Abstract
Pharmacokinetic (PK)/pharmacodynamic (PD) modeling is a scientific tool to help developers select a rational dosage regimen for confirmatory clinical testing. This article describes some of the limitations associated with traditional dose-titration designs (parallel and crossover designs) for determining an appropriate dosage regimen. It also explains how a PK/PD model integrates the PK model (describing the relationship between dose, systemic drug concentrations, and time) with the PD model (describing the relationship between systemic drug concentration and the effect vs time profile) and a statistical model (particularly, the intra- and interindividual variability of PK and/or PD origin). Of equal importance is the utility of these models for promoting rational drug selection on the basis of effectiveness and selectivity. PK/PD modeling can be executed using various approaches, such as direct versus indirect response models and parametric versus nonparametric models. PK/PD concepts can be applied to individual dose optimization. Examples of the application of PK/PD approaches in veterinary drug development are provided, with particular emphasis given to nonsteroidal anti-inflammatory drugs. The limits of PK/PD approaches include the development of appropriate models, the validity of surrogate endpoints, and the acceptance of these models in a regulatory environment.
Keywords: Pharmacokinetic/Pharmacodynamic modeling, veterinary drug, dosage regimen, interspecies extrapolation, potency, efficacy
References
- 1.Peck CC, et al. Rationale for the effective use of pharmacokinetics and pharmacodynamics in early drug development. In: Yacobi A, Skelly JP, Shah VP, et al., editors. Integration of Pharmacokinetics, Pharmacodynamics, and Toxicokinetics in Rational Drug Development. New York, NY: Plenum Press; 1993. pp. 1–5. [Google Scholar]
- 2.Reigner BG, Williams PE, Patel IH, et al. An evaluation of the integration of pharmacokinetic and pharmacodynamic principles in clinical drug development: experience within Hoffmann La Roche. Clin Pharmacokinet. 1997;33(2):142–152. doi: 10.2165/00003088-199733020-00005. [DOI] [PubMed] [Google Scholar]
- 3.Peck CC, Barr WH, Benet LZ, et al. Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. Int J Pharm. 1992;82:9–19. doi: 10.1016/0378-5173(92)90066-B. [DOI] [PubMed] [Google Scholar]
- 4.Derendorf H, Lesko LJ, Chaikin P, et al. Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol. 2000;40(12 pt 2):1399–1418. [PubMed] [Google Scholar]
- 5.Holford NH, Sheiner LB. Pharmacokinetic and pharmacodynamic modeling in vivo. CRC Crit Rev Bioeng. 1981;5(4):273–322. [PubMed] [Google Scholar]
- 6.Riviere JE. Comparative Pharmacokinetics: Principles, Techniques and Applications. Ames, Iowa: Iowa State University Press; 1999. [Google Scholar]
- 7.Holford NH, Sheiner LB. Kinetics of pharmacologic response. Pharmacol Ther. 1982;16(2):143–166. doi: 10.1016/0163-7258(82)90051-1. [DOI] [PubMed] [Google Scholar]
- 8.Campbell DB. The use of kinetic-dynamic interactions in the evaluation of drugs. Psychopharmacology. 1990;100(4):433–450. doi: 10.1007/BF02243994. [DOI] [PubMed] [Google Scholar]
- 9.Holford NHG, Ludden TM. Time course of drug effect. In: Welling PG, Balant LP, editors. Pharmacokinetics of Drugs. Vol. 110. Berlin, Germany: Springer-Verlag; 1994. pp. 333–352. [Google Scholar]
- 10.Danhof M, Mandema JW. Modeling of relationships between pharmacokinetics and pharmacodynamics. In: Welling PG, Tse FLS, editors. Pharmacokinetics: Regulatory, Industrial, Academic Perspectives. New York, NY: Marcel Dekker; 1988. pp. 139–174. [Google Scholar]
