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                     A BSTRACT  
 Calibration curves for ligand binding assays are generally 
characterized by a nonlinear relationship between the mean 
response and the analyte concentration. Typically, the 
response exhibits a sigmoidal relationship with concentra-
tion. The currently accepted reference model for these cali-
bration curves is the 4-parameter logistic (4-PL) model, 
which optimizes accuracy and precision over the maximum 
usable calibration range. Incorporation of weighting into the 
model requires additional effort but generally results in 
improved calibration curve performance. For calibration 
curves with some asymmetry, introduction of a fi fth param-
eter (5-PL) may further improve the goodness of fi t of the 
experimental data to the algorithm. Alternative models 
should be used with caution and with knowledge of the accu-
racy and precision performance of the model across the entire 
calibration range, but particularly at upper and lower analyte 
concentration areas, where the 4- and 5-PL algorithms gen-
erally outperform alternative models. Several assay design 
parameters, such as placement of calibrator concentrations 
across the selected range and assay layout on multiwell 
plates, should be considered, to enable optimal application 
of the 4- or 5-PL model. The fi t of the experimental data to 
the model should be evaluated by assessment of agreement 
of nominal and model-predicted data for calibrators.  

   K EYWORDS:     Ligand-binding assay  ,   nonlinear calibration  , 
  4/5-parameter logistic models  ,   assay design parameters    

   INTRODUCTION 
 Liquid chromatography/mass spectrometry has largely 
replaced immunoassay and other ligand binding assays 
(LBAs) as the preferred bioanalytical technique for determi-
nation of conventional low-molecular-weight drug candidates 
in biological matrices. However, rapidly increasing interest 
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in the development of proteins and other products of 
 biotechnology as potential therapeutics 1  has resulted in 
continued application of LBAs for the quantitation of 
these macromolecules in biological matrices. Validation and 
implementation of these methods have been reviewed 2-8  
and have been the subject of several workshops sponsored 
by the American Association of Pharmaceutical Scientists 
(AAPS) and the US Food and Drug Administration (FDA), 4-6  
among others, the latest of which was conducted in May 
2006. 7  In addition, the FDA has issued a guidance for vali-
dation of bioanalytical methods. 8  Whether for quantitation 
of macromolecules or small molecules, sound calibration 
curves for these binding assays are central to their overall 
quality. A wide variety of algorithms and models is avail-
able for fi tting of calibration curve data for LBAs. The 
intent of this article is to review the appropriateness of 
these approaches to calibration, examine the statistical basis 
of the models, and provide support for the most relevant of 
these for application to LBAs. This article was presented in 
summary form at the Quantitative Bioanalytical Methods 
Validation and Implementation: Best Practices for Chro-
matographic and Ligand Binding Assays workshop, held in 
Arlington, VA, in May 2006. 7   

  LBA CHARACTERISTICS 
 LBAs possess several characteristics that differentiate them 
from chromatographic assays. 2  Some of those related to the 
calibration curve are shown in  Table 1 . These include a 
response that is, generally, directly proportional to concen-
tration for chromatographic assays but that may be directly 
or indirect proportional for LBAs, depending on whether 
the assay is competitive or noncompetitive. The response 
for a chromatographic assay is generally directly related to 
the amount of substance in the detector, while for LBAs the 
response is the result of interaction of the analyte with an 
antibody or other binding reagent. Precision for LBAs is 
generally poorer than for chromatographic assays, because 
of the role of biological reagents and reactions in LBAs, and 
the validated assay ranges are commonly considerably nar-
rower. A key difference between LBAs and chromatographic 
assays is that for chromatographic assays the mean response 
is a linear function of the analyte concentration in most 



The AAPS Journal  2007; 9 (2) Article 29 (http://www.aapsj.org). 

