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ABSTRACT The aim of this study was to compare 2 

stepwise covariate model-building strategies, frequently
used in the analysis of pharmacokinetic-
pharmacodynamic (PK-PD) data using nonlinear mixed-
effects models, with respect to included covariates and
predictive performance. In addition, the effects of step-
wise regression on the estimated covariate coefficients
were assessed. Using simulated and real PK data, co-
variate models were built applying (1) stepwise general-
ized additive models (GAM) for identifying potential co-
variates, followed by backward elimination in the
computer program NONMEM, and (2) stepwise forward
inclusion and backward elimination in NONMEM. Differ-
ent versions of these procedures were tried (eg, treating
different study occasions as separate individuals in the
GAM, or fixing a part of the parameters when the
NONMEM procedure was used). The final covariate
models were compared, including their ability to predict a
separate data set or their performance in cross-
validation. The bias in the estimated coefficients (selec-
tion bias) was assessed. The model-building procedures
performed similarly in the data sets explored. No major
differences in the resulting covariate models were seen,
and the predictive performances overlapped. Therefore,
the choice of model-building procedure in these exam-
ples could be based on other aspects such as analyst-
and computer-time efficiency. There was a tendency to
selection bias in the estimates, although this was small
relative to the overall variability in the estimates. The 
predictive performances of the stepwise models were
also reasonably good. Thus, selection bias seems to be 
a minor problem in this typical PK covariate analysis.

ously estimated by the use of nonlinear mixed-effects
models. One of the important aims in population PK-PD 
modeling is the establishment of relationships between
parameters and covariates (ie, patient specific variables)
to explain parameter variability and facilitate dose ad-
justment decisions.

Stepwise model building is frequently employed in popu-
lation PK(-PD) covariate model building with NONMEM 
(the most widely used program for population PK(-PD) 
modeling).
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For example, 58 of 60 papers (1999-2001)

related to covariate model building in NONMEM included
stepwise procedures (the reference list is available from
the authors). No previous comparison between covariate 
model building procedures has been reported in the lit-
erature. In this article we assess the performances of 2
(objective) model-building strategies that make use of 
stepwise procedures. In addition, we explore how the re-
sults of a (typical) covariate analysis can be affected by
selection bias, a general problem in stepwise regression.
The search for important covariates is not always
straightforward, especially if there are large numbers of 
covariate-parameter relations to consider. In addition to 
finding the “right” (ie, true or predictive) covariate, the 
right functional form of the relation must be identified.
This may require considerable analyst- and/or computer
run-time. Different approaches to aid model building and
reduce the number of models to explore have been con-
sidered. Maitre et al

2
suggested plotting individual em-

pirical Bayes (posthoc) estimates of the parameters ver-
sus each of the covariates to discover potentially
important covariates. These need to be included in the
mixed-effects model in some way, often involving step-
wise testing. Mandema et al presented a stepwise pro-
cedure, using generalized additive models (GAM),

3

which is commonly used (for example, see references
4-

13
) and has been implemented in the program Xpose.

14

Built in a stepwise additive way, the GAM makes use of
posthoc parameter estimates that are regressed on the
individual covariate values. Possible covariate relations
are identified, then incorporated and tested in the popu-
lation model. Another stepwise routine has been sug-
gested in which the covariate model is built within the 
population model in NONMEM.

15
In this automated pro-

cedure the model is first built up by including a new pa-
rameter-covariate relation term in each step and, when
no more terms can be included (based on a prespecified
criterion), all terms are retested in the model by exclu-
sion.

KEYWORDS:  stepwise model building, covariate analy-

sis, GAM, NONMEM, selection bias. 

INTRODUCTION Population pharmacokinetics (PK) and

pharmacodynamics (PD) involve analysis of data origi-
nating from clinical settings (ie, sparse data from a large
number of subjects). Population mean parameters and
between- and within-individual variability are simultane-
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The stepwise model-building procedures suffer the risk 
of being affected by the general problems related to
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stepwise regression. Some of these include selection
bias (ie, overestimation of the effects of the selected co-
variates),

16-18
possibly overstated importance of retained

variables, and invalid distributional assumptions.
19

There
are also concerns regarding the number of candidate
variables and variables being collinear, as these could 
affect the number of noise variables and accurate pre-
dictor variables in the final model.