- 11.Derendorf H, Hochhaus G. Handbook of Pharmacokinetic/Pharmacodynamic Correlation. Washington, DC: CRC Press; 1995. [Google Scholar]
- 12.VanBoxtel CJ, Holford NHG, Danhof M. The In Vivo Study of Drug Action: Principles and Applications of Kinetic-Dynamic Modelling. Amsterdam. The Netherlands: Elsevier; 1992. [Google Scholar]
- 13.Yacobi A, Skelly JP, Shah VP, Benet LZ. Integration of Pharmacokinetics, Pharmacodynamics and Toxicokinetics in Rational Drug Development. New York, NY: Plenum Press; 1993. [Google Scholar]
- 14.Sheiner LB, Hashimoto Y, Beal SL. A sunulation study comparing designs for dose ranging. Stat Med. 1991;10(3):303–321. doi: 10.1002/sim.4780100303. [DOI] [PubMed] [Google Scholar]
- 15.Källen A, Larsson P. Dose response studies: how do we make them conclusive? Stat Med. 1999;18(6):629–641. doi: 10.1002/(SICI)1097-0258(19990330)18:6<629::AID-SIM72>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
- 16.Filloon TG. Estimating the minimum therapeutically effective dose of a compound via regression modelling and percentile estimation. Stat Med. 1995;149(9–10):925–932. doi: 10.1002/sim.4780140911. [DOI] [PubMed] [Google Scholar]
- 17.Temple R. Dose response and registration of new drugs. In: Lasagna SE, Naranjo CA, editors. Dose Response Relationships in Clinical Pharmacology. Amsterdam, The Netherlands: Elsevier; 1989. pp. 145–167. [Google Scholar]
- 18.Toutain PL, Lefebvre HP, King JN. Benazeprilat disposition and effect in dogs revisited with a pharmacokinetic/pharmacodynamic modeling approach. J Pharmacol Exp Ther. 2000;292(3):1087–1093. [PubMed] [Google Scholar]
- 19.Toutain PL, Cester CC, Haak T, Laroute V. A pharmacokinetic/pharmacodynamic approach vs. a dose titration for the determination of a dosage regimen: the case of nimesulide, a Cox-2 selective nonsteroidal anti-inflammatory drug in the dog. J Vet Pharmacol Ther. 2001;24(1):43–55. doi: 10.1046/j.1365-2885.2001.00304.x. [DOI] [PubMed] [Google Scholar]
- 20.Levy G. Predicting effective drug concentrations for individual patients: determinants of pharmacodynamic variability. Clin Pharmacokinet. 1998;34(4):323–333. doi: 10.2165/00003088-199834040-00005. [DOI] [PubMed] [Google Scholar]
- 21.Aarons L. Population pharmacokinetics: theory and practice. Br J Clin Pharmacol. 1991;32(6):669–670. [PMC free article] [PubMed] [Google Scholar]
- 22.Martin-Jimenez T, Riviere JE. Population pharmacokinetics in veterinary medicine: potential use for therapeutic drug monitoring and prediction of tissue residues. J Vet Pharmacol Ther. 1998;21(3):167–189. doi: 10.1046/j.1365-2885.1998.00121.x. [DOI] [PubMed] [Google Scholar]
- 23.Toutain PL, DelCastillo JRE, Bousquet-Melou A. The pharmacokinetic-pharmacodynamic (PK/PD) approach to a rational dosage regimen for antibiotics. Res Vet Sci. In press. [DOI] [PubMed]
- 24.Reilly JJ, Workman P. Normalisation of anti-cancer drug dosage using body weight and surface area: is it worthwhile? A review of theoretical and practical considerations. Cancer Chemother Pharmacol. 1993;32(6):411–418. doi: 10.1007/BF00685883. [DOI] [PubMed] [Google Scholar]
- 25.Arrington KA, Legendre AM, Tabeling GS, Frazier DL. Comparison of body surface area-based and weight-based dosage protocols for doxorubicin administration in dogs. Am J Vet Res. 1994;55(11):1587–1592. [PubMed] [Google Scholar]
- 26.Sawyer M, Ratain MJ. Body surface area as a determinant of pharmacokinetics and drug dosing. Invest New Drug. 2001;19(2):171–177. doi: 10.1023/A:1010639201787. [DOI] [PubMed] [Google Scholar]