E261

cases, while for LBAs this relationship is generally nonlin-
ear. This property means that particular attention must be 
paid to the selection of appropriate algorithms for fi tting of 
LBA calibration curve data.   
 Numerous data-fi tting algorithms have been applied to 
experimental calibration curve data from LBAs. The prop-
erties of some of these algorithms have been reviewed by 
Rodbard and Frazier, 9  Haven et al, 10  and Dudley et al. 11  The 
basis of all of these data reduction models is an equation 
that describes the mean concentration-response  relationship, 
in conjunction with another that describes the relationship 
between the mean response and the variance of replicate 
measurements.  

  SELECTION OF THE PREFERRED CALIBRATION 
MODEL 
 For LBAs the typical calibration curve is sigmoidal in shape, 
with a lower boundary (asymptote) near the background 
response (nonspecifi c binding) and an upper asymptote near 
the maximum response. The 4-parameter logistic (4-PL) 
model is generally acknowledged to be the reference model of 
choice for fi tting calibration curves of this shape. This function 
provides an accurate depiction of the sigmoidal relationship 
between the measured response and the analyte concentration. 
The equation describing the 4-PL model is as follows:
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in which Y is the response, D is the response at infi nite ana-
lyte concentration, A is the response at zero analyte concen-
tration, x is the analyte concentration, C is the infl ection 
point on the calibration curve (IC 50 ), and B is a slope factor. 
This model has several useful characteristics (     Figure 1 ). 
The response is monotonic, increasing with concentration if 
A < D and decreasing if A > D (note that the same fl exibility 
can be achieved by allowing B to be either positive or nega-
tive, but by convention B is usually assumed to be greater 
than 0). The calibration curve is symmetric around the IC 50  
concentration C, with a response at that concentration of 
(A + D)/2. The slope parameter, B, defi nes the steepness of 

the curve. Since the curve is sigmoidal in shape, the slope 
(ie, fi rst derivative) is changing throughout, but at the IC 50  
the slope is given by B(D  – A)/4C.   
Occasionally, the calibration model needs additional fl exi-
bility. In those situations a 5-PL model may work better. 12  
This model allows for an asymmetric concentration-response 
curve by adding an additional parameter, G. The general 
equation is as follows:
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 The asymmetry parameter allows the function to approach the 
asymptotes at different rates, effectively  “ stretching out ”  either 
the top or the bottom of the curve, depending upon the need 
(note, in this model G > 0, but to achieve maximum fl exibility, 
B can be positive or negative). Generally we advise the use of 
this model only when the asymmetry is clear. In situations 
where the asymmetry is small, the addition of a fi fth parameter 
can cause the fi tting algorithm to become unstable. 
 Simpler models are often used. A popular choice is a linear 
model applied to transformed data, where the transforma-
tion used is log(response) vs log(concentration). This ap-
proach is an approximately linear transformation, where 
the quality of the fi t depends in large part upon the assay 
range. Since the linearization is imperfect, an underlying 

 Table 1.    Key Differences Between Chromatographic Assays and Ligand Binding Assays Relating to the Calibration Curve  

  Chromatographic Assays Ligand Binding Assays  

  Direct concentration-response relationship Direct or inverse concentration-response relationship 
 High precision Generally lower precision 
 Extended assay range Limited assay range (frequent need for dilution) 
 Response generally a linear function of analyte concentration Response generally a nonlinear function of analyte concentration  

 Figure 1.    Typical 4-parameter logistic graph for a competitive-
format immunoassay.  
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bias is introduced in which the magnitude of the bias is 
dependent upon concentration. Typically, the bias is great-
est at the ends of the assay range, but it can also be sub-
stantial in the  “ heart ”  of the calibration curve, since the 
linear model has had to sacrifi ce some fi t quality in the 
middle in order to accommodate the tails. Often, to achieve 
acceptable accuracy, the assay range is severely restricted, 
much more so than if one were to use a 4-PL model. This, 
of course, comes at the cost of having to do many more 
dilutions in order to read samples in the more restricted 
range.      Figure 2  illustrates the point. This fi gure presents 
calibration curve data from a monoclonal antibody enzyme-
linked immunosorbent assay fi t to several different mathe-
matical models. Visual inspection shows greatly varying 

goodness of fi t of data to the model. For this data set, 4-PL 
clearly provides the best fi t across the entire calibration 
concentration range. Other models give reasonable fi ts of 
the data to portions of the calibration range but are gener-
ally characterized by poor fi ts in some areas, particularly 
at high and low concentration ranges. These areas of poor 
fi t will have poorer accuracy.   