20
One suggested way

to avoid the problem of selection bias and get unbiased
coefficients is to specify a best guess model based on 
prior knowledge.

21,22
As there is no investigation de-

scribed in the literature, we also wanted to address the 
magnitude of the selection bias problem in the area of 
nonlinear mixed-effects modeling.

MATERIALS AND METHODS

Covariate models were built using 2 model-building pro-
cedures: (1) GAM for identifying candidate covariate ef-
fects and NONMEM to test the importance of found co-
variate terms (GAM-NM) and (2) NONMEM both in a 
stepwise search for possible covariate effects and in a 
following backward deletion step(s) (NM-NM). The pro-
cedures were applied to both simulated and real data.
Different versions of the procedures were also tried; for 
example, to consider run-time saving possibilities or to
account for time-varying covariates. A GAM constrained
to mimic stepwise multiple linear regression (ie, no 
nonlinear relationships were allowed) was also tried. The
predictive performances of the found models were as-
sessed using either a separate data set (in the case of 
simulated data) or cross-validation (in the case of real
data). The GAM, implemented in Xpose 3.0, 

14
and

NONMEM (version VI beta) were used. Estimation in 
NONMEM was performed using the first-order condi-
tional estimation (FOCE) method with the interaction op-
tion.
In the following, descriptions of the model-building
strategies are followed by the details of the simulated
and real PK data, and the different versions of the pro-
cedures. The simulations made to assess the magnitude
of the selection bias incurred by the use of stepwise
model-building are then explained.

Model building procedures

GAM-NM
The individual empirical Bayes estimates of the parame-
ters were first obtained from a fit of a model without co-
variate effects (basic model). The GAM

3
was used,

separately for each fixed effects parameter, regressing
the parameter on the covariates trying both linear and
nonlinear (natural cubic spline with 1 internal breakpoint)
models. Model discrimination was based on the Akaike
information criteria (AIC); in each step the model that
decreased the AIC the most was retained. The search
ended when no model decreased the AIC further. The
covariate relations identified in the final GAM models, for 
all parameters, were incorporated in the mixed-effects 
model (full model), and covariates were deleted from the 

model in a stepwise manner using NONMEM. In each
step all covariates were left out of the model, one at a
time. The least important covariate, according to the like-
lihood ratio test based on the objective function value
(OFV, approximately -2 times the log likelihood of the 
data), was dropped from the model unless the difference 
in OFV (DOFV, likelihood ratio) was larger than 6.63
(corresponding to P < .01). The final model was estab-
lished when no more covariates could be excluded from
the model. 
Covariate effects were modeled, in the mixed-effects
model, as being proportional to the typical value of the
parameters:

(1)

q1 is the typical value of the parameter, and 2 is the 
fractional change in the typical parameter with the co-
variate (COV). Continuous covariates were centered on
their median values (medianCOV); 1 then represents
the typical value of the parameter in an individual with 
medianCOV, and 2 the fractional change in the typical
parameter with each unit’s change from the median co-
variate value. Nonlinear models for continuous covari-
ates were parameterized in terms of 2 slopes, joined at 
the median covariate value:

(2)

NM-NM
With the NM-NM routine the covariate model is built al-
together within NONMEM in a stepwise manner, starting
from the basic model. In each step, all possible parame-
ter-covariate combinations are tried, and inclusion of co-
variate effects is based on the likelihood ratio test. Con-
tinuous covariates are first tried in linear relations to the 
parameters. Once a covariate has been included in the
model it is also tried, in the next step, in a nonlinear rela-
tion to the parameter. Covariate effects were parameter-
ized as described above. The covariate relationship that
gives rise to the largest OFV is retained in the model, 
given that inclusion results in OFV>3.84 (corresponding
to P < .05). The full model is established when no more
covariates can be included according to this criterion.
The covariate relations are then left out of the full model
1 at a time and tested using a stricter criterion (
OFV>6.63), in the same way as for GAM-NM, described
above.

Simulated data

Data sets
Ten simulated data sets were used in the comparison
(previously used in Jonsson and Karlsson

15
). These

were generated from a 1-compartment model with first-
order absorption under steady-state conditions. The data
sets contained on average 3 (range, 1-4) observations
from each of 64 individuals, 230 observations in total. 
(Samples were drawn at 0.5, 2, 4, and 6 or 0.5, 2, 8, and
12 hours post-dose in half of the individuals.) The inter-
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individual variability (IIV) was described by an exponen-
tial model (Equation 3), where i is a normally distributed
random variable, with zero mean and variance

2
, ac-

counting for the difference between the individual (P i )
and typical ( ) parameter estimate in the population. A 
proportional residual error was used in the simulations
(Equation 4), where ij is a zero mean, normally distrib-
uted random variable with variance

2
.

