Virtual Coupling of Pyran Protons in the ¹H NMR Spectra of *C*- and *N*-Glucoronides: Dependence on Substitution and Solvent

Submitted: July 24, 2000; Accepted: January 8, 2001; Published: January 17, 2001

M.J. Panigot and M.J. Robarge

Department of Chemistry, Arkansas State University, State University, AR 72467

R.W. Curley, Jr

Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH 43210

ABSTRACT We have observed that certain C- and N-glucuronides prepared as intermediates for breast cancer preventives demonstrate non-first order ¹H NMR spectra that are not the result of impurities or degradation but are instead due to virtual coupling in the pyran proton network. This virtual coupling shows the expected dependence on solvent and field strength and, more importantly, on the nature of the C-1 substitution. Although the hybridization of the atom bonded to C-1 may play a role, it appears that steric and/or electronic factors, which have the effect of increasing $\Delta v/J$ for H-3 and H-4, are critical for eliminating the spectral complexity. These observations, which appear to be fairly general. suggest that this phenomenon should be considered when addressing the purity of pharmaceutical agents containing these types of structural units.

Key Words: ¹H NMR, glucuronides, breast cancer, chemoprevention, virtual coupling

Figure 1. C- and N-linked glucuronides investigated

INTRODUCTION

The O-glucuronide metabolites of retinoic acid and certain of its natural and synthetic analogues have been suggested to be biologically active forms of the parent molecule (1). As a class, these retinoids regulate epithelial tissue differentiation and show utility in treating dermatological diseases as well as promise for the treatment and prevention of cancer (2). Because of the relative chemical and metabolic instability of these glucuronides, we have been synthesizing C- and N-glucuronosyl analogues of some of these metabolites in an effort to improve the activity of these compounds and/or to determine whether these metabolites are active themselves or are hydrolyzed to the active parent retinoid (3). Thus, we have prepared C-glucuronosyl analogues 1 and 2 (Figure 1) of the O-glucuronide 3 of the semisynthetic *N*-(4-hydroxyphenyl) retinoid retinamide. Our results suggest these compounds show promise as mammary tumor chemopreventive agents (4,5).

In the course of synthesizing 1, selective PtO₂mediated oxidation (6, 7) of the 6-hydroxymethyl group of glucosylbenzene (4) followed by esterification and acetylation produced a product 5 that showed unusual complexity in the ¹H NMR spectrum in the region of the pyran ring protons. This was true for all resonances except that assigned for the H-1 proton. Since the Adams' catalyst that promoted oxidation had not to our knowledge been previously employed for the oxidation of *C*-glycosyl compounds into their glucuronide analogues, and given that this aryl-C-glycoside contains a tertiary carbon and benzylic ether unit (carbohydrate position 1), both of which may be prone to oxidation, we were concerned that other products might have been produced during the reaction that would compromise the purity of the materials and hence the validity of bioactivity assays performed with them.

^{*}Corresponding author: Robert W. Curley, Jr., Ph.D.; Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University; 500 West 12th Avenue, Columbus, OH 43210; Telephone: 614-292-7628; Fax: 614-292-2435; E-mail: curley.1@osu.edu

After careful chromatographic purification and recrystallization of 5 to apparent homogeneity, while its ¹H NMR spectrum remained unchanged, other available spectroscopic evidence (¹³C NMR, IR, and MS) was consistent with a single compound assigned the structure 5. The possibility that the complexity of the ¹H NMR spectrum resulted from long-range virtual ¹H-¹H coupling was thus considered (8). Spin simulation of the spectrum using PANIC (Parameter Adjustment in NMR by Iterative Calculation) appeared to confirm this explanation.

Prompted by the report of Saito et al (9) on their observation of virtual $^{1}\mathrm{H}-^{1}\mathrm{H}$ coupling in glucuronosyl moieties within O-disaccharides and their conjugates, we wish to report our interesting observations of similar phenomena in C- and Nglucuronosyl compounds, which appears to depend on the structure of the pyran C-1 substituent and the solvent employed in NMR measurements. This observation of deceptively complex spectra appears to be surprisingly general and should be considered when evaluating the purity, including the stereochemical purity, of potential pharmaceutical agents containing these structural units.

MATERIALS AND METHODS

Fourier-transformed ¹H NMR spectra were obtained on sample solutions in glass 175 x 5 mm sample tubes (Wilmad; Buena, NJ). Spectra were collected for 20 mg/mL solutions at 250, 400, 600, and 800 MHz on AC250 or DPX250, DRX400, DMX600, and DMX800 instruments, respectively (Bruker Instruments; Billerica, MA). Samples were dissolved in CDCl₃, CD₂Cl₂, acetone-d₆, benzene-d₆, DMSOd₆, CD₃OD, pyridine-d₅, and tetrahydrofuraN-d₈ as appropriate (Cambridge Isotope Laboratories; Andover, MA) and spectra referenced to the residual protio solvent (relative to TMS) in the deuterated solvents. Spectra were collected at ambient temperature using 90° pulse widths and transformed after exponential multiplication (LB = 0.2 Hz). Spectral simulation (see Table 1) was performed using PANIC version 840419 implemented on an ASPECT 3000 computer (Bruker Instruments).

