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Abstract. HAE1, a high-affinity anti-IgE monoclonal antibody, is discussed here as a case study in the use
of quantitative pharmacology in the development of a second-generation molecule. In vitro, preclinical,
and clinical data from the first-generation molecule, omalizumab, were heavily leveraged in the HAE1
program. A preliminary mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for
HAE1 was developed using an existing model for omalizumab, together with in vitro binding data for
HAE1 and omalizumab. When phase I data were available, the model was refined by simultaneously
modeling PK/PD data from omalizumab studies with the available HAE1 phase I data. The HAE1
clinical program was based on knowledge of the quantitative relationship between a pharmacodynamic
biomarker, suppression of free IgE, and clinical response (e.g., lower exacerbation rates) obtained in
pivotal studies with omalizumab. A clinical trial simulation platform was developed to predict free IgE
levels and clinical responses following attainment of a target free IgE level (≤10 IU/ml). The simulation
platform enabled selection of four doses for the phase II dose-ranging trial by two independent methods:
dose-response non-linear fitting and linear mixed modeling. Agreement between the two methods
provided confidence in the doses selected. Modeling and simulation played a large role in supporting
acceleration of the HAE1 program by enabling data-driven decision-making, often based on
confirmation of projections and/or learning from incoming new data.
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INTRODUCTION

Quantitative pharmacology is a multi-disciplinary ap-
proach that integrates data about the biological system, drug
characteristics, and disease to translate scientific discoveries
into successful therapeutics (1). Integrating knowledge about
the biology of the target with data from preclinical studies
and the literature may help predict the behavior of a novel
therapeutic in humans. Quantitative pharmacology may also
be used to develop improved second-generation molecules
and to design drug candidates to fit the desired target product
profile prior to development.

Modeling and simulation offer powerful tools to perform
quantitative pharmacology. The operating paradigm of model
development is a continuous cycle of learning, confirming,

and updating throughout the development of a drug candi-
date. In the learning mode, studies explore the relationships
between patient characteristics, dose regimen, efficacy and
toxicity; subsequent studies confirm what has been learned in
a representative patient population (2).

Since the advent of simulation software systems in the
mid-1990s, pharmaceutical companies have been expanding
their use of clinical trial simulations (3) to better design
clinical trials. Clinical responses for different trial designs may
be predicted by resampling subjects from simulated clinical
databases using bootstrapping. Quantitative model-based
decision-making can help optimize drug development by
increasing the probability of technical success, accelerating
timelines, and reducing costs (4,5).

The development of HAE1, a high-affinity anti-IgE
monoclonal antibody, is a case study in the use of quantitative
pharmacology in the development of a second-generation
molecule. To inform decision-making, data were integrated
from a variety of sources, including characterization studies
with HAE1 and an extensive database from the first
generation molecule, omalizumab (Xolair®). The binding
characteristics of HAE1 and omalizumab, together with
omalizumab clinical data, were used to develop a mecha-
nism-based pharmacokinetic/pharmacodynamic (PK/PD)
model, which was used to simulate clinical PK/PD profiles
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to optimize phase I and II trial designs (i.e., dose and regimen
selections, number of patients, and endpoint strategy). The
trial designs were based on knowledge of the quantitative
relationship between a pharmacodynamic biomarker, sup-
pression of free IgE, and clinical response (e.g., lower
exacerbation rates) obtained in pivotal studies with omalizu-
mab. A modeling and simulation strategy based on a learn-
confirm-update cycle supported data-driven decision-making
throughout the HAE1 development program.

HAE1 BACKGROUND

Mechanism of Action

After exposure to an allergen, atopic patients produce
IgE antibodies, which bind to FcεRI receptors on the surface
of mast cells and basophils. An allergic response occurs when
allergens crosslink the IgE molecules, degranulating the
effector cells and immediately releasing proinflammatory
mediators, such as histamine (6). The first recombinant anti-
IgE therapy, omalizumab (Xolair®), was approved by FDA
for the treatment of moderate-to-severe asthma in 2003.
HAE1 is a second-generation fully humanized monoclonal
antibody that binds to the same epitope on IgE as omalizu-
mab but has a much higher binding affinity. Both HAE1 and
omalizumab inhibit the allergic cascade by binding human
IgE and blocking the binding of IgE to FcεRI receptors.

HAE1 Characteristics

Like omalizumab, approximately 94% of the HAE1
sequence is derived from human IgG1 and approximately
6% is derived from a murine anti-IgE monoclonal antibody,
mainly in the complementarity-determining regions (CDR).
HAE1 has the same IgG1 framework as omalizumab;
however, it differs from omalizumab by nine amino acids in
the CDR.