(3)

(4)

In the simulation model, apparent clearance (CL/F, CL/F

= 20 L/h, CL/F 25%) was related to gender ( SEX =
0.195) and nonlinearly to age (constant below median
age, linearly decreasing above median age (years), AGE

= -0.0385), and apparent volume of distribution (V/F, V/F

= 100 L, V/F 25%) was related to concomitant medica-
tion with hydrochlorothiazide ( HCTZ = -0.560) and body-
weight (kg) ( WT = 0.006). The absorption rate constant
( Ka = 2 h 

-1
, Ka 20%) was not influenced by covariate

effects. The residual error ( ) was 15%. The covariate
data, summarized in Table 1 Table 1, were taken from a
clinical trial of the antihypertensive drug prazosin.

3

GAM-NM simulated data
To explore possible differences in the resulting covariate
models, the GAM-NM procedure was repeated for all
simulated data sets using both the individual empirical
Bayes estimates of the parameters (GAM(parameter)-
NM) and the hi (GAM(eta)-NM). Covariate models were
built for CL/F and V/F. A GAM, using posthoc parameter
estimates, in which the model scope was limited to linear
relationships (similar to multiple linear regressions) was
also tried (Linear GAM-NM).

NM-NM simulated data
Covariate models for all data sets were established for 
CL/F and V/F. Fixing some parameter values during
model building may shorten the run-times of the NM-NM 
procedure. To explore the effect of fixing parameter val-
ues, the NM-NM covariate models were built using the
following variations: (1) estimating all parameters, (2) fix-
ing structural parameter values (eg, CL/F and V/F) to the
estimates from the fit of the basic model, and (3) fixing
all structural and variance parameters (apart from the
residual error and the explored covariate effects). Last,
all parameters of the final models were estimated.

Assessment of predictive performance
The covariate models found in the inclusion step (full
models) and after the backward step (final models), by 
the different procedures, were compared with respect to
covariate terms. Two covariate models may be equally
valuable (ie, have equal predictive capability) even
though they differ with respect to included covariate
terms—for instance, if covariates are correlated. To con-
sider this aspect, the predictive performance of the found
models was evaluated using a separate test data set. 
This test data set was generated by replication of the 

covariate data 200 times (ie, generating 12 800 sub-
jects), and simulating new concentrations from the simu-
lation model (with new hs and es). The parameters of 
each final model were fixed and used to predict the ob-
servations in the test data set. The root mean square er-
ror (RMSE) and the mean prediction error (MPE) were
calculated for measuring predictive performance. This 
calculation was made using the log of the observed
(simulated) concentrations and the log of the predictions
for the typical individual to account for heteroscedasticity
in the data. The MPE and RMSE of the models derived
by the GAM-NM and NM-NM procedures were com-
pared with the same quantities obtained from both the
fits of the basic and simulation models and the part of
the simulation models supported by the data. The latter
was obtained by applying stepwise backward elimination
in NONMEM, starting from the simulation covariate
model.

The real data set 

Data set
The real PK data set has been analyzed previously and
is described in the literature.

3, 23,24
The basic structural

pharmacokinetic model was adopted from these earlier
analyses, and only the influence of covariate effects was
explored. The data originates from multiple IV infusions 
of a broad-spectrum antibiotic (pefloxacin) to 74 critically
ill patients (200 or 400 mg over 1 hr). Approximately 3 
samples were drawn from each individual at each of 1 to 
3 occasions (visits) (time-course 2.5-14 days); in total
337 plasma concentrations were obtained. The basic
model describing the data was a 1-compartment model
parameterized in terms of clearance (CL) and volume of
distribution (V), with interoccasion variability (IOV) in CL 
and V, and IIV in CL. 
Equation 5 shows the model for IIV and IOV. This equa-
tion differs from Equation 1 by the term kik that accounts
for the random variation of a parameter within an indi-
vidual i between occasions k, where p is the approxi-
mate coefficient of variation of kik. The residual error 
was modeled to be proportional to the predicted concen-
trations (Equation 4)

