolations and characterizations, AMPs, especially those from higher
organisms, were observed to exhibit a broad-spectrum of activities against microorganisms,
including Gram-positive and –negative bacteria (reviewed in [1]), fungi (reviewed in [49]),
mycoplasma [50], and viruses (reviewed in [51]). Antimicrobial activity for bacteria and fungi,
usually presented as Minimal Inhibitory Concentration (MIC), is in the 1-50μg/ml range for
most peptides against a wide variety of Gram-positive and – negative bacteria as well as fungi
such as Candida albicans. As multiple forms of a peptide were identified in single species,
such as β-defensins in human for example, it was observed that different peptides exhibited
species-specific and strain-specific activity. Table 2 shows a sample of some peptides and their
spectrum of activity as well as the variability between strains of microbe.

In addition to bacteria and fungi, it was also observed that some peptides exhibited inhibitory
activity against some viruses [52]. Specifically, this activity was initially limited to enveloped
viruses, suggesting a common mechanism for activity between peptides with an affinity for
membranes (see below). More recently, however, it has become apparent that some antiviral
AMPs are active at multiple steps in viral pathogenesis, including viral entry and replication
[53]. The observation of a β-defensin in the viral defense cell known as the plasmacytoid
dendritic cell (PDC) further supports their role in the innate defense against viruses [54].
Synthetic peptides based on naturally occurring sequences have been examined for their
potential as antiviral drugs, especially against HIV [55].

IV. Mechanism of Action of Antimicrobial Peptides
All known AMPs are imparted with similar physical properties that provide them with their
multi-faceted abilities. Their potent antimicrobial activities stem from the possession of a
cationic charge due to the presence of multiple lysine, tryptophan, and arginine residues, a
large portion of hydrophobic residues (50% or higher), hydrophobicity, and amphipathicity.
A number of studies have contributed to defining and understanding the mechanism of action
of AMPs [12,38,56,57]. The focus of these experiments has been the interaction of AMPs with
membranes using such methods as fluorescent dye release in model membrane systems [58],
ion channel formation [59], and methods to measure secondary structure including circular
dichroism [60], NMR [61], and neutron diffraction [62]. From these experiments it has been
generally accepted that AMP mediated killing of microorganisms typically occurs through
membrane permeation, although non-membrane disruptive peptides have also been discovered
[56]. These non-membrane disruptive peptides have been shown to affect several internal
cellular processes from macromolecular synthesis (i.e. RNA, DNA synthesis) [63] to loss of
ATP from actively respiring cells [64]. For example, the lantibiotic mersacidin, an AMP from
Gram-positive bacteria that contains the thioether amino acid lanthionine, has been shown to
combine with lipid II. This prevents peptidoglycan precursors from becoming polymeric
nascent peptidoglycan thus inhibiting cell wall formation. Buforin II, among other AMPs, has
been shown to bind to both DNA and RNA from E. coli altering their electrophoretic mobility
in vitro [56,65]. PR-39 and indolicidin are also noteworthy for their unusual ability to bind
intracellular targets. Agerberth and colleagues showed that PR-39 antibacterial activity
involves binding to the membrane, typical behavior of antimicrobial peptides, but not pore
formation [66]. Instead, it has been postulated that a passive uptake mechanism allows PR-39
into the cell and subsequent binding interactions stop protein and DNA synthesis [66]. An
alternative perspective is now being considered that as a group, AMPs have specific effects on
organisms based on the physical features that vary from peptide to peptide [34]. Below we will
discuss the structural variations with respect to antimicrobial killing.
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A. Attraction
Regardless of the type of organism or the class of peptide the first step of any peptide mediated
function is attraction. This behavior is ultimately governed by the charge and amphipathicity
of the peptide. Attraction is presumed to occur when the initial interactions between the cationic
peptides first occur via electrostatic interactions with negatively charged moieties on the
bacterial membrane. These anionic constituents include lipopolysaccharide (LPS) phosphate
groups and anionic lipids in the case of Gram-negative outer membranes and teichoic acids in
the case of Gram-positive membranes [67]. Cationic peptides have been shown to possess a
higher affinity for LPS in the outer leaflet of the outer membrane in Gram-negative bacteria
than do native divalent cations such as Mg2+ and Ca2+ [68]. In contrast, AMPs display lower
cytotoxicity to host cells due to the fact that their membranes possess a higher percentage of
cholesterol. Further, the introduction of cationic charges to the bacterial surface, or the
segregation of anionic phospholipids to the cytoplasmic surface of the membrane can lead to
bacterial resistance (reviewed in [69]).

B. Attachment
The distribution of polar and hydrophobic residues can result in pronounced interactions of the
peptides with the phospholipid membranes [70]. This physical property leads to the second
step, attachment, as the peptides must now traverse the exterior capsular polysaccharides to
reach the inner lipid layer [1]. The possession of Arg and Trp residues also plays a key role in
membrane insertion as the electrostatic interactions of the Arg side chains with the phosphate
head groups serves to stabilize the peptide-membrane interaction [71]. This is enhanced by Trp
residues which have a preference for the interfacial regions of lipid bilayers [72]. They are
considered hydrophobic due to the possession of an extensive π-electron system of their
uncharged side chain [73]. The π-electron system of Trp participates in cation-π binding which
is energetically favorable in aqueous solution allowing the residues to be stacked. When stacked
perpendicularly this shields Arg residues allowing them to make cation-π interactions with
water, thus stabilizing their insertion into the membrane [73].

After AMPs bind to the membrane surface they adopt an energetically favorable secondary
structure dictated by the hydrophobicity of the peptide. For example, the majority of α-helical
peptides possess relatively constant levels of hydrophobicity along the α-helical axis. This
forces them to adopt membrane orientations that are either parallel or perpendicular to the
membrane itself [74].