The compounds studied were prepared as previously published (3, 10, 11). Entries 2 and 9 (Table 2) were prepared by methods identical to those used for entries 1 and 10 using the appropriate Grignard reagents, while entries 17 and 18 were prepared by methods identical to those used in entry 19 using acetyl and benzoyl chloride respectively.

Drote	Chemical Shift	Coupling Constant
riou	^{/II} (ppm)	(Hz)
		$J_{1,2} = 9.895$
Ц 1	4.40	$J_{1,3} = -0.172$
11-1	4.40	$J_{1,4} = 0.0$
		$J_{1,5} = 0.0$
		$J_{2,3} = 9.294$
H-2	5.15	$J_{2,4} = 0.0$
		$J_{2,5} = 0.0$
		$J_{3,4} = 9.800$
Ц 2	5.24	$J_{3,5} = 0.012$
п-э	5.54	H-4 5.37 J4,5 = 9.485
		H-5 4.16

Table 1. Chemical Shifts and Coupling ConstantsSimulated for H-1 to H-5 of 5

Table 2.	Virtual Coupling	Dependence of	on C-1
Substitu	ent		

Entury No.		Virtual
Entry No.	C-I B Substituent	Coupling ^a
1	Ph-(5)	YES ^b
2	1-Naphthyl-	NO
3	4-NO ₂ Ph-(6)	YES
4	2-NO ₂ Ph-(7)	NO
5	4-NH ₂ Ph-(8)	YES
6	2-NH ₂ Ph-(9)	NO
7	4-CH ₃ Ph-	YES
8	2-CH ₃ Ph-(12)	YES ^c
9	CH ₃ -	YES
10	PhCH ₂ -	NO
11	4-NO ₂ PhCH ₂ -(10a)	NO
12	2-NO ₂ PhCH ₂ -(10b)	NO
13	$4-NH_2PhCH_2-(11a)$	NO
14	2-NH ₂ PhCH ₂ -(11b)	NO
15	N ₃ -(13)	YES^d
16	H_2N -	NO
17	CH ₃ CONH-	NO
18	PhCONH-	NO
19	Retinoyl NH-	NO
20	CH ₃ COO-	NO

^aIn CDCl₃ at 250 MHz; ^bEliminated in acetone-d₆ and at 800 MHz (see Appendix); ^cWeakly present; ^dEliminated in acetone-d₆, benzene-d₆, pyridine-d₅, tetrahydrofuran-d₈, CD₂Cl₂, CD₃OD, and DMSO-d₆ and at 400 MHz (see Appendix).

Figure 2. Partial 250 MHz ¹H NMR of 5 in a) CDCl₃, b) simulated, and c) CD₃CO

Figure 3. Partial 250 MHz ¹H NMR CDCl₃ spectrum of a) 8 and b) 9

RESULTS AND DISCUSSION

The 5 used in this study was prepared as previously described (3). The 250 MHz ¹H NMR spectrum of this compound in CDCl₃, in the region of the pyran protons, is shown in Figure 2. The surprising complexity of this spectrum, which is still present at 400 MHz (but is reduced at 600 MHz and and eliminated at 800 MHz), and the possibility that it arose from virtual coupling between H-2 and H-5, led us to simulate the spectrum using PANIC, as is also shown in Figure 2. The chemical shifts and calculated coupling constants derived from simulating the spectrum of 5 are shown in Table 1. For this simulation, the apparent couplings constants $J_{1,4}$, $J_{1,5}$, $J_{2,4}$, and $J_{2,5}$ are sufficiently small that they can be set to zero and a satisfactory simulation can be obtained. Nonetheless, the H-2 and H-5 nuclei appear to show the observed complexity by virtue of being coupled as X parts of ABX spectra to H-3 and H-4, which themselves form a strongly coupled AB system with $\Delta v/J = 0.82$ at 250 MHz. As might be expected, this phenomenon can be eliminated by recording the ¹H NMR spectrum of 5 in different solvents. As also shown in Figure 2, the spectrum of 5 in acetone-d₆ can be analyzed as first order, with Δw /J for H-3 and H-4 now being 2.96.