(5)

The covariate data are summarized in Table 2 .
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Assessment of performance—cross-validationTable 1. Covariates Simulated Prazosin Data

The final models were compared with respect to the
found covariate relations. To get a nearly unbiased
measure of the ability of the models to predict the data, a 
cross-validation approach was used. This was accom-
plished by splitting the data set in 10 parts (random allo-
cation of individuals). The parameters of the final model
were estimated using 9/10 of the data and were used to 
predict the remaining 10th. Estimation and prediction
were repeated so that predictions for all individuals were
generated. Predictive performance was assessed by
calculation of standardized mean prediction error
(SMPE) as a measure of bias,

25
and root mean square

(standardized) error (RMSSE) as a measure of preci-
sion. SMPE is the mean of the difference between the 
observed and predicted concentration divided by the es-
timate of the standard deviation of the predicted concen-
tration (SDCp).Table 2. Covariates Pefloxacin Data

(6)

The standardization was done for the same reason that 
the MPE and RMSE were computed on the log-scale for
the simulated data. Because there is more than 1 obser-
vation per individual, and the prediction errors within an
individual are correlated, only 1 observation per individ-
ual was used when calculating SMPE and RMSSE.
These observations were chosen to be parameter-
information–rich (sensitive to changes in the parameter,
P) based on the partial derivatives with respect to P from
the basic model. The point with the largest partial deriva-
tive with respect to P was chosen to assess the ability to 
predict P. Ninety-five percent confidence intervals (CI) 
were constructed for SMPE and RMSSE.

Estimation of selection bias in NM-NM
To assess the magnitude of selection bias (ie, overesti-
mation of the regression coefficients due to stepwise se-
lection), when stepwise covariate model building is used
in a relatively typical population PK model, 100 new data
sets were simulated from the final (NM-NM with IOV)
model—referred to as the simulation model—for the real
data set. The same model was fitted to each of the new
data sets to get unbiased estimates of the covariate co-
efficients. The NM-NM model-building routine was also
applied to each of the simulated data sets, starting from
a (basic) model without covariate relations. This resulted
in 2 sets of estimates of the covariate coefficients: simu-
lation model estimates (estimated with simulation model)
and stepwise model estimates (estimated with final NM-
NM model for each of the 100 data sets). All estimates
were normalized by division by their respective simula-
tion coefficients. Box-and-whiskers plots of normalized
coefficients were constructed to visualize potential dif-
ferences.

GAM-NM real data 
Potential covariate relations were identified by the GAM 
procedure for the posthoc individual estimates of CL and
V from 3 different models: (1) a model describing only
IIV in the structural parameters (ie, without IOV), (2) a 
model with IIV and IOV (the model described above),
and (3) a model without IOV but in which the observa-
tions originating from different study occasions were
treated as being from separate individuals—to account
for covariates varying over time. For model (3), a GAM
with the model scope constrained to only linear relation-
ships was also tried. The relations found were incorpo-
rated into the model with IOV, using the original individ-
ual data structure for all models, and then deleted in a 
stepwise manner in NONMEM.

NM-NM real data 
Stepwise model building was performed using 2 ap-
proaches. In the first the covariate model was built start-
ing from the model including IIV and IOV, and in the
second both the IIV and the IOV was set to zero (ie, all 
observations were treated as originating from a single
individual [naïve/data pooling]).

The biases of the stepwise model coefficients—the MPE
between true coefficients and stepwise model estimates
(expressed as a percentage of the true coefficient)—
were determined. The true coefficient refers to the esti-
mate from the selected covariate model in a large test

4
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data set (see below); ie, the true coefficient was recalcu-
lated for each set of selected covariates.

17
The bias of 

the stepwise model coefficients was compared with the 
precision of the simulation model estimates (ie, the pre-
cision resulting if the simulation model was treated as 
the best guess model). Precision was expressed as the
RMSE between simulation coefficients and simulation
model estimates (in all 100 data sets) divided by the
simulation coefficients for this model. 

Predictive performance—simulated pefloxacin mod-
els
The ability of the above final NM-NM covariate models to
predict the concentrations of a separate test data set
was also assessed. This test data set was obtained by 
replication of the pefloxacin covariate data 200 times (ie, 
generating 14 800 subjects), and simulation of new con-
centrations from the simulation model (with new s and
s). Predictive performance of the 100 models found was
calculated as RMSE and MPE (as described previously
for the simulated prazosin data sets). For comparison,
predictive performance was also computed for the fits of
the simulation model, the fits of the basic model, and the
simulation coefficients.