During the peptide-membrane interaction two physically distinct states occur [75]. The first is
low peptide/lipid ratios where the defensins first embed parallel to the lipid head groups causing
the membrane to stretch [76]. X-ray and neutron diffraction studies have shown that as the
peptide/lipid ratios increase pores begin to form when the thinning membrane reaches a fraction
of its previous thickness [77]. The second state occurs when high peptide/lipid ratios are
experienced, with pores having begun to form in the critically thin membrane, and the peptides
orient themselves perpendicularly and insert into the bilayer [78].

C. Models of Insertion
After insertion several models have been developed that explain how AMPs kill organisms
through membrane permeation. It is highly likely that these models vary for each class of AMPs
and types of microorganisms (an example, using magainin as a model, is shown in Fig. 1). The
first model, the carpet model (Fig. 1B), begins with peptide aggregation on the bilayer surface
[17]. As the concentration increases it is thought that the peptides intercalate into the membrane
in a detergent like manner causing the bilayers to continuously bend so the water core is lined
by both the inserted peptides and the lipid head groups [79]. Once a critical threshold
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concentration has been reached the membrane disintegrates and forms micelles [80]. This
model explains the activity of the AMP

The second model, known as the barrel-stave (Fig. 1C), was based on the activity of magainin-2
and states that the peptides form a bundle in the membrane with a pore in the center, much like
a barrel, with the AMPs as the staves [81]. The hydrophobic regions of the peptide interact
with the lipid core while the hydrophilic portions face outward [1]. For example, the AMP
alamethicin, has been discovered to induce pores that contain between 3-11 helical molecules
with inner and outer diameters calculated as ∼1.8 to ∼4.0 nm, respectively [82].

The third model, the toroidal pore model (Fig. 1D), combines the actions of the previous two
beginning with aggregation on the membrane surface. The peptides then insert themselves
perpendicularly into the membrane and induce the monolayers to continuously bend causing
the water core to be lined by both the inserted peptides and lipid head groups [83]. During this
action the polar faces of the peptides interact with the polar head groups of the lipids resulting
in the formation of a continuous bend that connects the two leaflets of the membrane [81]. This
behavior creates toroidal pores in the membrane causing the lipids to form micelles and
subsequent membrane disruption [61]. The toroidal pore model differs from the barrel stave
model in that the peptides are always associated with the lipid head groups even when
perpendicularly inserted into the lipid bilayers [81]. This behavior exemplifies the actions of
AMPs such as magainin, protegrin, and melittin [81]. Toroidal pores formed by magainin are
thought to contain only 4-7 peptide monomers to ∼90 lipid molecules [84,85].

Experimental evidence with AMP structural variants has shown that there is clear interplay
between the charge and an optimal threshold of hydrophobicity that enhances antimicrobial
ability [17,77,86]. A recent study by Chen et al. has been found that AMP analogs that are too
hydrophobic are more prone to eukaryotic cell damage [86]. They have proposed an
explanation based on a membrane discrimination mechanism for AMPs who utilize either the
barrel stave in eukaryotic cells or the carpet model in prokaryotic cells [86]. This mechanism
is based on the difference in lipid composition between the two types of membranes. It is a
well established fact that eukaryotic membranes contain abundant amounts of zwitterionic
phospholipids, such as cholesterol and sphingomyelin, and the absence of negatively charged
compounds, in contrast to prokaryotic membranes [87]. Since AMPs with higher
hydrophobicities penetrate deeper into membranes they would lyse eukaryotic cells though
pore formation. On the other hand, since insertion into bacterial cells is not always necessary
for peptide mediated killing, less hydrophobic AMPs need only aggregate parallel to the
membrane surface to facilitate proper interaction with polar surface areas.

D. Secondary Factors Affecting AMP Activity
The activity of AMPs in vivo has also been found to be enhanced by other mitigating factors
such as components of the host environment. For example, the effects of carbonate are
independent of any potential changes of AMP, and need not be immediately present in the
surrounding media [88]. Instead, the presence of carbonate has been shown to alter bacterial
gene expression in vivo corresponding to an enhanced AMP sensitivity phenotype [88].

Studies have also shown that there is a dependence on ionic interactions when AMP activity
is evaluated in the presence of monovalent, divalent, or polyanions [45]. Even in the presence
of minimal levels of ions, 50 mM of NaCl, suppression of activity has been observed in several
types of AMPs including LL-37 and hBDs [45,88]. This is due to the peptide being blanketed
with chloride ions, negating the positive charge of the molecule, thus preventing binding to the
microbial membrane. In contrast to their antimicrobial activity, the chemotaxic behavior of
defensins is not suppressed by physiological concentrations of salt and proteins, further
supporting the notion that AMP activity is dependent on ionic bonding [89]. Unfortunately,
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there has been little research into modifying the various classes of AMPs and their subtypes
in order to make them less susceptible in such environments. While it is recognized that the
mammalian host milieu contains a minimal salt concentration, evident by the microbicidal
ability of AMPs, any potential chemical alterations to counter act the effect of chloride ions
would potentially result in serious structural changes to the peptide. Combined with the high
level of entropy needed to displace the chloride ions these changes would subsequently affect
other important components of its activity (i.e. charge, hydrophobicity, etc) thus rendering the
peptide ineffectual.

V. Resistance to AMPs
One of the driving forces behind the research into AMPs has been the observation that these
peptides exhibit broad-spectrum activity, and that bacteria do not appear to develop resistance
as easily as with conventional antibiotics [90]. As mentioned above, there is a natural variability
among peptides with respect to activity. Some strains are naturally resistant to the activity of
some peptides, suggesting that the expression of multiple types of peptides in the same tissue
is necessary to obtain a broad-spectrum defense. In general, several natural mechanisms of
resistance to AMP activity have been observed. Some bacteria employ secreted proteases
which can inactivate the AMP, rendering them insensitive to their activity. These include the
gingipains from Porphyromonas gingivalis, which are arginine- and lysine-specific proteases,
and can digest highly cationic antimicrobial peptides [91]. Similarly, proteases from
Staphylococcus aureus can inactivate LL-37 [92]. While peptides, such as defensins, are
characterized by a secondary structure based on multiple disulphide bonds, which make them
less sensitive to proteases, such a resistance mechanism has been observe in multiple bacterial
species.