In vitro studies with the Fab fragments of HAE1 and
omalizumab demonstrated that these nine amino acid
changes increased the binding affinity of HAE1 to IgE by
approximately 23-fold over that of omalizumab (Table I). The
apparent dissociation constant (Kd) of HAE1 was calculated
as the ratio of the dissociation rate of HAE1 from the HAE1:
IgE complexes (koff) over its association rate (kon). Both
omalizumab and HAE1 had similar association rates, but
HAE1 dissociated from the complexes at a much slower rate.

The higher-affinity HAE1 antibody offered the potential
to expand the patient population for anti-IgE therapy to
include subjects with higher baseline IgE levels and to reduce
dose levels or increase dosing intervals relative to current
Xolair® therapy. The projected impact on dosing was

factored into cost analyses, which supported the economic
viability of the program.

PRECLINICAL STUDIES SUPPORTING PROOF
OF ACTIVITY

The functional effects of increasing the binding affinity of
HAE1 to IgE were characterized in in vitro pharmacology
studies. In competitive binding studies, HAE1 was 5.1- to 21-
fold and 4.3- to 25-fold more potent than omalizumab in
inhibiting human and cynomolgus monkey IgE binding to
FcɛRI, respectively (Genentech data on file). In studies with
rat basophil cells that had been engineered to express the
human FcɛR1α subunit (RBL-48 cells), the increased binding
affinity of HAE1 improved its ability to inhibit ragweed-
induced histamine release approximately 13-fold over omali-
zumab (Fig. 1).

Because neither HAE1 nor omalizumab binds to rodent
IgE, preclinical efficacy data could not be obtained using in
vivo rodent models of asthma. However, after administration
of a single dose of HAE1 to cynomolgus monkeys, free IgE
levels decreased in a dose-dependent manner, demonstrating
the proof of concept of the molecule (D. Mortensen, et al.
The Pharmacokinetics and Pharmacodynamics of an anti-IgE
Monoclonal Antibody following Single Subcutaneous Dosing
in Cynomolgus Monkey. AAPS Annual Meeting. 2007.
Abstract #T3007). Furthermore, the extensive and relevant
safety and efficacy data for omalizumab were leveraged in the
development of HAE1.

FREE IGE AS A PHARMACODYNAMIC BIOMARKER

Clinical studies with omalizumab supported the use of
free IgE as a pharmacodynamic biomarker for the HAE1
program (7). After administration of omalizumab to humans,
a reversible increase in total IgE was observed, with a
corresponding reversible decrease in serum free IgE levels.
Cynomolgus monkey studies with omalizumab suggested that
the increase in total IgE was due to a reduction in IgE
clearance after forming omalizumab: IgE complexes (8). In
humans, formation of complexes suppressed circulating free
IgE concentrations to levels associated with lower exacerba-
tion rates in asthma patients (7). Omalizumab lowered free
IgE in a dose- and baseline IgE–dependent manner (9,10).
Serum free IgE levels were reduced within one hour post-
dose, with a mean decrease greater than 96% using recom-
mended doses (Xolair® Package Insert). The reduction in
free IgE levels was maintained with continued administration.

The HAE1 clinical development plan was based on
knowledge of the quantitative relationship between the level
of free IgE suppression and clinical response obtained during

Table I. Kinetic Binding Parameters (Mean±SD) of HAE1-Fab and Omalizumab-Fab Fragments to IgE

Parametera Omalizumab-Fab Value HAE1-Fab Value Relative Valueb

koff (10
−4 s−1) 22.0±1.1 1.0±0.18 22

kon (105 M−1 s−1) 1.4±0.10 1.5±0.10 0.93
Kd=koff/kon (nM) 15.5±1.3 0.66±0.13 23

a Kd=dissociation constant; kon=rate of association; koff=rate of dissociation
bRelative value=(omalizumab-Fab value)/(HAE1-Fab value)
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the development of omalizumab. The omalizumab program
established that reducing mean free IgE levels to approxi-
mately 10 IU/ml in asthma patients significantly lowered
exacerbation rates (7). Furthermore, a retrospective analysis
of two asthma studies showed no additional clinical benefit of
suppressing free IgE below the average target level (7).
Based on these findings, the objective of the HAE1 clinical
plan was to select a convenient dosing regimen that consis-
tently achieved this target level of free IgE suppression.
Although HAE1 binds IgE at the same locus as omalizumab,
due to its higher affinity, the second-generation molecule was
expected to require a lower molar ratio of drug to IgE to
achieve the target free IgE level.