- 27.Martinez MN, Riviere JE, Koritz GD. Review of the first interactive workshop on professional flexible labeling. J Am Vet Med Assoc. 1995;207(7):865–865. [PubMed] [Google Scholar]
- 28.Stanski DR, Greenblatt DJ, Lowenstein E. Kinetics of intravenous and intramuscular morphine. Clin Pharmacol Ther. 1978;24(1):52–59. doi: 10.1002/cpt197824152. [DOI] [PubMed] [Google Scholar]
- 29.Barnhart MD, Hubbell JA, Muir WW, Sams RA, Bednarski RM. Pharmacokinetics, pharmacodynamics, and analgesic effects of morphine after rectal, intramuscular, and intravenous administration in dogs. Am J Vet Res. 2000;61(1):24–28. doi: 10.2460/ajvr.2000.61.24. [DOI] [PubMed] [Google Scholar]
- 30.Combie JD, Nugent TE, Tobin T. Pharmacokinetics and protein binding of morphine in horses. Am J Vet Res. 1983;44(5):870–874. [PubMed] [Google Scholar]
- 31.Baggot JD, Davis LE. Species differences in plasma protein binding of morphine and codeine. Am J Vet Res. 1973;34(4):571–574. [PubMed] [Google Scholar]
- 32.MacKichan JJ, Hink WF. High-performance liquid chromatographic determination of CGA-184699 (lufenuron) in dog and cat blood. J Liq Chromatogr. 1993;16(12):2595–2604. doi: 10.1080/10826079308019595. [DOI] [Google Scholar]
- 33.Blagburn BL, Vaughan JL, Butler JM, Parks SC. Dose titration of an injectable formulation of lufenuron in cats experimentally infested with fleas. Am J Vet Res. 1999;60(12):1513–1515. [PubMed] [Google Scholar]
- 34.Knapp DW, Chan TC, Kuczek T, Reagan WJ, Park B. Evaluation of in vitro cytotoxicity of nonsteroidal anti-inflammatory drugs against canine tumor cells. Am J Vet Res. 1995;56(6):801–805. [PubMed] [Google Scholar]
- 35.Page RL, McEntee MC, George SL, et al. Pharmacokinetic and phase I evaluation of carboplatin in dogs. J Vet Intern Med. 1993;7(4):235–240. doi: 10.1111/j.1939-1676.1993.tb01013.x. [DOI] [PubMed] [Google Scholar]
- 36.Rassnick KM, Ruslander DM, Cotter SM, et al. Use of carboplatin for treatment of dogs with malignant melanoma: 27 cases (1989–2000) J Am Vet Med Assoc. 2001;218(9):1444–1448. doi: 10.2460/javma.2001.218.1444. [DOI] [PubMed] [Google Scholar]
- 37.Holford NHG. Parametric models of the time course of drug action. In: vanBoxtel CJ, Holford NHG, Danhof M, editors. The In Vivo Study of Drug Action. Amsterdam, The Netherlands: Elsevier; 1992. pp. 61–69. [Google Scholar]
- 38.Rolan P. The contribution of clinical pharmacology surrogates and models to drug development_a critical appraisal. Br J Clin Pharmacol. 1997;44(3):219–225. doi: 10.1046/j.1365-2125.1997.t01-1-00583.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Colburn WA. Optimizing the use of biomarkers, surrogate endpoints, and clinical endpoints for more efficient drug development. J Clin Pharmacol. 2000;40(12 pt 2):1419–1427. [PubMed] [Google Scholar]
- 40.Anonymous. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001; 69(3): 89–95. [DOI] [PubMed]
- 41.Dingemanse J. Kinetics and dynamics of drug effects on the nervous system: an introduction. In: vanBoxtel CJ, Holford NHG, Danhof M, editors. The In Vivo Study of Drug Action. Amsterdam, The Netherlands: Elsevier; 1992. pp. 113–129. [Google Scholar]
- 42.Toutain PL, Lefebvre HP, Laronte V. New insights on effect of kidney insufficiency on disposition of angiotensin-converting enzyme inhibitors: case of enalapril and benazepril in dogs. J Pharmacol Exp Ther. 2000;292(3):1094–1103. [PubMed] [Google Scholar]
- 43.Hammarlund-Udenaes M, Benet LZ. Furosemide pharmacokinetics and pharmacodynamics in health and disease_an update. J Pharmacokinet Biopharm. 1989;17(1):1–46. doi: 10.1007/BF01059086. [DOI] [PubMed] [Google Scholar]