As described above, the major initial event in AMP-bacteria interaction is the ionic interaction
between the cationic peptide and the anionic envelope of the bacteria. Since these structures
are almost universal among bacteria, it forms one of the foundations of the sensitivity of
bacteria to AMPs. Regardless, bacterial species have developed mechanisms to modify even
these important structures by even partially neutralizing the envelope and inhibiting the
interactions with the peptides (reviewed in [93]). For example, genetic changes are found in
both Gram-positive bacteria, which modify the teichoic acids, as well as Gram-negative
bacteria, which modify the lipid A portion of LPS.

Initial studies demonstrated the difficulty in developing resistance among sensitive bacterial
strains [90,94,95]. These were carried out using a standard technique, that of growing the
bacteria in sub-MIC concentrations for up to 20 passages. The results showed no increase in
the MIC at this point, supporting the utility of AMPs to address the growing problem of
antibiotic-resistant bacterial strains. However, when a novel method was employed, whereby
bacteria were grown for over 700 passages in slowly increasing concentrations of an AMP, a
drastically different result was obtained. Here, strains that were previously sensitive to AMPs
at 1μg/ml, develop resistance to >500μg/ml [96]. In a separate study, co-challenge of a
bacterium, P. gingivalis, with sublethal levels of defensin and either heat or hydrogen peroxide
could lead to the development of resistance to defensin [97]. Together, these studies point out
that care must be taken before development of AMPs as therapeutics.

VI. Expression of Mammalian AMP Genes
Genes encoding AMPs in mammals are expressed throughout the body, both in circulating
cells and epithelium (for reviews, see, for example, [4,98-100]). The most abundant human
AMPs, defensins and cathelicidins, are produced from genes that encode larger precursor
proteins, each with a different precursor structure (Fig. 2). These structures lead to gene
regulation both at the transcriptional and posttranscriptional levels, to provide controlled
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expression of these multifunctional molecules. The coordinated transcriptional regulation of
AMP genes can lead to multiple AMP expression at a single site, providing a combination of
host defense molecules [101,102]. A recent computational study examined the upstream
regions of numerous AMP genes in human, mouse and rat, including defensins and
cathelicidins, and has characterized them according to similarities in their transcription factor
binding sites [103]. The results support the concept of coordinate transcriptional regulation of
AMP genes, to provide the most comprehensive antimicrobial host defense.

In humans, the α-defensin family includes four peptides found in neutrophils (HNP 1-4)
(reviewed in [104]), and two peptides in Paneth cells within the small intestine (HD-5 and –6)
(reviewed in [105]), which are differentially expressed. Transcription of HNP1-4 is found in
bone marrow and in immature myeolocytes, but stops with maturation of the neutrophil
[106]. Precursor α-defensins are produced in promyelocytes, which are then processed to the
mature, active forms during granulogenesis [107]. The active peptides are found in primary
granules in the neutrophils, where they can then be used as part of the oxygen-independent
antibacterial mechanism of these cells. In contrast, intestinal α-defensins are transcribed in the
Paneth cells, where the pre-propeptides are translated. Upon removal of the signal peptide
during the secretory process, the inactive propeptide is secreted into the lumen of the small
intestine, where it is activated by a trypsin-mediated removal of the propiece in humans
[108], and by matrilysin in mice [109].

In contrast, the β-defensins are found primarily in epithelial cells, at numerous sites throughout
the body, including oral, airway and skin epithelium (reviewed in [2]). As β-defensins lack an
acidic propiece [110], their expression is primarily at the level of transcription, producing active
peptide. In epithelial cells, human β-defensin 1 (hBD1) is generally transcribed at a constitutive,
low level. The mRNAs for other β-defensins, including hBD2, 3 and 4, are found at low levels,
but transcription is induced by a variety of factors including microbes and cytokines (reviewed
in [2,4]). Specifically, this includes Toll-like receptor (TLR) agonists such as LPS, and
inflammatory mediators such as TNF-α, Interleukin (IL)-1β and IL-17 [111]. More recently,
three cytokines, IL-12, 23 and 27 were shown to enhance the IL-1β-mediated induction of
hBD2 [112]. Together the multitude of factors that induce β-defensin transcription suggest a
complex role for these peptides in innate immunity.

In the airway, which is a generally sterile tissue, the epithelial cells are highly responsive to
the presence of microbes, including Gram-positive and –negative bacteria, which recognize
the potential pathogens through a TLR pathway, and lead to an NF-κB-mediated induction of
β-defensin gene expression [113]. Similarly, induction by IL-17 proceeds through NF-κB as
well [114]. In contrast, the oral cavity, which is home to hundreds of bacterial species, expresses
β-defensins at several sites, including the gingival epithelium (reviewed in [115]). However,
the genes are induced only by a subset of bacteria, and the induction utilizes different pathways,
including p38, JNK [116] and NF-κB [117], depending on the species. Even within the NF-
κB activation, there are different pathways leading to activation utilized by different microbes
[118] This control may be partially responsible for regulating the homoeostatic levels of
bacteria at this site.

Some β-defensins have been observed in circulating blood cells, and their expression appears
to be similarly regulated. In the viral defensive PDC, hBD1 can be found [54], and appears to
be induced by viral challenge (Ryan et al., manuscript in preparation). In macrophages and
monocytes, hBD2 is induced by cytokines, including interferon-γ [119]. Both α- and β-
defensins have been observed in breast milk [120], including the neutrophil peptides HNP 1-4
as well as the intestinal α-defensins HD-5 and –6. There is some evidence suggesting that these
α-defensins may play a role in this tissue in the protection against transmission of HIV through
this route [121].
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Alongside β-defensins, LL-37 is also expressed in the surface epithelia of conducting airways
[122], and in bronchoalveolar lavage fluid (BALF) [123]. Its expression is induced by bacteria
and cytokines, similar to β-defensins, confirming the computationally observed similarities in
their promoter regions. To demonstrate this peptide's role in airway defense, a complex animal
model was used. Specifically, human respiratory epithelial cells were seeded on denuded rat
tracheas. These tracheas were implanted in the flanks of nude mice, creating a xenograft
[124-126]. These xenografted tracheas secrete hBD-1 and -2 and LL-37 into the airway surface
fluid (ASF), which exhibits antibacterial activity. While airway cell cultures from patients with
cystic fibrosis (CF) have reduced antibacterial activity, overexpression of LL-37 in xenografts
developed from human cells exhibiting the CF defect results in normal antibacterial activity,
compared with untransfected cells [124], supporting the role of this peptide in antibacterial
host defense.