Figure 1. Box-and-whiskers plots of root mean square error (RMSE)
between the log of the observed (simulated) concentrations and the log 
of the predicted concentrations obtained with the basic, NM-NM fixed
parameters, NM-NM fixed thetas, GAM(parameter)-NM, GAM(eta)-NM,
linear GAM(parameter)-NM, NM-NM, supported, simulation (estimated)
models and the simulation coefficients for the 10 simulated prazosin
data sets. The filled dot represents the median, the box range is the in-
terquartile range, and the whiskers extend to values less than/greater 
than/equal to 1.5 times the interquartile range. Values beyond these
limits are shown as empty dots.

Results  Simulated data
The results from fitting a GAM to the s or to the individ-
ual parameter estimates were similar ( Tables 3 and 4 ).
When the hs were used, fewer false covariates were
identified in the full (GAM) model than when the parame-
ter estimates were used. However, most of the false co-
variates were excluded from the model in the backward
NONMEM step, and the final models were comparable.
Note that for data set 8, no covariates were found in the 
final GAM(parameter) model for CL/F, even though both
age and sex were supported in this data set. No differ-
ence in bias could be detected (data not shown), but the
RMSE was somewhat smaller for the models developed
based on the s ( Figure 1 ).

Table 4. The Total Number of True and False Covariates in the Final
Models Found for CL/F and V/F, by the different Stepwise Procedures,
in the 10 Simulated Prazosin Data Sets*

When the covariate models were built stepwise within
NONMEM, the results were similar to when the 
GAM(eta)-NM was used. The final models were identi-
cal, although the full NM-NM model included both some
additional true and some additional false covariates.
Both these procedures detected almost all of the covari-
ates supported by the data. The predictive performances
of the final NM-NM and GAM(eta)-NM models (both with 
respect to RMSE and MPE) were the same, and not very
different from that of the supported models.
When the structural parameters were fixed to estimates
from the basic model during the NM-NM procedure,
fewer true covariate relations were found. The ability to
find true covariate relations diminished further if the vari-
ance parameters also were fixed during model building;
however, this also resulted in fewer false covariates (
Table 4 ). The precision in predicting the large simulated
data set was reduced when the parameters were fixed
while the model was built compared with when parame-
ters were estimated.
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Table 3. Full and Final (in bold) Covariate Models Found for CL/F, Using the Different Stepwise Procedures, in the Simulated Prazosin Data Sets*