MODELING AND SIMULATION APPROACHES
FOR PHASE I AND II DESIGNS

Structure of Mechanism-Based PK/PD Model

The overall PK/PD modeling strategy for the HAE1
clinical development program follows. To determine doses for
the phase I study, a preliminary HAE1 PK/PD model was
developed using an existing PK/PD model for omalizumab,
together with in vitro binding data for HAE1. When phase I
data were available, the preliminary model was refined by
simultaneously modeling PK/PD data from omalizumab
clinical studies with the available HAE1 phase I data to
develop a refined HAE1 PK/PD model. The refined model
was then used to perform an extensive clinical trial simulation
exercise to evaluate projected dose-response profiles for
various clinical responses (e.g., asthma symptoms). The
clinical trial simulations enabled selection of doses for the
HAE1 phase II study. As phase II data became available,
the model could be further refined to select phase III doses.

The first step in the modeling strategy was the develop-
ment of a mechanism-based omalizumab PK/PD model using

data from three phase I studies. The dataset included a total
of 134 patients and 9,349 samples from single-dose and
multiple-dose studies. The structure of the model (Fig. 2)
was similar to models developed by Hayashi et al. (11) and
Y-N. Sun (Advanced Methods of PK/PD Systems Analysis,
Biomedical Simulations Resource Workshop, Marina del Rey,
CA, June 22–23, 2001). In Fig. 2, CLDrug is the clearance for a
free anti-IgE monoclonal antibody, while CLE and CLX are
the clearances for the free IgE and IgE-drug complex,
respectively. FcRn refers to the Fcγ neonate receptor, Fcɛ is
the Fcɛ receptor pathway, and Fcγ is the Fcγ receptor
pathway. Ksyn is the zero-order synthesis rate constant for
IgE.

Although several receptor binding models have been
previously described (12), the choice of the basic model
structure was based on known receptor-occupancy physiolo-
gy. This physiologic binding model is based on the law of
mass-action and is applicable for calculating the inhibition of
free target in order to answer questions as to what dose,
regimen, and affinity are required to bind the target between
dosing intervals.

The omalizumab PK/PD model described the relation-
ship between the pharmacokinetics of omalizumab, the
reversible binding of omalizumab with free IgE and the
disposition of free IgE and omalizumab:IgE complexes.
Although free IgE clears rapidly from the circulation by
endocytosis and binding to Fcɛ receptors (6), omalizumab is
protected from endocytosis by recycling through the IgG
salvage receptor, FcRn (13). The clearance of omalizumab is
also controlled by non-specific IgG clearance and reversible
binding to free IgE. Omalizumab forms relatively small,
biologically inert complexes with IgE (7), which clear through
Fcγ receptors of the reticuloendothelial system (8).

Given the similarity in structure and behavior between
HAE1 and omalizumab in in vitro and in vivo nonclinical
studies, it was expected that the disposition of HAE1 in
humans would be similar to that of omalizumab. Hence, the
mechanism-based PK/PD model developed for omalizumab
could be adopted for HAE1. A preliminary HAE1 PK/PD
model was generated by replacing the in vivo dissociation
constant (Kd) for omalizumab:IgE binding with the in vivo Kd

Fig. 2. Structure of mechanism-based PK/PD model for an anti-IgE
monoclonal antibody

Fig. 1. Inhibition of histamine release from ragweed-specific IgE-
loaded RBL-48 cells by HAE1 and omalizumab
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for HAE1: IgE binding in the omalizumab model. This
analysis required three key assumptions: (1) the observed
omalizumab and HAE1 in vitro and in vivo Kd ratios were
assumed to be directly proportional; (2) the PK and PD
parameters were similar for omalizumab and HAE1, except
for the Kd, and (3) PK/PD covariates (specifically baseline
IgE and body weight) were similar for omalizumab and
HAE1.

HAE1 Phase I Study Design

The preliminary HAE1 model was used to simulate
HAE1 PK/PD profiles in the phase I study, which investigat-
ed a single dose, dose-escalation of HAE1 in adults with
allergic rhinitis with or without atopic dermatitis. PK/PD
simulations were conducted to select the phase I doses by
determining the range of subcutaneous doses given every
4 weeks to achieve a reduction of average serum free IgE to
≤10 IU/ml in the target patient population. Because the
dosing of omalizumab is based on the patient’s baseline IgE
level and body weight, simulations explored a broad range of
body weights (40–150 kg) and baseline IgE levels
(20–1,500 IU/ml). Although the target upper limit for the
simulation exercise was set at 1,500 IU/ml for pretreatment
IgE levels, patients with even higher levels, up to 3,000 IU/ml,
were allowed to participate in the phase I study in order to
get a robust dataset for refinement of the preliminary HAE1
PK/PD model.