Similar to the expression pattern in the airway, LL-37 is observed in both healthy gingival
epithelium and in neutrophils, with an increase in expression observed in inflamed gingiva
[127].

By computational examination of putative promoter sequences, Wang et al. [128] discovered
the presence of a Vitamin D Response Element (VDRE) upstream from the cathelicidin
antimicrobial peptide (CAMP) gene. This promoter element is recognized by a nuclear receptor
(VDR) which heterodimerizes with the retinoid X receptor upon activation by the hormonally
active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (reviewed in [129]). The
presence of such a sequence suggested that LL-37 mRNA might be inducible by vitamin D.
Further studies demonstrated this to be the case in several cell types, including monocytes and
primary keratinocytes, as well as established cell lines such as U937 (a monocyte line), HL-60
(a promyelocyte) and SCC25 (tongue carcinoma) [128,130]. LL-37 mRNA, protein and
antimicrobial activity was also induced in primary cultures of airway epithelium by 1,25
(OH)2D3 [131]. Further studies demonstrated that the induction was in response to a VDRE-
mediated increase in transcription, which led to the increase in LL-37 mRNA and peptide, as
well as an increase in the antimicrobial activity of the cell culture medium [130]. More recently,
Liu et al. demonstrated that the activation of TLR 2/1 (a receptor for patterns including those
found on Mycobacterium tuberculosis) increased transcription of the VDR and the Vitamin-
D1-hydroxylase genes. This led to a VDRE-mediated increase in LL-37 levels in macrophages,
and a subsequent increased killing of M. tuberculosis [132]. Together, these studies support
the potential use of this less toxic agent such as Vitamin D in the increase in antibacterial
activity of tissues to prevent bacterial colonization.

Such a therapeutic modulation may be useful in the oral cavity as well. Preliminary data from
our laboratory show that a similar induction of LL-37 by 1,25(OH)2D3 occurs in cultured
gingival epithelial cells (Yim et al., manuscript in preparation).

The identification of single nucleotide polymorphisms in the 5′ untranslated region (UTR) of
hBD1 that are associated with clinical phenotypes (see below), however, suggest that there
may be some level of posttranscriptional regulation as well. And as with the transcriptional
regulation, LL-37 peptide expression also appears to be controlled by elements in the 5′ UTR
[133].

VII. Mobilization of AMPs by Cells
The changes in mRNA levels for AMPs as described above are often seen as a surrogate for
the ability of cells to control microbial growth [134-136]. While the amount of antimicrobial
peptide mRNA, or the peptide itself is an important aspect of overall antimicrobial capacity of
effector cells, it is necessary to bring the peptide into contact with the microbes in order to kill
them. For example, the cellular processes which operate to bring various types of granules and
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vesicles close to the phagosomes of macrophages and neutrophils, and then to mediate fusion
of those organelles with phagosomes containing microbes are tightly regulated [137]. In this
case, exposure of the bacteria to defensins within the phagosome allows much higher local
concentrations than could be achieved by extracellular secretion, and therefore one would
expect it to be a more efficient mechanism for killing potential pathogens. However,
neutrophils do not always use granule-phagosome fusion to bring antimicrobial peptides into
contact with bacteria. Neutrophils are known to degranulate, expelling several types of granules
into the extracellular fluid, including those containing defensins [138,139]. In addition, since
the HNP are extremely protease resistant, one would expect microbes internalized via
phagocytosis to be exposed to these defensins as neutrophils undergo apoptosis, and the internal
organelles break down and allow mixing of intracellular constituents [140,141].

Epithelial cells are the primary source of β-defensins and cathelicidin fragments. However,
they are not known to be particularly phagocytic. How then can their repertoire of intracellular
antimicrobial peptides (β-defensin 1, 2, 3, and cathelicidin for example) be brought into contact
with potential pathogens? In the example of the oral cavity, gingival epithelial cells secrete
antimicrobial peptides directly into the gingival crevice [142]. This contributes to the
constitutive hostility of the crevicular fluid to the growth of pathogens. Similarly, epithelial
cell-expressed β-defensins and LL-37 are found in urine [143,144] and bronchoalveolar lavage
fluid [145], potentially contributing to the overall antimicrobial defense at these sites. In the
case of the skin, the antimicrobial barrier begins with secretion of antimicrobial peptides from
cells at the base of eccrine sweat glands, which then flow with sweat onto the surface of the
skin (reviewed in [146]). That surface is composed of the non-vital stratum corneum, which
forms a tough, waterproof covering over the vital cells of the epidermis. However, in contrast
to other epithelia, the skin is often subject to environmental insult which introduce bacteria
through the tough stratum corneum and into the vital cell layers below.

The specific pathways by which antimicrobial peptides are liberated from various epithelial
cells, and how those pathways might be regulated becomes important in certain types of
antimicrobial responses. For example, recent studies have shown that human keratinocytes are
able to rapidly kill S. aureus which come into contact with them [147]. This activity is entirely
dependent on mobilization of hBD3 from the cytoplasm onto the bacteria at the plasma
membrane. The secretory process depends on contact between the bacteria and the cells, and
mobilization of the hBD3 is focal, rather than global. However, in individuals with atopic
dermatitis (AD), which is characterized by frequent and persistent colonization of the skin by
S. aureus, the ability of keratinocytes to kill S. aureus is impaired [148]. The defect arises not
from impaired synthesis of hBD3, and the cytoplasmic complement of this peptide is
comparable with that of normal individuals. However, mobilization of the peptide following
contact of the bacteria with the keratinocytes of patients with atopic dermatitis is substantially
inhibited.