- 44.Landoni MF, Lees P. Pharmacokinetic/pharmacodynamic modelling of non-steroidal anti-inflammatory drugs. J Vet Pharmacol Ther. 1997;20(suppl 1):118–120. [Google Scholar]
- 45.Lees P, Aliabadi FS. Rational dosing of antimicrobial drugs: animals versus humans. Int J Antimicrob Agents. In press. [DOI] [PubMed]
- 46.Bennett DG. Clinical pharmacology of ivermectin. J Am Vet Med Assoc. 1986;189(1):100–104. [PubMed] [Google Scholar]
- 47.Karlsson MO, Molnar V, Bergh J, Freijs A, Larsson R. A general model for time-dissociated pharmacokinetic-pharmacodynamic relationships exemplified by paclitaxel myelosuppression. Clin Pharmacol Ther. 1998;63(1):11–25. doi: 10.1016/S0009-9236(98)90117-5. [DOI] [PubMed] [Google Scholar]
- 48.Aliabadi FS, Lees P. Pharmacokinetic/pharmacodynamic integration of danofloxacin in the calf. Res Vet Sci. In press. [DOI] [PubMed]
- 49.Nies AS, Spielberg SP. Principles of therapeutics. In: Hardman JG, Gilman AG, Limbird LE, editors. Goodman & Gilman's, The Pharmacological Basis of Therapeutics. 9th ed. New York, NY: McGraw-Hill Health Profession Division; 1996. [Google Scholar]
- 50.Black JW, Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci. 1983;220(1219):141–162. doi: 10.1098/rspb.1983.0093. [DOI] [PubMed] [Google Scholar]
- 51.Kenakin T. Pharmacologic Analysis of Drug-Receptor Interaction. Philadelphia, PA: Lippincott-Raven; 1997. [Google Scholar]
- 52.Kenakin TP. The quantification of relative efficacy of agonists. J Pharmacol Methods. 1985;13(4):281–308. doi: 10.1016/0160-5402(85)90011-7. [DOI] [PubMed] [Google Scholar]
- 53.Schoemaker RC, Gerven JM, Cohen AF. Estimating potency for the Emax-model without attaining maximal effects. J Pharmacokinet Biopharm. 1998;26(5):581–583. doi: 10.1023/a:1023277201179. [DOI] [PubMed] [Google Scholar]
- 54.Toutain PL, Cester CC, Haak T, Metge S. Pharmacokinetic profile and in vitro selective cyclooxygenase-2 inhibition by nimesulide in the dog. J Vet Pharmacol Ther. 2001;24(1):35–42. doi: 10.1046/j.1365-2885.2001.00303.x. [DOI] [PubMed] [Google Scholar]
- 55.Toutain PL, Autefage A, Legrand C, Alvinerie M. Plasma concentrations and therapeutic efficacy of phenylbutazone and fluxinin meglumine in the horse: pharmacokinetic/pharmacodynamic modelling. J Vet Pharmacol Ther. 1994;17(6):459–469. doi: 10.1111/j.1365-2885.1994.tb00278.x. [DOI] [PubMed] [Google Scholar]
- 56.Mattie H. Antibiotic efficacy in vivo predicted by in vitro activity. Int J Antimicrob Agents. 2000;14(2):91–98. doi: 10.1016/S0924-8579(99)00145-4. [DOI] [PubMed] [Google Scholar]
- 57.Zhi J, Nightingale CH, Quintiliani R. A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions. J Pharm Sci. 1986;75(11):1063–1067. doi: 10.1002/jps.2600751108. [DOI] [PubMed] [Google Scholar]
- 58.Mager DE, Jusko WJ. Pharmacodynamic modeling of time-dependent transduction systems. Clin Pharmacol Ther. 2001;70(3):210–216. doi: 10.1067/mcp.2001.118244. [DOI] [PubMed] [Google Scholar]
- 59.Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther. 1979;25(3):358–371. doi: 10.1002/cpt1979253358. [DOI] [PubMed] [Google Scholar]
- 60.Qiao GL, Fung KF. Pharmacokinetic-pharmacodynamic modelling of meperidine in goats, II: modelling. J Vet Pharmacol Ther. 1994;17(2):127–134. doi: 10.1111/j.1365-2885.1994.tb00222.x. [DOI] [PubMed] [Google Scholar]
- 61.Jusko WJ. Conceptualization of drug distribution to a hypothetical pharmacodynamic effect compartment. Clin Pharmacol Ther. 1993;54(1):112–113. doi: 10.1038/clpt.1993.119. [DOI] [PubMed] [Google Scholar]