Data set Full/Final Model 

1 NM-NM AGE2
†

SEX WT

1 NM-NM fixed thetas AGE2
†

SEX

1 NM-NM fixed parameters SEX

1 GAM(eta)-NM AGE2
†

SEX WT

1 GAM(parameter)-NM AGE2
†

SEX WT

1
Linear GAM(parameter)-
NM AGE SEX

1 Supported AGE2
†

SEX

2 NM-NM AGE2
†

SEX

2 NM-NM fixed thetas AGE2
†

SEX

2 NM-NM fixed parameters AGE2
†

SEX

2 GAM(eta)-NM AGE2
†

SEX

2 GAM(parameter)-NM AGE2
†

SEX

2
Linear GAM(parameter)-
NM AGE HT HCTZ

2 Supported AGE2
†

SEX

3 NM-NM AGE2
†

RACE

3 NM-NM fixed thetas AGE RACE

3 NM-NM fixed parameters AGE

3 GAM(eta)-NM AGE2
†

RACE

3 GAM(parameter)-NM AGE2
†

RACE

3
Linear GAM(parameter)-
NM AGE SEX RACE CON HCTZ

3 Supported AGE

4 NM-NM AGE2
†

4 NM-NM fixed thetas AGE2
†

4 NM-NM fixed parameters AGE

4 GAM(eta)-NM AGE2
†

HT

4 GAM(parameter)-NM AGE2
†

HT

4
Linear GAM(parameter)-
NM AGE HT HCTZ

4 Supported AGE2
†

5 NM-NM AGE2
†

5 NM-NM fixed thetas AGE2
†

5 NM-NM fixed parameters AGE2
†

5 GAM(eta)-NM AGE2
†

5 GAM(parameter)-NM AGE2
†

5
Linear GAM(parameter)-
NM AGE SEX RACE

5 Supported AGE2
†

6 NM-NM AGE2
†

SEX

6 NM-NM fixed thetas AGE2
†

SEX

6 NM-NM fixed parameters AGE SEX

6 GAM(eta)-NM AGE2
†

SEX

6 GAM(parameter)-NM AGE2
†

SEX

6
Linear GAM(parameter)-
NM AGE SEX

6 Supported AGE2
†

SEX

7 NM-NM AGE2
†

SEX

7 NM-NM fixed thetas AGE SEX

7 NM-NM fixed parameters AGE SEX

7 GAM(eta)-NM AGE2
†

SEX

7 GAM(parameter)-NM AGE SEX

7
Linear GAM(parameter)-
NM AGE SEX

6
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7 Supported AGE SEX

8 NM-NM AGE2
†

SEX

8 NM-NM fixed thetas SEX

8 NM-NM fixed parameters SEX

8 GAM(eta)-NM AGE2
†

SEX

8 GAM(parameter)-NM RACE SEX SMOK HCTZ HT

8
Linear GAM(parameter)-
NM RACE SEX SMOK HCTZ HT

8 Supported AGE2
†

SEX

9 NM-NM AGE2
†

SECR

9 NM-NM fixed thetas AGE SECR

9 NM-NM fixed parameters AGE SECR

9 GAM(eta)-NM AGE2
†

SECR2
†

9 GAM(parameter)-NM AGE2
†

SECR2
†

CON

9
Linear GAM(parameter)-
NM AGE SECR HT

9 Supported

10 NM-NM AGE2
†

SEX HT2
†

10 NM-NM fixed thetas AGE HT

10 NM-NM fixed parameters AGE HT

10 GAM(eta)-NM AGE2
†

SEX HT2
†

10 GAM(parameter)-NM AGE2
†

SEX HT2
†

10
Linear GAM(parameter)-
NM AGE HT

10 Supported AGE2
†

SEX

*GAM indicates generalized additive models; NM, NONMEM computer program.
†
Nonlinear relationship
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There was a tendency of the constrained linear GAM to 
find more false covariate relationships. However, after
the backward step most of these were eliminated, and

the predictive performance was of the same magnitude
as when the NM-NM procedure with fixed parameters
was used ( Figure 1 ).

Table 5. Full and Final (in bold) Covariate Models Found by the Different Stepwise Procedures in the Real Pefloxacin Data*

Table 6. Final Parameter Estimates from the Models Found by the Different Stepwise Procedures in the Real Pefloxacin Data*

8
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The real data set
The covariate models identified in the GAM for the PK 
data set, using models without IOV, with IOV, or with dif-
ferent occasions treated as separate individuals, were
comparable ( Table 5 ). The full model with each occa-
sion treated as a separate individual included the most
covariates, and this model also had the lowest OFV.
When the models with and without IOV were used, the 
same covariates were identified to influence CL, while
the models for V differed some. The OFV for the model
with IOV was lower than that for the model without IOV.
After the backward deletion step in NONMEM, the co-
variate models for CL were similar. The models with and
without IOV differed by only 1 parameter (CEN) from the
model in which each occasion was treated as a separate
individual. The covariate models for V also differed by
only 1 parameter. Parameter estimates from the covari-
ate models are shown in Table 6 . When the GAM was

constrained to use only linear relationships, the final
model was exactly the same as when the GAM was un-
constrained; the results are therefore only shown for the
latter.
The full NM-NM model with IOV had a lower OFV than
the full GAM-model in which each occasion was treated
as a separate individual. However, the final models for 
these 2 model-building strategies were exactly the same.
When the covariate model was built with NM-NM and the
pooled data approach, the largest number of covariates
were found, in both the full and final models.
In the cross-validation, the models showed similar pre-
dictive ability with respect to both SMPE and RMSSE (
Table 7 ). There was a small negative bias in the points
influencing CL, while a small positive bias and a ten-
dency to better predictions of the points influenced by V 
could be observed. Worth noting is that the model from
the pooled data approach also predicts well. 