In addition to reduced mobilization of hBD3, bacteria may gain an advantage in the skin of
patients with AD due to reduced synthesis of LL-37, and hBD2 [149]. In the cases of LL-37
and hBD2, synthesis is inhibited by the cytokine milieu present in the skin of AD patients,
which is richer in Th2 cytokines relative to the skin of normal individuals [150].

Therefore, there are various modes by which antimicrobial peptides are brought into contact
with potential pathogens, each one specialized for the anatomical site to be defended against
invasion of microbes, and the microbes themselves which are common to those sites:
phagosome-lysosome fusion, or phagosome-granule fusion in the cases of macrophages and
neutrophils; extracellular secretion into confined extracellular spaces in the cases of gingival
epithelial cells secreting into the gingival crevice, or Paneth cells secreting into the base of the
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intestinal crypts; and keratinocytes utilizing focal secretion onto bacteria bound to the plasma
membrane.

VIII. Inhibition of Expression
While initial experiments demonstrated the variety of factors that induced expression of AMPs,
suggesting their role in host defense, more recent studies have examined factors that suppress
or inhibit AMP expression. Such an inhibition can lead to reduced basal levels of AMPs, or
the lack of induced levels, and provide a better environment for pathogen growth. One class
of inhibitors can be found in pathogens themselves, as a mechanism to evade AMP activation.
This has been observed with Bordetella bronchiseptica, an animal airway pathogen closely
related to the etiologic agent for whooping cough in humans, B. pertussis. Wild-type strains
of B. bronchiseptica encode a type III secretion factor which, when introduced into host cells
can inhibit NF-κB activation [151]. While the LPS from this Gram-negative bacterium can
induce β-defensin expression in airway epithelial cells, strains encoding the type III secretion
factor inhibit the NF-κB-mediated induction, leading to lower levels of the peptide [113]. While
the exact mechanism of this species' inhibition is unknown, other type III secretion factors that
inhibit NF-κB activation are known to affect the ubiquitin proteasome system (reviewed in
[152]).

Similarly, other pathogens have been observed to inhibit AMP gene expression. These include
the inhibition of hBD1 and LL-37 expression in the gut by Shigella spp [153], and of LL-37
in cervical epithelial cells by Neisseria gonorrhea [154]. These both appear to also be inhibiting
at the level of transcriptional regulation, although through other potential mechanisms.

Other factors that inhibit TLR-mediated NF-κB induction can similarly suppress the pathogen-
mediated induction of AMPs that are regulated by that pathway. Infection of bovine tracheal
epithelial cells with one type of Bovine viral diarrhea virus inhibits the subsequent induction
of β-defensin gene expression by LPS [155]. This can render the animal more susceptible to
bacterial airway infections which are known to be associated with viral infection. We have
observed that Herpes Simplex Virus can suppress hBD2 expression in gingival epithelial cells
(Ryan et al., manuscript in preparation), which can similarly affect the defense against
periodontal pathogens, as some forms of periodontal disease are associated with Herpesvirus
infections [156]. These viral-mediated suppressions may also proceed through inhibition of
the ubiquitin pathway as was recently demonstrated for the measles-virus inhibition of TLR
signaling [157].

As part of a general suppression of the immune system, certain cytokines have also been
observed to inhibit AMP gene expression. In cases of atopic dermatitis, where increased levels
of IL-4 and IL-13 [149], or IL-10 [158] are observed, there are reduced levels of hBD2 and
LL-37. In both of these studies, exogenous addition of these cytokines inhibits the AMP gene
expression in keratinocytes, suggesting these molecules regulate AMP gene expression in these
pathogenic conditions. Addition of IL-6 and IFN-γ has also been observed to reduce levels of
LL-37 in T- and NK-cells [159], suggesting that cytokines play an important role in regulating
AMP levels throughout the body.

Exogenous chemicals, both therapeutic and environmental, can also affect AMP gene
induction. We observed that air pollutant particles can inhibit the LPS-mediated induction of
β-defensin gene expression in airway epithelial cells in a dose-dependent manner, primarily
due to vanadium [160]. Such an effect could promote airway infections in highly polluted areas.
As with the effect of pathogens, it is due to the inhibition of NF-κB induction. Thus, chemicals
that are known to affect this pathway can lead to reduced levels of some AMPs. Specifically,
dexamethasone treatment will lead to an inhibition in the induction of β-defensin gene
expression through this mechanism [161,162].
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In addition to extrinsic factors, innate deficiencies in AMP gene expression can lead to reduced
levels or a reduction in the induction. Three disorders with high levels of periodontal disease
have been observed to correlate with lower AMP gene regulation. In one case, gingival
epithelial cells from a patient with Localized Aggressive Periodontitis (LAP) failed to induce
β-defensin gene expression in response to bacteria, but not IL-1β, while normal cells responded
to both [163]. A rare disorder, severe congenital neutropenia (also known as morbus
Kostmann), is associated with a complete absence of LL-37, and is characterized by, among
other symptoms, chronic periodontitis, and overgrowth with a periodontal pathogen,
Aggregatibacter actinomycetemcomitans [164,165]. Individuals with another genetic disorder,
Papillon-Lefevre Syndrome, demonstrate a deficiency in LL-37 and exhibit severe
periodontitis. This may be due to a deficiency in serine proteinases that process hCAP-18 to
the mature, active LL-37 peptide [166].

Genetic variability within the AMP genes themselves can lead to reduced levels of the peptide,
and increased susceptibility to infection. Single nucleotide polymorphisms in the hBD1 gene
are associated with chronic obstructive pulmonary disease [167], increased levels of Candida
albicans in the oral cavity [168], and increased risk of HIV-1 infection [169,170], although the
causal relationships between the polymorphism and the diseases are unknown.