   FITTING THE MODEL 
 The calibration curve is usually fi t to the data (concentration-
response pairs) using a least squares approach. For nonlin-
ear models such as the 4PL the algorithm is iterative but 
relatively easy to implement with modern software. The 

 Figure 2.    Fit of typical enzyme-linked immunosorbent assay data set for a monoclonal antibody to several mathematical models. 
Panel A = exponential model, panel B = linear-linear model, panel C = log-linear model, panel D = log-log model, panel E = quadratic 
model, panel F = 4-parameter logistic model.  
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algorithm does require starting estimates of the parameters 
and can be sensitive to poor choices for these starting val-
ues. The algorithm can fail to converge if the starting val-
ues are too far away from their true values. Usually, visual 
inspection of the calibration curve can supply reasonable 
choices. A and D should be chosen based on observed 
asymptotes. C should be chosen based on rough interpola-
tion of the observed IC 50  concentration, and B can be esti-
mated by setting the slope (approximate fi rst derivative) of 
the data points around the IC 50  concentration equal to the 
theoretical fi rst derivative (shown earlier) and solving for 
B. Note that the algorithm tends to be especially sensitive 
to the starting slope estimate. Care should be taken to get 
a good initial estimate of B. As a history develops, these 
estimates can be refi ned by averaging the observed param-
eter estimates across runs. For the most part, this work 
should be done during development and the starting values 
fi xed thereafter. 

 There is another important aspect of the fi tting process that 
can be somewhat challenging, but any time spent address-
ing it is time well spent. In LBAs the noise (variance) of the 
response is generally not constant but changes with the 
response. This characteristic is termed  “ heteroscedastic-
ity. ”  The quality of the calibration curve fi t can be improved 
if heteroscedasticity is taken into account, with the essen-
tial idea being to place less  “ weight ”  on responses that 
exhibit higher variation. In other words, the calibration 
curve is more closely aligned to data of low variation and 
allowed to drift away somewhat from data of higher varia-
tion. Weighting in this way results in a broader assay range 
and demonstratively better accuracy and precision within 
the range. 

 To apply the weighting approach, the nature of the heterosce-
dasticity has to be determined. Fortunately, the variance-
response relationship tends to be a smooth, predictable 
function. Usually the mean-variance relationship can be 
described by a simple power relationship, one that assumes 
that the variance, as estimated by the standard deviation, is 
proportional to some power,  q , of the mean response, 13-15  that is, 
     s   y    μ     m    q.      There are several ways to estimate  q . For example, 
one might determine this relationship based upon the resid-
uals observed after fi tting the calibration model, perhaps after 
using an iterative fi tting process that updates the weights after 
each iteration (ie, generalized least squares). A more direct 
approach is to simply plot the log of the standard deviation 
observed from replicates of the calibration standards vs the 
log of the corresponding mean response (note that taking the 
log of both sides of the power function above gives a simple 
linear model with slope  q ). The slope of the line is then an 
estimate of  q . This is not a process that should be repeated 
with each routine analytical run (ie, in-study). Rather, this 
relationship should be established during assay development 
and fi xed thereafter. 