In the dose-escalation phase of the study, patients were
randomized into three dosing cohorts: 30/90, 180, and 360 mg.

In the first cohort, a minimum pharmacologic dose of 30 mg
HAE1 was initially given to a subcohort of patients to ensure
that injections were well tolerated before escalating to the
90 mg dose. PK/PD data from the subjects were analyzed as
samples were received during the study to assess the
performance of the drug and allow adjustments to the study
design. When PK/PD data from the lower cohorts indicated
that free IgE suppression was greater than expected based on
simulated HAE1 profiles and predictions for higher-affinity
anti-IgE antibodies (5), the study protocol was amended and
a lower 7.5 mg dose was added in order to fully characterize
the HAE1 dose–response profile.

Figure 3 shows the PK/PD profiles for five phase I
subjects who received HAE1 doses of 7.5, 30, 90, 180 or
360 mg. HAE1 concentrations showed the expected profile
for subcutaneous absorption and elimination. Even at the
7.5 mg dose, free IgE levels were suppressed below the target
free IgE level of ≤10 IU/ml in this subject. As the dose
increased, the duration of suppression also tended to
increase. As free IgE levels decreased, total IgE levels
increased, consistent with the hypothesis that HAE1:IgE
complexes cleared at a slower rate than free IgE alone. As
expected, free and total IgE levels returned to baseline levels.

HAE1 Phase II Study Design

To enable multidose HAE1 PK/PD predictions and to
provide study design and decision-making support for the
phase II study in asthma patients, the preliminary HAE1 PK/
PD model was refined using the phase I data. The refined

Fig. 3. HAE1, total IgE, and free IgE concentration-time profiles for five HAE1 subjects who received a single subcutaneous dose of 7.5, 30,
90, 180 or 360 mg
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HAE1 PK/PD model was developed by simultaneously
modeling PK/PD data from omalizumab clinical studies and
available data from the HAE1 phase I study. The underlying
assumption for this approach was that given the observed
similarity in the structure, behavior, and mechanism of action
for omalizumab and HAE1, kinetic information on free IgE
could be reliably shared between the two molecules, while
elimination of free drug by FcRn and IgE complexes by Fcγ
receptors would be molecule-specific. Additionally, parame-
terization of the preliminary HAE1 PK/PD model was
modified in the refined HAE1 PK/PD model to explicitly
include body weight and baseline IgE variables for both
molecules to permit subsequent evaluation of the impact of
these variables on outcomes.

A population PK/PD analysis was performed using
NONMEM (Version V, level 1.1) based on 8,565 and 914
serum concentration samples from 105 and 25 patients who
received omalizumab or HAE1, respectively. A non-parametric
bootstrap procedure (M. R. Gastonguay and A. El-Tahtawy.
Effect of NONMEM minimization status and number of
replicates on bootstrap parameter distributions for population
pharmacokinetic models: A case study. Clin Pharmacol Ther. 77:
P2–P2. 2005) was used to estimate the precision of model
parameters, and the model performance was assessed using a
visual predictive check.

Two independent methods were used to select doses for
the phase II dose-ranging trial. Both methods used a clinical
trial simulation platform, which predicted free IgE levels and
clinical responses following attainment of target free IgE
levels. Dose-response profiles were subsequently evaluated
using nonlinear fitting methods to approximate effective
doses (e.g., ED5, ED25, ED50, and ED90) and by selecting
equally spaced doses following linear mixed modeling to
evaluate a trend in the predicted clinical response. Although
various aspects of clinical response may be assessed in asthma
patients, such as exacerbation rates and lung function, these
approaches examined the total symptom score, which
accounts for both daytime and nocturnal asthma symptoms.
Agreement between the two independent methods provided
confidence in the doses selected.

The clinical trial simulation platform encompassed the
following elements:

& Model parameters and associated between-subject
variance estimates from the refined HAE1 PK/PD
model were fixed to their final values.

& Target patient population demographics (body
weight and baseline IgE) were defined based on
baseline values observed in ongoing omalizumab
studies targeting the same population.

The following study design elements were incorporated
in the simulation:

& HAE1 treatment was once every four weeks by
subcutaneous administration as a fixed dose or
normalized by body weight and baseline IgE.