Interestingly, our chemistry to further elaborate 5 to 1 produced intermediates that show virtual coupling that depends on both the nature and site of aromatic ring substitution. Nitration of 5 produced a 3:2 mixture of isomers 6 and 7, which were difficult to separate (3). In one instance, small quantities of pure 6 and 7 were obtained by preparative TLC. Their 250 MHz ¹H NMR spectrum in CDCl₃ showed virtual coupling comparable to that of 5 for 6 but not to that of 5 for 7 (Data not shown). Reduction of the nitroaromatic isomer mixture produced the readily separable O- and p-anilines 8 and 9 (3). In this instance, the para substituted aniline 8 also shows strong virtual coupling that was not simulated but appears likely to result from the even smaller $\Delta M/J_{3,4}$ ratio (Figure 3). For the ortho regioisomer 9, this virtual coupling observed for 5 and 8 is also absent. Homonuclear decoupling and NOE difference spectra established that H-2 in 9 has moved substantially downfield to 5.61 ppm. More importantly, the chemical shift of H-3 and H-4 has reversed relative to 5 (5.37 and 5.29 ppm respectively) and $\Delta v/J_{3,4}$ has increased to 1.91, which

appears to be sufficient to eliminate this coupling phenomenon.

Because both the *O*-nitrophenyl and *O*-aminophenyl isomers 7 and 9 fail to show the virtual coupling present in 5, 6, and 8, which bear a C₂-symmetric substituent at C-1, it seems plausible that this lack of virtual coupling results from steric interactions of the O-substituent with the axial H-1 or H-2 protons. This results in a different favored rotamer about the C-1-Ar bond and/or causes subtle changes in the conformation of the pyran ring, changes that have the effect of increasing $\Delta v/J_{34}$. In support of this concept, none of the *ortho* nitro or amino C-benzyl analogues 10 or 11 (3) (which we required for the preparation of 2) that have an interposed methylene unit show evidence of virtual coupling in the 250 MHz¹H NMR spectra in CDCl₃ (see Table 2 for a summary of the compounds we investigated to determine whether the phenomenon is observed). That other more subtle influences such as electronics may also play a role is suggested by inspection of the spectrum of the O-tolyl analog 12, which we prepared serendipitously during efforts to synthesize 2 (10). In the CDCl₃ ¹H NMR spectrum of 12, the H-2, H-3, and H-4 resonances overlap extensively, unlike any of the other compounds reported here. However, the H-5 resonance at 4.16 ppm shows some evidence of much less extensive virtual coupling than for 5, implying that the impact of the *O*-methyl substituent is insufficient to change $\Delta v/J_{3,4}$ enough to eliminate virtual coupling under these spectroscopic conditions. Furthermore, we observed that the 1-B-azido glucuronide 13 we previously prepared (11) demonstrated virtual coupling in the ¹H NMR spectrum in CDCl₃, which is nearly identical to that of 5. This coupling is absent at 400 MHz and in the 250 MHz acetone- d_6 , benzene- d_6 , CD₂Cl₂, CD₃OD, pyridine-d₅, and tetrahydrofuraNd₈ DMSO-d₆ spectra of 13 and also in the CDCl₃ spectrum of the amine prepared by reduction of 13 as well as its acylated derivatives (11). Once again, linear, symmetrical azide substitution results in virtual coupling while reduction products do not show this property, suggesting, perhaps, that the hybridization of the C-1 attached atom may play a role in causing this phenomenon. However, as shown in entry 9 of Table 2, the spherically symmetrical, sterically undemanding methyl substituted compound also demonstrates this virtual coupling.

Thus, with the limited set of examples explored here, while those with atoms with sp^2 -like character bonded to C-1 demonstrate this coupling, steric and electronic effects from the C-1 substituent are likely to be more important contributors to the complexity of the observed spectra than is hybridization.

It might be expected that homonuclear decoupling experiments would allow elimination of this observed virtual coupling in many instances. In the present case, this is only a partially successful strategy because the phenomenon is driven by the small value of $\Delta v/J_{3,4}$ and thus selective irradiation of H-3 or H-4 is not possible. As shown for compound 13 in the Appendix, irradiation of H-5 and H-2 (4.1 and 4.95 spm respectively) still leaves some significant evidence of a noN-first order spectrum. More successful in this case is the impact of raising the temperature on spectral appearance (also see Appendix). Interestingly, we have observed this virtual coupling for C- and N-glucuronides only when samples are dissolved in CDCl₃. Thus, it appears that in this solvent a unique pyran ring conformation and fortuitous ¹H chemical shifts create the observed phenomenon. Given the high volatility of CDCl₃, limits are placed on routine use of elevated temperature experiments. Nonetheless, raising the temperature for 13 in CDCl₃ by 20°C above ambient clearly alters spectral appearance in a manner consistent with movement toward a first order spectrum.