 Once the variance function has been determined, the inverse 
of the variance estimates should be used as weights in the 
least squares algorithm, that is, the weights are taken to be 
(1/ m  2 q  ). An alternative fi tting algorithm that can be easier 
to implement is referred to as the transform both sides 
method. 16  In this approach a variance-stabilizing transfor-
mation is applied to both the response and the calibration 
model. The transformed data and model are then fi t using 
the ordinary least squares method without weights.  Table 2  
shows the correspondence between the appropriate weights 
and transformations for various values of  q .   
 Typically, the variance increases in direct proportion to the 
mean response, that is,  q  = 1. This is equivalent to a constant 
CV across the concentration range. If the constant CV model 
is appropriate (at least approximately), then one can fi t the 
calibration model by taking logs of both the responses and 
the model; that is, one fi ts Equation 3:
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  The estimated parameters (A, B, C, and D) are then the best-
fi t estimates for the untransformed scale.  

  OPTIMAL ASSAY DESIGN FOR CALIBRATION 
 The quality of the calibration depends not only on the model 
and fi tting algorithms used but also on the design (plate lay-
out). The design includes the number and spacing of the 
calibrator concentrations, as well as the location of the cali-
brators on the plate. For the 4-PL model there are the fol-
lowing recommendations: 
    

   •     A minimum of 5 calibration concentrations and not 
 more than 8 should be used. 

   •     The calibrators should be prepared and analyzed in 
 duplicate or triplicate. 

   •     The concentration progression should be logarithmic, 
 typically of the power of 2 or 3. 

 Table 2.    Correspondence Between Weights and Transformations  

  Relationship
  of   σ  y   and  μ 

Power of the
  Mean ( θ ) Weight

Variance Stabilizing
  Transformation  

       s   y    μ     m   2    2 1/ m  4 Reciprocal 
      s   y    μ    m          1 1/ m  2 Log 
      s   y    μ     m   0.5    0.5 1/ m Square root 
   s  y   constant 0 1 No transformation  
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   •     The midpoint concentration of the calibrators should 
 be somewhat greater than the IC 50 . 

   •     Anchor concentrations outside the expected validated 
 range should be considered for inclusion to optimize 
 the fi t. 

   •     Suboptimal plate layouts should be avoided.  
   

 Several authors 17  ,  18  have noted that the issue of optimal 
spacing of calibrators is essentially one of resource alloca-
tion. The goal is to minimize the space allocated to calibra-
tors so as to maximize the space for unknowns, without 
sacrifi cing the quality of the calibration curve. Our recom-
mendation of 5 to 8 calibrators ensures that there are enough 
calibrators to adequately estimate all 4 parameters in the 
model and still allow for an assessment of the fi t quality 
(lack of fi t). Inclusion of more than 8 calibration concentra-
tions barely improves the fi t and decreases the capacity of 
an individual assay for study sample analysis. In fact, if 
more than 8 calibration concentrations are required, a more 
fl exible model is probably needed. 
 The use of duplicates at each concentration is recommended. 
This will help to reduce the noise in the parameter estimates 
and allow for the occasional missing replicate without ad-
versely affecting the fi t. One might even run triplicates, but 
there is generally little value in replication beyond that. This 
is especially true if plate layouts are not randomized, since 
additional replication will not resolve any induced biases 
caused by a fi xed plate layout (see discussion below). 
 The choice of concentrations is driven, in part, by the practi-
cal considerations of ease of preparation and error-free repli-
cation from run to run. This suggests the use of serial dilutions 
and also suggests the use of a fi xed dilution ratio (it is prefer-
able for the calibrators to be diluted into the same matrix as 
the experimental samples to be analyzed). The result is cali-
brators spaced approximately evenly across the logarithm of 
the concentration range. Under these conditions Rocke and 
Jones 17  determined the optimal dilution ratio for calibrators. 
In their work they show that optimal dilution ratios typically 
work out to be 2:1 or 3:1. A 2:1 serial dilution with 6 calibra-
tors would yield a series like 1x, 2x, 4x, 8x, 16x, 32x. For a 
typical decreasing response curve (D < A) Rocke and Jones 17  
also showed that for optimal spacing, the midpoint of the cal-
ibrator concentrations should be somewhat greater than the 
IC 50  concentration. This places more calibrators in the region 
of smaller variance. For the 2:1 dilution ratio noted above, x 
should be adjusted so that the desired IC 50  concentration lies 
near the 8x dilution. 
 The inclusion of 1 or more concentrations outside the vali-
dated range, near the asymptotes, should be evaluated for 
potential improvement of the overall fi t of the data to the 
model. These are referred to as anchor concentrations, since 
they often bring stability to the fi t, particularly at the extremes 
of the acceptable concentration range. Thus, for example, in 