& A subject withdrawal rate (~0.7%/week) was ran-
domly implemented to coincide with the observed
drop-out rates in the omalizumab clinical trials.

& Other protocol elements, such as clinic visits, sample
collection times, free IgE levels, and clinical response
were also incorporated.

A 5,000-subject clinical trial database was created by
clinical trial simulation. Fifty bootstrap iterations with re-
sampling of 100 subjects were used to perform three
simulation exercises to determine (1) the probability of
attaining the target free IgE level at a given dose at any
given time during the dosing interval, and following attain-
ment of the target free IgE level, (2) the probability of
achieving the target clinical response (e.g., change in total
symptom score), and (3) the projected proportion of simulat-
ed subjects with reduced total symptom scores.

The first PK/PD simulation exercise involved determin-
ing the probability of treated subjects achieving the target
free IgE level of ≤10 IU/ml. This approach showed that
increasing the HAE1 dose increased the probability of
subjects achieving the target free IgE level (Fig. 4). Further

Fig. 4. Simulated probability of HAE1-treated subjects achieving
target free IgE level of ≤10 IU/ml as a function of dose

Fig. 5. Simulated probability of attaining clinical response (Δ total
symptom score) as a function of dose for three cases: an optimistic
response rate (70%), a response rate similar to that expected for
omalizumab (64%), and a low response rate (50%)
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increases in HAE1 dose beyond 180 mg were not expected to
improve the response.

The second simulation exercise predicted the probability
of attaining a clinical response (e.g., change in total symptom
score) as a function of dose. This exercise used a global
approach whereby fixed proportions of subjects attaining the
target free IgE level of ≤10 IU/ml as a function of dose were
presumed to have clinical benefit. Data from the literature
(14) based on predictors of response analyses for omalizumab
were used to transition from free IgE suppression (a
pharmacodynamic biomarker for treatment response) to the
clinical efficacy domain. Figure 5 shows the dose versus
projected clinical response curves for three cases: a response
rate similar to that expected for omalizumab (64%), an
optimistic rate (70%), and a low response rate (50%). The
high and low response rates were clinical response rates from
retrospective analyses of omalizumab data (14). The dose-
response curves for probability of target free IgE suppression
(Fig. 4) or probability of clinical response (as a change in total
symptom score, Fig. 5) were similar and suggested selection
of identical phase II doses.

An alternative approach for evaluating treatment effect
is by the odds ratio. In order to examine what the dose-
response would look like when constrained based on the
observed omalizumab/placebo odds ratio and the extent of
reduction in total symptom scores, a third simulation exercise
was undertaken. This exercise was informed by omalizumab-
vs.-placebo odds ratio analyses (14) and observed treatment
effects (−1.62±1.6 and −1.15±1.6 for omalizumab and place-
bo, respectively). This exercise was most useful in gaining
further insight into the lower portion of the dose-response
relationship and helped identify the lowest dose selected for
the phase II study.

An alternative method used for parallel independent
selection of the phase II doses was linear mixed modeling
(15). This approach was used to evaluate a trend in response
across the simulated doses using a linear contrast in least-
squares means, as well as a comparison between the different
doses using differences in least-squares means. Doses selected
by the two independent methods, dose-response nonlinear
fitting and linear mixed modeling, were placebo, 7.5–15, 30–
45, 90, and 180 mg.

Based on these analyses, four doses were selected for the
phase II study: a “minimal effect” dose of 15 mg, two
intermediate doses, 45 and 90 mg, and a high dose of
180 mg near the top of the dose–response curve.

CONCLUSIONS

A quantitative pharmacology platform was successfully
incorporated into the development of HAE1, from the in
vitro characterization and preclinical studies through the
clinical program. This model-based approach was used as a
tool to communicate with the development team and to
clarify risks and assumptions during the design of the phase I
and II studies. When phase I data became available, a
preliminary PK/PD model was refined and used to make
predictions to enable dose selection for the subsequent study.
Simulation approaches were used to aid interpretation of
incoming clinical results, to give insights into complex PK/PD
interactions, and to estimate the relationship between HAE1

dose and a pharmacodynamic biomarker, suppression of free
IgE levels. Incorporating a modeling approach early in the
development of HAE1 allowed the project team to proceed
with confidence from phase I to a well-designed phase II
dose-finding study using the minimum number of subjects.
Although the HAE1 program was discontinued due to two
hypersensitivity reactions in the phase II study, modeling and
simulation played a large role in supporting acceleration of
the program by enabling data-driven decision-making, often
based on confirmation of projections and/or learning from
incoming data.
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