CONCLUSIONS

Thus, as in some β -D-glucopyranosuronate systems (9), certain C- and N-glucuronides can show surprisingly complex ¹H NMR spectra. These appear to be the result of long-range virtual coupling and are not caused by the presence of isomer mixtures at C-1 or in substitution of the aromatic ring in C-aryl glucuronides. The phenomenon shows sensitivity to substituents at the *O*-position of *C*-aryl glucuronides, but this is observed strongly only when the Opositions are unsubstituted. Both solvent and field strength dependences are observed. Changing the solvent from CDCl₃ to other solvents causes a greater chemical shift dispersion, thereby removing virtual coupling effects in these ¹H NMR spectra. By increasing the spectrometer magnetic field, the value of $\Delta v/J$ becomes sufficiently large to no longer exhibit virtual coupling effects. The relatively high

frequency with which this spectral phenomenon is observed in these types of structural units suggest it should be considered when the purity of potential pharmaceutical agents containing these structural units is in doubt based on ¹H NMR analysis.

ACKNOWLEDGEMENTS

Support of this work by a grant from the National Cancer Institute (CA49837) is gratefully acknowledged. The 600 and 800 MHz ¹H NMR spectra were recorded by Dr. C.E. Cottrell at The Ohio State University Campus Chemical Instrument Center. We thank Ms. Joan Dandrea for the preparation of this manuscript.

REFERENCES

1. Mehta RG, Barua AB, Olson JA, Moon RC. Effects of retinoid glucuronides on mammary gland development in organ culture. *Oncology*. 1991;48:505-509.

2. Hill DL, Grubbs CJ. Retinoids and cancer prevention. Annu Rev Nutr. 1992;12:161-181.

3. Panigot MJ, Humphries KA, Curley RW, Jr. Preparation of 4retinamidophenyl- and 4-retinamidobenzyl-C-glycosyl and C-glucuronosyl analogues of the glucuronide of 4-hydroxyphenylretinamide as potential stable cancer chemopreventive agents. *J Carbohydr Chem.* 1994;13:303-321.

4. Curley RW, Jr, Abou-Issa H, Panigot MJ, Repa JJ, Clagett-Dame M, Ashafie G. Chemopreventive activities of C-glucuronide/glycoside analogs of retinoid-O-glucuronides against breast cancer development and growth. *Anticancer Res.* 1996;16:757-764.

5. Abou-Issa HM, Alshafie GA, Wong MF, Clagett-Dame M, Repa JJ, Sikri V, Curley RW, Jr. Chemopreventive activity of a C-glucuronide analog of N-(4-hydroxyphenyl)retinamide-O-glucuronide against mammary tumor growth and development. *Anticancer Res.* 1999;19:999-1004.

6. Heyns K, Paulsen H. Selective catalytic oxidation of carbohydrates, employing platinum catalysts. *Adv Carbohydr Chem*. 1962;17:169-211.

7. Wong MF, Weiss KL, Curley RW, Jr. Recent improvements towards the synthesis of the C-glucuronosyl cancer chemopreventive (B-D-glucopyranosyluronate)-4-retinamidophenylmethane. *J Carbohydr Chem.* 1996;15:763-768.

8. Musher JI, Corey EJ. Virtual long-range spiN-spin couplings in nuclear magnetic resonance (N.M.R.): The linear 3-spin system and qualitative implications of higher systems. *Tetrahedron*. 1962;18:791-809.

9. Saito S, Sasaki Y, Furomoto T, Sumita S, Hinomoto T. Virtual ¹H-¹H spiNspin coupling in a linear five-spin system on the pyramose rings of some glucuronides. *Carbohydr Res.* 1994; 258:59-75.

10. Panigot MJ, Curley RW, Jr. Reaction of glycosyl halide with benzyl Grignard reagents: unexpected O-tolyl alkylation of tetra-O-acetylglucopyranosyl bromide and direct synthesis of (B-glycosyl)phenylmethanes. *J Carbohydr Chem.* 1994;13:293-302.

11. Robarge MJ, Repa JJ, Hanson KK, Seth S, Clagett-Dame M, Abou-Issa H, Curley RW, Jr. N-Linked analogs of retinoid O-glucuronides: potential cancer chemopreventive/chemotherapeutic agents. *Bioorg Med Chem Lett.* 1994;4:2117-2122.