IX. Antimicrobial Peptides as Immune Regulators
A. Introduction

Most reviews of AMPs up until the year 2000 described these host derived peptides as the
body's “natural antibiotics;” i.e., as microbicidal agents that can function rapidly against
multiple microbial species at epithelial barriers or during phagocytosis. The early pioneering
work by Territo et al. [171], demonstrated for the first time that neutrophil derived α-defensins
were chemotactic towards human monocytes. This finding, however, could not be appreciated
nor put into context until a number of years later when other laboratories started realizing that
AMPs had indeed additional properties related to “cross-talking” with innate and adaptive
immunity. This section will endeavor to summarize recent findings that point to AMPs as
contributing to immune regulation. As more information is gathered from such findings, it is
anticipated that exploiting AMP immune regulatory strategies will become more commonplace
as translational options in bolstering the host response without incurring concerns of bacterial
resistance. In fact, the first landmark in vivo report using an anti-infective peptide to selectively
modulate the innate immune response, was recently published [172]. The authors described
the utility of a 13 amino acid nontoxic peptide, IDR-1 (KSRIVPAIPVSLL-NH2), in a mouse
model of aggressive bacterial infection. Interestingly, while the peptide showed little
antimicrobial activity, it was reported to attenuate pro-inflammatory cytokine production by
microbial products, while promoting selective recruitment of monocytes over neutrophils and
enhancing and sustaining the levels of monocyte chemokines. While mechanisms for this
selective activity still need to be elucidated, results are reminiscent of findings attributed to
LL-37 and its anti-inflammatory capacity (see below in B. AMP neutralization of LPS).
Overall, this novel study showed for the first time that inflammation can be attenuated in
vivo through the use of anti-infective peptides. It is important to state at the outset that works
highlighted herein that focus on AMP capacity to regulate epithelial cell proliferation,
enhanced wound healing, inhibition/induction of pro-inflammatory cytokines, angiogenesis/
anti-angiogenesis, stimulation of chemokine production, chemotaxis of various leukocytes,
mast cell degranulation or modulation of host cell gene expression were determined in
physiological conditions, not in media of low ionic strength that are often used to determine
antimicrobial activity. Therefore, positive outcomes in the presence of serum and physiological
salts suggest that results obtained are actually relevant functions.
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B. AMP Neutralization of LPS
The ability of AMPs, particularly LL-37, to neutralize endotoxin, was first believed to be due
to their cationic and amphipathic capacities to interact with anionic glycolipid LPS [173], as
well as their ability to block LPS binding to LPS binding protein, as an initial step in activating
immune cells [174]. Further investigation revealed that AMPs can actually inhibit pro-
inflammatory responses induced by LPS. LPS- induced genes in macrophages can be
suppressed by LL-37 [172]; it directly up-regulates macrophage gene expression, including
certain anti-inflammatory genes [175]. Importantly, these observations were reported in whole
blood and in low micromolar concentrations of LL-37 [176]. These results suggest that LL-37
has anti-inflammatory properties. Interestingly, while LL-37 was able to inhibit TNFα
production in bacteria challenged macrophages [175], polymyxin B, another AMP that inhibits
LPS binding to LPS binding protein [174], could not; i.e., suggesting specificity of activity by
LL-37 Moreover, LL-37 was found to also induce expression of potent chemokines such as
IL-8 and MCP-1 [175]. One could speculate, therefore, that the action of LL-37 in the context
of neutralizing endotoxin, may be part of a feedback mechanism intended to limit the induction
of septic levels of pro-inflammatory cytokines. By rebalancing an obviously dangerous
scenario, LL-37 and other AMPs could then participate in recruiting cells to initiate healing
and repair processes.

C. AMP Related Chemotaxis Activity and Associated Receptors
As stated above, the first non-microbicidal related activity attributed to AMPs was that α-
defensin human neutrophil peptide 1 (HNP-1) and -2, but not -3, are chemotactic towards
human monocytes [171]. Subsequently, these peptides were found to also chemoattract naive
(CD4+/CD45RA+) CD4+ and CD8+ T cells, as well as immature dendritic cells (iDC), but
not memory (CD4+/CD45RO+) T cells [177]. Later, LL-37 was found to be chemotactic for
monocytes, T cells and neutrophils, but not dendritic cells, and that this recruitment was
dependent upon the G protein coupled receptor (GPCR) formyl peptide receptor-like 1
(FPRL1) [178-180]. In addition to FPRL1, LL-37 also utilizes the purinergic receptor P2X7 to
activate a number of cell types [181-183]. Interestingly, Elssner at al (2004) showed that by
transactivating P2X7, LL-37 promotes IL-1β processing and secretion; a result that may
enhance inflammatory effectors through synergy between LL-37 and released IL-1β [184].

LL-37 chemoattracts mast cells, but apparently in an FPRL1 receptor independent manner
[185], and promotes mast cell activation [186,187]. hBD1, -2 and -3 were found to recruit
memory T cells and iDC via the GPCR CCR6 [188,189]. HBD-2 can also recruit mast cells
[185] and induce mast cell degranulation, prostaglandin D2 production and intracellular
Ca2+ mobilization [187]. hBD3 and hBD4 have also been shown to induce mast cell
degranulation, prostaglandin D2 production, intracellular Ca2+ mobilization and chemotaxis
[190]. Moreover, hBD2 and hBD3 are chemotactic for human neutrophils via CCR6 [191].
Interestingly, hBD3 has been shown to recruit monocytes in an isoform dependent manner;
i.e., different disulfide bond motifs chemoattract monocytes to varying degrees [192]. This
suggests that oxidative conditions in mucosae of chronic disease could impact conformational
outcomes of AMPs during folding, which could then impact their ability to recruit innate and
adaptive immune cells.