the 2:1 dilution sequence above, if either extreme (1x or 
32x) of the calibration curve is exhibiting poor accuracy or 
precision, then adding a calibrator (or increasing the dilution 
level) beyond the concentration of the poorly fi tting calibra-
tor should be considered. Note that including a blank matrix 
is helpful as a quality check, but this sample should not be 
included in the calibration fi t. 
 The assignment of calibrators and unknowns to wells on a 
plate also requires careful planning. Positional effects in 
immunoassays can be substantial, particularly in assays in 
96-well plate format. In an ideal world, calibrators and 
unknown samples would be assigned randomly to wells. 
As stated in a recent US Pharmacopeia publication describ-
ing bioassays, 19   “ The use of randomization results in sys-
tematic error becoming random error not associated with 
particular samples or a dilution pattern but distributed 
throughout the assay. ”  This issue is as relevant for LBA 
layout as it is for bioassays. Randomization would elimi-
nate any induced bias and better refl ect the true underlying 
uncertainty in the estimated concentrations. One diffi culty 
in reducing this consideration to routine practice is that 
data capture and reduction software suffi cient to imple-
ment true randomization has not kept pace with the need. 
Fortunately, there are compromise designs that, although 
not completely random, can deftly deal with systematic 
effects.      Figure 3  illustrates 2 disparate approaches to plate 
layouts. At left is a commonly used layout for an assay in 
which the calibrators are prepared in duplicate. In this 
plate confi guration the calibrators are always located in 
the same wells on the upper right of the plate. This layout 
helps to ensure proper identifi cation of calibrators, but it is 
a scheme that is susceptible to positional effects on the 
plate. The layout on the right is a much better choice. In 
this scheme the calibrators (as well as quality control [QC] 
samples and study samples) are distributed more widely 
on the plate, with one of the replicates positioned on the 
left side and the other on the right. The dilution direction 

 Figure 3.    Potential plate layouts in a typical multiwell-plate 
assay. C indicates calibrator, with dilution increasing in the 
direction indicated by the arrow.  
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is also reversed, with increasing dilution going down the 
plate on the left side and up the plate on the right. Ideally, 
in this scheme, one would assign the columns to be used 
randomly each time a plate is run. In this way any location 
biases would be averaged out. The diffi culty, of course, is 
keeping track of calibrators and other samples in the assay. 
This is an area where equipment manufacturers and soft-
ware developers could add value.   