Appendix

Additional Spectra for Table 2, Entry 1 (5) and Entry 15 (13)

5

	5	580 1986 1986 1986 1986 1986 1986 1986 1986	r ¥ z	ся 142 142 142 142 142 142 142
ate Paraeters phylocpostesta 2	994723 9447 9447 9447 947 940 11 20 32 20 32 20 32 20 32 20 20 32 20 20 20 20 20 20 20 20 20 20 20 20 20	2248.201 0.068610 7.2876530 7.2876530 7.2876530 7.2876530 7.2876530 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5	153110 peramet 15384 250.1300130 1500130 0 0 0 1.00	20 000 000 000 000 000 000 000 000 000
Current D NAME EXPNO PROCND	F2 - Acqu Date 11584 11584 10514JM 9405940 940,9400 10 10 10 10		ы- - - - - - - - - - - - - - - - - - -	C MAR P

	5.41	22	sec usec why MHZ	E H H	са Н2 Н2 Н2/ся Н2/ся
Parameters phgluc 400 t	tion Parame 990511 11.07 11.07 5 mm 780	22769 32769 0.0013 22 3205.128 3205.128 2 3205.128 2 3205.128 2 3205.128 2 3205.128 2 3205.128 2 3205.128 2 3205.128 2 3205.12805.128 3205.1280 3205.1280 3005.1280 3005.12800 3005.120	F/C0111.C \$.00b \$.000.051 0.000 0000000.5 0000000.5 00000005 00000005 000000005 00000000	111 per dent 1 15384 400.1330174 60 0.20 0.20 1.00	parameters 20.00 201.04 301.04 100.13 400.13 0.35000 140.04550
Current Date NAME EXPND PROCND	F2 - Acquisi Date Time INSTRUM PROBED	RULPROG TULPROG SQLVENT SQL SDF FIDRES MG		A Process	10 NMH plot 1 7.1P 7.1P 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2

	AAPS Pharm	<i>nSci</i> 2001; 3 (1) Article 4 (htt	p://www.pharmsci.o	org/)
	542 F	El Merces	2 호 구	ta bba Hz/ca bba/ci
Cata Parameters pnglucpostusta 1	201411 0 Paramet 201421 8.42 8.42 8.42 2014 2013 2013 2013 2013 2013 2013 2013 2013	2:000000 2:000000 2:0000000 2:0000000 2:0000000 2:0000000 2:0000000 2:0000000 2:00000000	cessing paramete 15364 250.1300130 DM 0.20 0.20 1.00	0101, parameters 20.00 5.800 1450.75 3.800 950.49 0.10000 25.01300
Current NAKE EXPNO FROCND	F2 - Acr Date INSTRUM PHOBHO PHUPROC FULPROC FULPROC SOLVENT SOLVENT SOLVENT SOLVENT SOLVENT	22122222222222222222222222222222222222	ក្នុខខ្មុំខ្លួននេះ ភូមិខ្លួននេះ	10 Mg

	1	2 2	sec usec usec usec usec usec usec usec u	£ ¥ ≆	Ca Ppa H2 Ppa/ca H2/ca
a Parateters phgluc400 1	ition Parame 990511 11.07 spect 5 mm TBD	22 32768 00013 32 32 3205,128 3205,128	5,1116579 406.4 156.000 6.00 300.0 2.0000000 2.00000000 11.20 400.1356005 11.20 11.20 400.1356005	51rg persett 16384 400.1300174 6M 0 0 0.20 0 1.00	parameters 20.00 5.600 2240.73 4.000 1600.52 0.08000 32.01040
Current Dat VANE EXPND PROCNO	12 - Acquis Date Flee DNSTRUM 900940	NL PROG 10 NULVENT 65 NM 100ES	00×00555555555555555555555555555555555	- Process BBBBB	0 MeR plot

PHGLUC at 600 MHz 4/27/99

PHGLUC at 600 MHz 4/27/99

PHGLUC 800 MHz

1H azidogluc in cdc13 B 250MHz

ndd

1H of 1-beta-azidoglucuronide in COC13

l a

	AAPS PharmSci 2001; 3 (1) Article 4 (h	http://www.pharmsci.org/)
	년 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문 문	ers MRZ PDG PDG PDG PDG RZ/CII
a Parameters azidoglucdmk 1	(11100 Parame 990203 11.41 10.41 10.41 11.41 10.42 11.41 11.	aing perameters 15384 200.13001384 200.13001384 200.00 21.00 25.01300 25.01300 25.01300 25.01300
Current Dat NAKE EXPNO PROCNO	F2 - Acquis Tote - Tote - FULPR0640 FULPR06640	51 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -

1H azidogluc @ 250MHz in DNK-d6

	٤.	255 255 255 255 255 255 255 255 255 255	응 도 축 보	Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm Ppm
eta Parameters azidoglucbenz i	13:11:10m Paramet 990:203 17.23 17.23 17.23 5 an GaP 1H 79 22768 2605 2805 2805	2 2003.205 0.061133 0.061133 0.061133 0.061133 1024 249.600 6.00 6.00 7.0000000 250.1310005 250.1310005	-3.00 -3.00 16384 250.1300130 EM 0 0.20 0.20 0.100	ot perameters 20.00 6.000 1500.79 3.000 750.39 0.15000 37.51950
Current D KAKE EXPND PROCND	F2 - Acqu Dete - T1me INSTRUM PROBHO FULPROG T10 SQLVENT	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 MAG DI LE CK PRACH FILE PRACH

1H azidogluc @ 250MHz in C6D6

đ

1H azidogluc @ 250NHz in MeOH-d4

udd L

.