The specificity of AMPs for receptors and respective outcomes of these interactions is
noteworthy, and best exemplified when comparing LL-37 and hBD3. As stated above, LL-37
recruits a number of peripheral blood mononuclear cells through interaction with the GPCR
FPRL1. However, we recently showed that hBD3 has no effect on formyl-met-leu-phe (FMLP)
receptors, such as FPRL1 [193]. Instead, hBD3 interacts with another GPCR, CXCR4,
resulting in antagonism of T cell migration, not promotion of chemotaxis [193]. CXCR4 is an
important co-receptor HIV-1 uses to fuse and replicate in CD4+ T cells [194]. We previously
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showed that hBD3 protects T cells from HIV-1 infection [194] by promoting CXCR4
internalization, without cellular activation [193]. Since CXCR4 also plays an important role
in hemopoiesis, neurogenesis, cardiogenesis and angiogenesis, hBD3 or its derivatives offer a
new paradigm in immunoregulatory therapeutics and provide the opportunity to enhance future
drug design.

D. AMPs can also Direct Chemotaxis, Indirectly
AMPs have been shown to induce a variety of chemokines in epithelial cells, thereby enhancing
their own chemotactic capacity and possibly prolonging chemotaxis overall. IL-8 can be
produced in epithelial cells upon challenge with either LL-37 or α-defensins [175,195]. hBD3
and LL-37 can induce chemokines such as monocyte chemotactic protein-1 (MCP-1),
macrophage inflammatory protein-3α (MIP-3α; CCL20) and interferon-γ inducible protein-10
(IP-10; CXCL10) in human epidermal keratinocytes [196]. These data, along with information
from the previous section, collectively, could be saying that AMPs have a multifaceted role in
controlling microbial infections. Aside from their direct antimicrobial activity, AMPs could
initially promote leukocyte migration to combat infection, as evidenced by up-regulation of
IL-8 and MCP-1, followed at a later point in the inflammatory process by acting as feedback
inhibitors to control inflammation by attenuating immune cell activation.

E. AMP Related Epidermal Growth Factor Receptor (EGFR) Interactions
LL-37 can induce lung epithelial cell signaling by transactivating the epidermal growth factor
receptor (EGFR). This is apparently carried out in a multi-step fashion, where LL-37 activates
membrane-bound metalloproteinases, which then cleave membrane-anchored EGFR-ligands
[197], which then activate the cell by interacting with EGFR. Since neutrophils are the major
source of LL-37, it is conceivable that infiltrating neutrophils, by releasing LL-37, could
contribute to lung epithelial cell signaling. In addition, neutrophil derived MMP-9 and
MMP-25 [198,199] could aid in releasing epithelial membrane bound EGFR ligands and
thereby contribute to EGFR activation and cell signaling. These intriguing results may suggest
that neutrophils regulate epithelial cell activity in the lungs, and possibly elsewhere, via LL-37.
Furthermore, LL-37 can induce keratinocyte migration via heparin-binding-EGF-mediated
transactivation of EGFR, and can also promote cell proliferation via EGFR [200]. Importantly,
the first in vivo verification of an AMP promoting wound healing was recently demonstrated
when adenoviral transfer of LL-37 to excisional wounds in mice promoted re-epithelialization
and granulation tissue formation [200]).

Clearly, other AMPs, in conjunction with LL-37, function collectively in possibly promoting
wound healing. This is evidenced by the following: (1), epidermal growth factor (EGF), when
released in areas of infection, has been shown to induce epithelial cell proliferation and wound
healing [201]. Interestingly, both LL-37 [202] and hBD-3 [196] promote epithelial cell
migration and proliferation. Sorensen et al. [203] found that additional EGFR ligands, such as
insulin growth factor 1 (IGF-1) and transforming growth factor α (TGF-α), induce expression
of a host of epithelial cell derived AMPs, including LL-37, hBD3, neutrophil gelatinase-
associated lipocalin (NGAL) and secretory leukocyte protease inhibitor (SLPI), suggesting a
common EGFR dependent mechanism for AMP induction. Alpha-defensins from human
neutrophils also induce airway epithelial cell proliferation in an EGFR independent fashion
[204], while wound closure; i.e., epithelial cell migration, appears to require EGFR activation
and downstream signaling pathways [205]. In addition, these peptides promote the expression
of MUC5B and MUC5AC, two mucins that contribute to regeneration of the epithelium
[205]. Therefore, collective AMP induction and activation may work in synergy to support the
growth and antimicrobial potential of keratinocytes when endangered through microbial
challenges and wounding.
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F. Evidence and Implications for AMP Expression in Wounds
Heilborn et al. [206] discovered (1) LL-37 is highly expressed in skin wounds in vivo, reaching
highest levels 48 hrs post-injury and declining to lowest levels upon wound closure; (2) it is
also detected in the inflammatory infiltrate and in epithelium migrating over the wound bed;
(3) blocking antibodies to LL-37 inhibit re-epithelialization in a concentration dependent
manner. However, in chronic ulcers, LL-37 expression is very low and is not detected in ulcer
edge epithelium [206]. Since angiogenesis is an important component in tissue repair and
wound healing, Koczulla et al. [207], investigated the neo-vascularization capacity of LL-37
in in vitro and in vivo models. They found that the peptide activated endothelial cells to
proliferate and form vessel-like structures. Interestingly, mice deficient in CRAMP, the mouse
equivalent of LL-37, are deficient in wound neo-vascularization [207].

Differential expression of AMPs in human synovial membranes is governed by specific
diseases. HBD-3 and/or LL-37 are detected in synovial membrane samples from pyogenic
arthritis (PA), osteoarthritis (OA) or rheumatoid arthritis (RA), while bactericidal
permeability-increasing protein (BPI), HD5, HD6 and hBD2 are absent from all of these
samples [208]. Under inflammatory conditions, hBD3 is induced in PA, LL-37 in RA and both
in OA [208]. More recently, cytokines involved in the pathogenesis of OA, TNF-α and IL-1,
were shown to induce hBD-3 in cultured chondrocytes and hBD-3 was shown to mediate tissue
remodeling in articular cartilage by increasing chondrocyte derived cartilage-degrading
matrix- metalloproteases and reducing levels of their endogenous inhibitors [209]. The authors
concluded that hBD-3 links host defense mechanisms and inflammation with tissue-
remodeling processes in articular cartilage and suggest that hBD-3 is a new factor in the
pathogenesis of OA.