Table 7. Predictive Performance, of the Final Covariate Models Found by the Different Stepwise Procedures in the Real Pefloxacin Data, Based on
Cross-Validation, Using One Parameter-Information-Rich Concentration per Individual*

Table 8. Bias of Stepwise Model Estimates, from the Subset of Data Sets Where the Covariate Effect was Identified, and Precision of Simulation Model
Estimates, from all (100) Data Sets, for Covariate Effects on CL in the Simulated Pefloxacin Data*

9
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Estimation of selection bias in NM-NM
The stepwise NM-NM procedure selected the relation-
ships CL-BIL and V-WT in 99 of the 100 simulated data
sets, CL-CLCR in 96, V-CLCR in 80, CL-CEN in 75, CL-
SEX and CL-AGE in 66, V-AP in 63, and V-BIL in 60. 
The true (ie, simulation) model was found in 7 data sets.
Altogether, 54 false covariates were found in 40 of the
data sets (24 on CL and 30 on V). Box-and-whiskers
plots of the simulation model and stepwise (normalized)
estimates for each covariate effect for CL are shown in 
Figure 2 . The simulation model estimates are shown for
both all data sets and for the subset of data sets in which
the covariate effect was selected by the stepwise proce-
dure. For the covariate effects that were found in 99 of 
the 100 data sets (CL-BIL and V-WT [data not shown]),
only minor differences could be detected between the
simulation model and stepwise estimates. However, in
the cases where the effects were found less frequently
(eg, CL-SEX and CL-AGE) upward biases in the step-
wise estimates were evident when compared with the 
simulation model estimates [from all data sets]. The
simulation model estimates from the subset of data sets
also showed a tendency of being upwards biased, which
indicates that there is a selection bias. It could also be
seen that the RMSE of the simulation model estimates
always exceeded the MPE of the stepwise estimates ( 
Table 8 ), indicating that the bias is of less importance.

Figure 2. Box-and-whiskers plots of estimated covariate coefficients 
for CL in the simulated pefloxacin data sets; all values are normalized
by division with the respective values used for simulation. For each co-
variate, from top to bottom, the stepwise NM-NM model estimates, the 
simulation model estimates from the subset of data sets where the co-
variate effects were found (indicated by the number), and the simula-
tion model estimates from all 100 data sets, are shown. The filled dot 
represents the median, the box range is the interquartile range, and 
the whiskers extend to values less than/greater than/equal to 1.5 times 
the interquartile range. Values beyond these limits are shown as empty
dots. The dotted line indicates the reference value 1.

Predictive performance—simulated pefloxacin
The ability of the stepwise model estimates to predict the
concentrations of the simulated pefloxacin test data set
was considerably better than that of the basic model
without covariates, and slightly worse than that of the
simulation model estimates regarding precision ( Figure
3 ). The overall biases (MPE) of the predicted concentra-
tions were comparable between the stepwise and basic
models (data not shown).

DISCUSSION

The main aim of the study was to explore and compare
the properties of the GAM-NM and the NM-NM with re-
spect to inclusion of true and false covariates and
predictive performance. As the model-building
procedures performed similarly in the data sets explored,
we will not make a systematic comparison but focus on
some main conclusions. The secondary aim was to
address how a “typical” population PK analysis is
affected by the known problems associated with
stepwise regression, as the implications of its use in the
field of PK-PD modeling have not been investigated
previously. A tendency toward selection bias was seen,
but it was relatively small compared with the variability in 
the estimates between data sets. 
While some minor differences could be seen between
the GAM-NM and NM-NM covariate models, the variabil-
ity between data sets was as large as the 

Figure 3. Box-and-whiskers plots of root mean square error (RMSE)
between the log of the observed (simulated) concentrations and the log 
of the predicted concentrations obtained with the basic, stepwise NM-
NM, and simulation models, and the simulation coefficients for the 100
simulated pefloxacin data sets. The filled dot represents the median,
the box range is the interquartile range, and the whiskers extend to 
values less than/greater than/equal to 1.5 times the interquartile range.
Values beyond these limits are shown as empty dots.
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variability between procedures, and the predictive per-
formances overlapped. Also, minor differences within
procedures were noted; but the final covariate models
were essentially the same, regardless of whether the hs 
or parameters were used in the GAM. When there were
true nonlinear relationships in the data, and the GAM
was constrained to use only linear relationships (similar
to stepwise linear regression), these relationships could
obviously not be found; in addition, other true relation-
ships were overlooked, which lead to a lower predictive
ability. For the NM-NM search, there was a tendency to-
ward a lower inclusion frequency of both true and false
covariates when parameters were fixed. 
In these data sets, with sampling frequent enough to 
yield reasonably good individual parameter estimates, it 
is of little consequence, with respect to performance,
which method is chosen. Hence, the choice must be 
based on other aspects of the procedures. The GAM is 
fast and, as it reduces the number of covariate relations
to incorporate in the mixed-effects model, it is run-time
efficient compared with the NM-NM procedure. Com-
puter run-times can be a problem for NM-NM, especially
since the procedure relies on significance levels derived
from the likelihood ratio test. For many models (nonlin-
ear models with heteroscedastic errors), the computer-
intensive FOCE method with -  interaction must be
used for these levels to equal the theoretical levels.