- 62.Shafer SL, Varvel JR, Gronert GA. A comparison of parametric with semiparametric analysis of the concentration versus effect relationship of metocurine in dogs and pigs. J Pharmacokinet Biopharm. 1989;17(3):291–304. doi: 10.1007/BF01061898. [DOI] [PubMed] [Google Scholar]
- 63.Unadkat JD, Bartha F, Sheiner LB. Simultaneous modeling of pharmacokinetics and pharmacodynamics with nonparametric kinetic and dynamic models. Clin Pharmacol Ther. 1986;40(1):86–93. doi: 10.1038/clpt.1986.143. [DOI] [PubMed] [Google Scholar]
- 64.Fuseau E, Sheiner LB. Simultaneous modeling of pharmacokinetics and pharmacodynamics with a nonparametric pharmacodynamic model. Clin Pharmacol Ther. 1984;35(6):733–741. doi: 10.1038/clpt.1984.104. [DOI] [PubMed] [Google Scholar]
- 65.Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993;21(4):457–478. doi: 10.1007/BF01061691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Jusko WJ, Ko HC. Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther. 1994;56(4):406–419. doi: 10.1038/clpt.1994.155. [DOI] [PubMed] [Google Scholar]
- 67.Sharma A, Jusko WJ. Characterization of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1996;24(6):611–635. doi: 10.1007/BF02353483. [DOI] [PubMed] [Google Scholar]
- 68.Gobburu JV, Jusko WJ. Role of dosage regimen in controlling indirect pharmacodynamic responses. Adv Drug Deliv Rev. 2001;46(1–3):45–57. doi: 10.1016/S0169-409X(00)00132-0. [DOI] [PubMed] [Google Scholar]
- 69.Levy G. Mechanism-based pharmacodynamic modeling. Clin Pharmacol Ther. 1994;56(4):356–358. doi: 10.1038/clpt.1994.149. [DOI] [PubMed] [Google Scholar]
- 70.Hop CE, Wang Z, Chen Q, Kwei G. Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening. J Pharm Sci. 1998;87(7):901–903. doi: 10.1021/js970486q. [DOI] [PubMed] [Google Scholar]
- 71.Allen MC, Shah TS, Day WW. Rapid determination of oral pharmacokinetics and plasma free fraction using cocktail approaches: methods and application. Pharm Res. 1998;15(1):93–97. doi: 10.1023/A:1011909022226. [DOI] [PubMed] [Google Scholar]
- 72.Rowland M, Tozer TN. Clinical Pharmacokinetics: Concepts and Applications. London, UK: Williams & Wilkins; 1995. [Google Scholar]
- 73.Landoni MF, Lees P. Pharmacokinetics and pharmacodynamics of ketoprofen enantiomers in calves. Chirality. 1995;7(8):586–597. doi: 10.1002/chir.530070806. [DOI] [PubMed] [Google Scholar]
- 74.Landoni MF, Cunningham FM, Lees P. Pharmacokinetics and pharmacodynamics of tolfenamic acid in calves. Res Vet Sci. 1996;61(1):26–32. doi: 10.1016/S0034-5288(96)90106-X. [DOI] [PubMed] [Google Scholar]
- 75.Landoni MF, Cunningham FM, Lees P. Determination of pharmacokinetics and pharmacodynamics of flunixin in calves by use of pharmacokinetic/pharmacodynamic modeling. Am J Vet Res. 1995;56(6):786–794. [PubMed] [Google Scholar]
- 76.Lees P, McKellar Q, May SA, Ludwig B. Pharmacodynamics and pharmacokinetics of carprofen in the horse. Equine Vet J. 1994;26(3):203–208. doi: 10.1111/j.2042-3306.1994.tb04370.x. [DOI] [PubMed] [Google Scholar]
- 77.McKellar QA, Delatour P, Lees P. Stereospecific pharmacodynamics and pharmacokinetics of carprofen in the dog. J Vet Pharmacol Ther. 1994;17(6):447–454. doi: 10.1111/j.1365-2885.1994.tb00276.x. [DOI] [PubMed] [Google Scholar]
- 78.Botrel MA, Haak T, Legrand C, et al. Quantitative evaluation of an experimental inflammation induced with Freund's complete adjuvant in dogs. J Pharmacol Toxicol Methods. 1994;32(2):63–71. doi: 10.1016/1056-8719(94)90055-8. [DOI] [PubMed] [Google Scholar]