	£	242 242 242 242 2562 242 2562 2562 257 2562 257 2562 257 257 257 257 257 257 257 257 257 257		ca N2 N2 N2 N2 N2 N2 N2 N2 N2
Parameters z1doglucpyr 1 5	tion Paramet 990204 9.06 9.06 9.06 9.06 14 37 8.08 14 12708 37 13 12708 37 13 12708 14 12708 12 12 12 12 12 12 12 12 12 12 12 12 12	2495.010 0.076142 6.9667572 6.9667572 400 400 200.400 50.400 50.400 50.400 8.00 2.0000000 2.00000000 2.00000000 2.00000000	Ing percenet 15384 250.1303781 6 0 0.20 1.00	parameters 20.00 5.50.00 15.51 3.500 8/5,45 0.15000 37.51955
Urrent Data AME a XPNO 900MD	2 - Acquist ate	201 201 201 201 201 201 201 201 201 201	- Process 2008 888 888 888 888 888 888 888 888 88	D MAR plot

	-	3.5	¢.0	4.5	5.0	5.8	шóđ
37.51950 Hz/c=	HZCM						
0.15000 pom/cm	RPMCM						
2H 55 052	2				-		
3.000 100	021						
1500.78 Hz	41.1		_		-		
20.00 EM	20						
t parameters	10 NMM 01						
1.40	8						
0	3					_	
D 20 HJ	DCC III						
X C	5						
250.32999942 M-IZ	54						
rssing paremeters 32768	F2 - Proce						
214 05211EL 052	5035						
-3.00 DB	A.1						
11.00 USEC	6						
CHANNEL F1	NUC1						
2.5000000 sec	5						
300.0 4	312						
284.800 usec	ā i						
912.3	52						
9.33237855 sec							
1755.618 Hz	Here a						
r.	8						
9 9	NG NG						
32/58	2						
107	PULPADS						
spect	INSTRUM						
11.07	Tune						
20001201	Date_						
sitton Parameters	F2 - Acqui						
••	PROCNO						
9	ENPAD						
azidogluc13c	BOTH						
the Unexample	C. Lanan C.						

1H azıdoğlucuronide in CD2CL2

EO.C

	2 L	HZ HZ 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65	H KH C C C C C C C C C C C C C C C C C C	св 12 12 12 12 12 12 12 12 12 12 12 12 12
, Parameters 2100giuc13c 7	Lidn Haramet 20001205 50601205 50601 11 16 50601 11 16 20569 32768	2175-515 0 1123755 9 1123755 9 112 7 9 112 7 9 112 7 9 112 7 9 112 7 9 112 7 9 12 12 12 12 12 12 12 12 12 12 12 12 12	CHAMEL 11 11 11 10 11 100 250 1311256 250 130102 250 130102 250 130102 250 130102 250 130102 20 0 1.40	odrameters 20.00 6.000 5500 76 3500 76 7500 76 7500 0 15000 37.51550
Current Date WAME e EXPND PROCND	22 - Acquist Sate_ Inse_ INSTRUM INSTRUM INSTRUM Saturent Saturent Saturent	2000 100 100 100 100 100 100 100 100 100	Auct Put SFD1 SFD1 Sf BF BB BB BB BB BB BB BB BB BB BB BB BB	D WMA plot 12 13 12 12 12 12 12 12 12 12 12 12 12 12

it all h

ыdd

1H azidoglucuronide at 250MHz in COC13 undecoupled

Date Faremeters ezidagluc 10	21511 JUN Parameters 20001031 9.37 5.mm 2047 JH 22760 32760 32760 20013 20 20 32760 20 32760 10 5.45 9.3548047 Sec	286.400 usec E.00 usec 300.0 K 2 5000000 sec 0 00002000 sec 11.00 usec 13.00 dB 250.1311256 MHz	CHANNEL 12 19 250 1310410 MH2 250 1310410 MH2 250 1310410 MH2 250 1310410 MH2 2756 32768 32768 32768 2768 00 1 40 1	01300 Hr/tm
Current (NAME EXPND PRDCND	F2 - Aco Date Time [NSTRUM PROB-0 PULP906 F10 PULP906 F10 SM F10 F10 F10 F10 F10 F10 F10 F10 F10 F10	20 21 21 22 22 23 23 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	22222222222222222222222222222222222222	H2CM
				3.6 3.5
				€_0.≉
				5 ₽
				ष *
				4.6
				å. B
			A I	5.0
				<u>ک</u>
				pp#