26

The relations found in the GAM must be included and
tested in the NONMEM model; accordingly, the GAM-
NM is not as analyst-time efficient as the NM-NM, which
is fully automated. In many practical situations it is the
data analyst time that is rate-limiting. The GAM does not
account for covariates/parameters varying over time 
unless different occasions (visits) are treated as sepa-
rate individuals. In circumstances in which this is not 
possible, the NM-NM would be preferred.
Both procedures are prone to be affected by selection
bias; however, the 2 methods were equal with respect to
performance (and the GAM is often combined with a
stepwise inclusion of the identified covariates in the
mixed-effects model), thus the issue was only addressed 
with NM-NM. Stepwise model building did result in up-
ward-biased estimates of the covariate coefficients, but
the bias seemed minor compared with the imprecision of 
the estimates yielded when the true (simulation) model
was applied. The overestimated effects may lead to
poorer predictive performance of the model. However,
the difference in predictive performance between the
true (simulation) and stepwise models, in our example,
was small. The frequency of false inclusion in the simu-
lated pefloxacin and prazosin data sets indicated that 
when more variables were tested more false covariates
were found in the final models, probably an effect of mul-
tiple testing. However, the term “false” may not be ap-
propriate as one covariate could be substituting for an-
other due to correlations and, therefore, might not be 
false at random. These results are limited to 1 data set,
and the properties may be different in other (especially 
smaller) data sets. However, data sets for which explora-
tory covariate analysis is performed are usually larger

(with respect to number of individuals) than our example
(n = 74).
The definition of a good model varies depending on its 
purpose. Frequently the model is used for making pre-
dictions, and good predictive ability is required. Simplic-
ity is also desired; covariates not improving the predic-
tive ability should not be included. The stepwise search
is based purely on statistical criteria, but it may be ad-
vantageous to use other approaches, such as including
predictive ability as a model-building criterion, or consid-
ering clinical significance in the process. Because clini-
cal significance criteria vary from drug to drug
incorporating them is not straightforward; however, using
Bayesian modeling clinical significance has been in-
cluded.

27
Another approach to covariate modeling was

recently taken by Kowalski and Hutmacher, 
28

who sug-
gested evaluating all possible relations from the esti-
mated variance-covariance matrix of the full (including all
covariates) model fit. However, the practical usefulness
of this procedure is still unclear, and we did not evaluate
it.
If the model is built for exploratory purposes, selection
bias may be of minor importance; however, bias may
represent a larger problem if the model is intended for 
prognostic purposes. To get unbiased estimates and
predictions, one would preferably develop the model on
one part of the data, estimate coefficients on a second
part, and predict a third part. However, data are usually
too precious to waste to be used in this fashion. Another
option could be to prospectively consider known or ex-
pected characteristics of the drug in a best guess model
and estimate these effects

21,22
to get unbiased coeffi-

cients. An exploratory search can then be carried out
starting from this model. 

17
Considering only plausible

covariates in the search limits the covariate scope and
reduces the risk of erroneous effects (due to multiple
testing). In addition, the problems with accuracy and
precision that can occur if 2 highly correlated covariates
enter a model simultaneously

29
can be avoided by ex-

cluding 1 of 2 highly correlated covariates.
In summary, the properties of 2 stepwise covariate
model-building procedures have been compared. No dif-
ference in performance could be seen in the data sets 
explored; however, there are differences with respect to 
practical advantages and disadvantages of the proce-
dures. Upward biases in the stepwise estimated coeffi-
cients were evident, but these were small compared with
the imprecision in the estimates under the true model.
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