G. AMP Activity in Adaptive Immunity
From a series of studies conducted over the last seven years, we can now point to the ability
of AMPs to modulate adaptive immune functions. A number of studies have reported that co-
administering AMPs with relatively benign antigens results in enhancement of the host's cell
mediated and humoral immune responses to these antigens. Co-administering ovalbumin
(OVA) with α-defensins HNP1-3 in mice leads to enhanced IgG antibody response to OVA
when compared to OVA alone [210]. OVA-specific CD4+ T cells were found to produce
elevated cytokine levels as well [210]. These data suggest that the HNPs act as adjuvants.
Another study showed enhanced OVA-specific IgG response in mice when OVA was conasally
administered with either 1 μg of either HNP-1, hBD-1 or hBD-2 [211]. Furthermore,
intraperitoneal administration of a B-cell lymphoma idiotype antigen combined with daily
injections of HNPs increased IgG levels to that antigen and augmented resistance to tumor
challenge in mice [212]. These findings strongly implicate α-defensins as immune adjuvants
that promote T cell-dependent cellular immunity as well as antigen-specific immunoglobulin
production.

While the mechanisms for these intriguing outcomes have not been established, we can
speculate that AMPs may be modulating lymphocyte responses, modifying cytokine
expression during the APC encounter with the antigen, and possibly, as we recently reported
with hBD3 [213], causing the maturation of iDCs by inducing co-stimulatory molecules,
resulting in more effective antigen presentation and subsequent robust T cell activation.
Clearly, these and future studies will lead to an enhanced interest in AMPs and their homologs
as immuno-therapeutic candidates to bolster the host's immune response.

Using a DNA-vaccine strategy, Biragyn et al., [214] immunized mice with constructs encoding
murine beta defensins or various chemokines fused to non-immunogenic lymphoma antigens,
and studied their capacity to deliver antigens to subsets of immune cells in order to elicit
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antitumor immunity. This elegant study demonstrated that DNA immunization, where the
vaccine contained murine defensins or chemokines that chemoattract immature dendritic cells
(iDC) via CCR6; i.e., mBD2, MIP3α, but not mature DCs, elicit humoral and protective
immunity against lymphoma [214]. The authors speculated that the targeting of iDCs by these
specific defensins and chemokines via CCR6 [189], results in increased uptake of antigen and
induces the expression of co-stimulatory molecules that have been reported by others to induce
a robust immune response against weak immunogens [215-218]. Interestingly, this group
showed in the murine model that mBD2, which does not appear to have a human ortholog, can
activate murine iDC directly via TLR4 [219]. More recently, we showed that hBD3 induces
expression of costimulatory molecules CD40, CD80 and CD86 on human iDCs and monocytes
[213], and that hBD3 promotes expression of a pro-inflammatory cytokine profile in APC
(Funderburg et al., in preparation). LL-37 has been shown to modulate dendritic cell
differentiation by enhancing endocytic capacity, upregulating co-stimulatory molecule
expression, enhancing secretion of proinflammatory cytokines and promoting Th1 responses
in vitro [220]. Human α-defensins have also been shown to promote expression of
costimulatory molecules on lymphocytes [210] as well as the production of proinflammatory
cytokines [221]. Chemokines, such as MCP-1, can promote IL-4 production [222] and induce
Th2 polarization [223], while macrophage-derived chemokines (MCD; CCL22) selectively
chemoattract Th2 cells toward APC [224]. These collective observations lead us to conclude
that specific defensin molecules and chemokines, or their active homologs, could one day be
used as adjuvants to both target antigen to APC as well as selectively prime for humoral or
cellular immune responses in vivo.

X. Conclusions
While initially identified as host defense peptides with broad-spectrum antimicrobial activity,
the AMPs described here are now recognized as multifunctional peptides, whose ultimate role
or roles in human immunity have yet to be fully defined. Found in both cells of the myeloid
lineage as well as on epithelial surfaces, both constitutively expressed and inducible as part of
an innate immune response, they are major participants in the host defense against microbial
infection. Their numerous other activities, however, suggest that they may carry out several
functions. Furthermore, while their development as exogenous antimicrobial therapeutic
agents has not been highly successful, their other activities may lend them to provide the
foundation for pharmacological use. Alteration of the physical capabilities of AMPs to enhance
their activity for therapeutic applicability has reached a precipice. The majority of research has
confirmed the importance of both a net charge and hydrophobicity in relation to antimicrobial
activity and any attempts to alter one characteristic could potentially ruin the other [45]. For
example, mutation experiments with hBD3 demonstrated a higher level of cytotoxicty for
variants with increased hydrophobicity but more potent antibacterial effects with a higher
positive charge [46].

While they offer a host of potential therapeutic benefits further research needs to be carried
out to enhance AMP pharmacokinetics [225]. The continual refinement of peptidomimetic
technologies [226,227], for example, may allow more cost effective solutions to production as
well as complex formulation to maximize activity and minimize potential issues of toxicity.
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Toll-like receptor

SNP  
Single nucleotide polymorphism

PDC  
Plasmacytoid dendritic cell

OA  
Osteoarthritis

PA  
Pyogenic arthritis

RA  
Rhematoid arthritis

BPI  
Bactericidal permeability increasing protein

OVA  
Ovalbumin
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Antigen presenting cell
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Fig. (1). Magainin and mechanisms of purported pore formation
1A. α-helical host defense peptide, magainin. Hydrophobic residues are green, basic residues
are blue. 1B. Carpet model as AMP blanket the membrane building up charge differential.
1C. Barrel stave model as AMP permeate the membrane disallowing the flip-flop of
phospholipids between the leaflets. 1D. The toroidal pore method that allows the phospholipids
membrane to flip flop, caused by bending of the lipids, and segregating them into micelles.
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Fig. (2). Gene structure for human α-defensins (A), β-defensins (B) and cathelicidin (C)
The general structure for each family is shown with exon numbers for the genes, the 5′ and 3′
Untranslated Regions (UTRs) for the mRNA, and the precursor regions for the peptides.
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