1H szidoglucuronide at 250MHz in COC13 decoupled at 4.1ppm

nt Oete Persseters aridoniur	11	-	Acquisition Parameters	20001031	02.6	UN SDect	H 00 10	DG zehd	32768	NT Aceton	8	r.	1745.B10 Hz	5 0.053278 Hz	9.3648047 Sec	645.1	206. 400 usec	5.00 usec	300.0 × 0	2.5000000 440	0.00002000 sec	LINNUT III	the second se	11.00 usec	80 00 E-	200.1311256 Mtz	1	THE STATE IS THE STATE OF THE S	UD OD O	00 00 0F	250.1312520 MH	Processing parameters 32760	240 110011 042	5	0	D.20 M2	•	1.40	G alot carameters	20.00 CB	5.400 ppm	14 QL 0001	3.400 000	0.10000 00m/cm	25.01300 Hz/cm
Curren	EXP0	PROCNE	1 - 24	Cate		INSTRU	PROBHC	PULPRC	2	SOLVEN	Ŷ	8	ŧ.	F10463	3	2	B	×	¥	5	612			į	ā	5701		1			SF02	5 5	5 9	ġ	SSB	9	양	٤	di Me		951	5	2 2	Ded of	H2CH
																																												ŀ	a.o
																					_			-									_			-	-	_	-	<	נ 			-	8°.5
																																								Z	ر آ			ſ	4
																																												ŀ	4.2
																																												-	4.4
																																									J			Ĺ	9.1
																																								-	Ì			ŀ	
																																												-	4.8
															-				_		_	-						_								-				-				-	5.0
																																												-	5.2
																																								٤	ר	}			EQ.

IH azidoglucuronide at 250MHz in CDC13 decoupled at 4.9ppm

	រា ប	нн Н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		са рра н2 рра н2/се
Arameters aziongluc 5 1	100 Paramet 20001012 20 15 25 20 19 20 20 19 20 22769 22769 22769 22769 20013	1755 619 0. 075517 9. 3323755 9. 3323765 9. 322 6. 00 5. 00 300. 0 300. 0	CHANNEL 11 141 131.00 131.025 131.0255 131.02555 131.02555 131.0255 131.025 130.0275 131.025 131.0555 131.0555 131.0555 131.0555 131.0555 131.05555 131.055555	rameters 20.00 5.500 1379.71 875.45 0.10000 85.01300 85.01300
rent Cata ² E NO CMD	- Acountic e arraux Bro Bro Bro Bro Bro Bro	5 BES	- Processon 25	an a
J¥B6	5 9 1 2 6 2 6 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	8.6.5.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	ទឹតស៊ីស៊ី ៥៩៦ម៉ឺស៊ីៗ២៩	

udd

52 50 40 52 50 50 50 50 52 50 40 45 40 30 50					Current Da NAME	ita Parameters azidenluc
0.000 1 0.1 0.1					EXPNO	9
R. - Actual from from from from from from from from					PROCNO	-
0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.0 0.0					F2 - Acqui	sition Parameters
1.1 1.1 1.1 1.1 1.1					Oate	20001012
Define Define <thdefine< th=""> <thdefine< th=""> <thdefine< td="" th<=""><td></td><td></td><td></td><td></td><td>Tiee</td><td>50.51</td></thdefine<></thdefine<></thdefine<>					Tiee	50.51
5.2 5.0 4.8 4.2 4.0 3.8 5.2 5.0 4.8 4.5 4.0 3.8					INSTRUM	spect
0.0000 0.0000 0.00000 0.0000					CHOCH	1 0 0 0 1 H
5.2 5.0 4.8 4.0 3.6 3.6 5.2 5.0 4.8 4.0 3.6 3.6					PULPROG	62
S. <					01	32768
5.2 5.0 4.8 4.0 3.6 3.6 5.2 5.0 4.8 4.2 4.0 3.6					SOL VENT	COC13
5.2 5.0 4.8 4.2 4.0 3.6					\$	æ (
1.1 1.1 <td></td> <td></td> <td></td> <td></td> <td>9.0</td> <td>2 1746 648 65</td>					9.0	2 1746 648 65
5.2 5.0 4.8 4.2 4.0 3.8 5.2 5.0 4.8 4.2 4.0 3.8					FIDRES	TH 120EC00.0
8.1 3.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.3323765 sec</td>						9.3323765 sec
5.2 5.0 4.8 6.0 6.0 6.0 5.2 5.0 4.8 4.2 4.0 3.8					8	512
5.2 5.0 4.8 4.2 4.0 3.8 5.2 5.0 4.8 4.2 4.0 3.8					8	284.800 USEC
1.1 2.2000000 kF 1.1 2.200000 kF 1.1 1.1 1.1					ъ	6.00 USec
01 2.300000 ac 1.000 ac 01 2.300000 ac 01 1.000 ac 01 2.30000 ac 01 2.30000 ac 0.000 ac 0.0000 ac 0.000 ac 0.000 ac 0.000 ac					Ħ	300.0 K
5.2 5.0 4.8 4.2 4.0 3.8 3.0 0.0 <td></td> <td></td> <td></td> <td></td> <td>01</td> <td>2.5000000 sec</td>					01	2.5000000 sec
MC1 11155 60 45 11 100 45 12 10 00 45 13 10 00 45 14 10 00 01 15 10 00 00 00 00 00 00 00 00 00 00 00 00						CHAMEL 13
1 1:00 upt 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 0:0 1:0 0:0 1:0 0:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 0:0 1:0 1:0 1:0 0:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:1 1:1:7:7 1:1 1:1:7:7 1:1 1:1:7:1 1:1 1:1:7 1:1 1:1:7 1:1 1:1:7 1:1 1:1:7 1:1 1:1:7 1:1 1:1:7 1:1 1:1:7 1:1 1:1:7 1:1 1:1:7 1:1 1:1:7 1:1 1:1:0 1:1 1:1:0 1:1 1:1:0 1:1 1:1:0 1:1 <td></td> <td></td> <td></td> <td></td> <td>NUC:</td> <td>Ŧ</td>					NUC:	Ŧ
P:1 -1:0:0 P:1 -1:0:0:0 P:1 -1:0:0:0:0 P:1 -1:0:0:0:0 P:1 -1:0:0:0:0:0 P:1 -1:0:0:0:0:0 P:1 -1:0:0:0:0:0:0					i d	11.00 VSec
5.2 5.0 4.8 4.2 4.0 3.8 3.6 1.1050 MU 72.7 7000 1000 00000000000000000000000000000					2	-3.00 08
72 Processing parameters 51 52 50 1.40 61 0.20 kg 0 0 0 62 0.20 kg 0 0 0 63 0.20 kg 0 0 0 0 64 0.20 kg 0 0 0 0 0 64 0.20 kg 0 0 0 0 0 0 65 0.20 kg 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 7 0 <					50.65	201 00211FL 002
S: 20.130281 Mt. S: 20.130281 Mt. S: 20.130281 Mt. S: 20.130281 Mt. S: 20.130281 Mt. S: 20.130281 Mt. S: 20.0308 Mt. S:					FZ - Proce	ssing parameters
Size 5.2 5.0 3.6 3.6 3.6 3.6					15	32768
Month Month 52 5.0 6 1.40 7 10 Ment plot perventers 7 1.40 7 1.40 8 4.5 4.6 4.6 7 1.357 7 1.357 7 1.357 8 4.5 8 4.6 8 4.6 8 1.6 9 3.00 partial					5	290.1300328 MHz
SSB 0 20 04 C 1 40 C 20 04 C 1 40 C 20 04 C					N.	5
0.20 kc					558	0
5.2 5.0 4.8 4.5 4.2 4.0 3.8 3.6 1.00 cm/cm					9	0.20 Hz
5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 1.000 ppm/cm				_	81	0
10 Mer plet peremeters 10 Mer plet peremeters 135,72 H 1375,72					ĸ	1.40
52 5.0 4.6 4.2 4.0 3.8 3.6 1.0 0.1000 parket					10 MMH ple	t perameters
52 5.0 4.6 4.2 4.0 3.8 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6					ð	8 8 CB
52 5.0 4.8 4.5 4.0 3.8 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 1.0 000 004/18					F 1P	5.500 ppm
52 5.0 4.6 4.6 4.0 3.8 3.6 3.6 3.6 2.01300 12/ca					ł	1375.72 Hz
5,2 5,0 4,8 4,6 4,4 4,2 4,0 3,8 3,6 3,6 25,01300 12/13	-				F29	3.500 ppm
					2	875.46 Hz
			-			0.10000 ppm/cm
5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6	JUL MM JWL		M		HO2H	227.01300 Hz/CD
5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6						
5.2 5.0 4.8 4.6 4.4 2.2 4.0 3.8 3.6						
5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6				-	r	
	5.2 5.0 4.8 4.6 4.4	4.2	4.0	3.6 3.6		

1H azidogluc in CDC13 at 35 degrees

bba

1H azidogluc in CDC13 at 45 degrees