   EVALUATING THE FIT 
 A good model, design, and fi tting algorithm do not by them-
selves guarantee the quality of the calibration curve — its 
suitability needs to be assessed. This assessment should 
happen early in method development, as a sound calibration 
curve is central to the development of sound assay charac-
teristics (ie, accuracy, precision, in-process QC, etc). 
 The key metric is agreement of nominal calibrator concen-
trations with back-fi tted concentrations read off the fi tted 
calibration curve as if they were unknown samples. 20  ,  21  
These predicted calibrator concentrations can then be ex-
pressed as a percent recovery at each concentration level, 
100(BC/NC), or alternatively as their associated percent 
relative error, %RE = 100(BC  –  NC)/NC, where BC and 
NC represent the back-calculated and nominal concentra-
tions, respectively. 
 One can think of the back-fi tted calibrators as surrogate val-
idation samples. As such, the front-line check is whether the 
calibrators exhibit good accuracy and precision. Some bias 
and imprecision is inevitable, but the goal is to keep these 
metrics within an established acceptable range, typically 
 ± 15% (20% at the lower limit of quantitation). 3  It is impor-
tant that this evaluation include data across several runs, as 
it is diffi cult to distinguish poor performance from the noise 
inherent in a single run. Note that the accuracy and preci-
sion associated with the calibrators will tend to underesti-
mate the true bias and imprecision. The calibrator coeffi cient 
of variation values (CVs) in particular will be an underesti-
mate of the true precision (in routine use the process will be 
noisier since now 2 measurements are involved, the sample 
and the calibrator). Nevertheless, the accuracy and preci-
sion of the back-calculated standards are a good fi rst check 
of whether the method will support its requirements. If the 
method cannot achieve the goals for the back-calculated 
values, there is little hope of achieving the goals in valida-
tion or routine use. 
 The back-fi tted concentrations should also be examined for 
lack of fi t patterns, as poorly fi tting models will exhibit a 
systematic pattern in the %RE with concentration. In fact, 
plots of the %RE against concentration can be a useful tool 
in evaluating competing models.      Figure 4  illustrates an 
example of %RE patterns from 2 possible models. In the 

fi gure, the plotted values are average %RE across several 
runs. The fi gure illustrates where each model is breaking 
down and clearly illustrates which model is a better choice.   
 Other assessment metrics can also be helpful. It is good 
practice to look at weighted or studentized residual plots. 11  
As with %RE, these plots can be helpful in identifying 
regions where the model may not be fi tting well. They can 
also indicate whether the weighting process is adequate. 
Ideally, the studentized residuals should not show any lack 
of fi t patterns. There should not be any apparent curvature 
or any tendency to have some concentration regions exhibit 
more noise. In particular, hourglass-shaped patterns in the 
studentized residuals can be clues to poor choices in the 
weighting function. We do not recommend the use of  R  2  to 
evaluate the fi t. As many authors 21  have pointed out, this 
metric is not very useful, since it is possible to have a  “ good ”  
 R  2  and yet unacceptable bias.      Figure 2  illustrates this point, 
as all of the models illustrated there have high values for  R  2  
but are clearly not of equal quality. 
 If poor calibration performance is seen, there are some 
approaches that can be tried to improve performance. If 
the performance problem is curvature in the %RE or resid-
ual plot, especially infl ated %RE at the ends of the plot, an 
initial response may be to reduce the range of the calibra-
tors. This may work, but at the cost of requiring more rou-
tine sample dilutions. A better approach is to expand the 
calibration range by adding anchor concentrations (see 
 “ Optimal Assay Design for Calibration ”  section above) —
 even if these points are outside the anticipated assay range. 
Often this will lead to better calibration performance 
within the anticipated assay range. Note that anchor con-
centrations are not required to meet accuracy and preci-
sion criteria pre-established for calibrator concentrations 
within the quantitation range of the assay. Although con-
centrations outside the range may have poor performance, 
that is acceptable if the performance within the quantita-
tion range improves. The anchor concentrations are used 

 Figure 4.    RE plots for 2 mathematical model fi ts of calibration 
data. RE indicates relative error; 4-PL, 4-parameter logistic.  
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to better estimate the asymptotes and thereby improve the 
fit in the anticipated assay range. If the lack of fit per-
sists, one might try more complex models, for example, the 
5-PL model, but that approach is recommended somewhat 
reluctantly. One should strive fi rst for the simplest model 
that provides good accuracy. 
 If imprecision is seen at 1 or more concentrations, then the 
weights used should be re-examined fi rst. An inadequate 
weighting function will manifest itself as noisy back-
 calculated values. If imprecision in the calibrators persists, 
then a reduction in the assay range may be necessary. Impre-
cision may also indicate the need for additional replicates in 
both calibrator and unknown study sample analyses.  

  ROUTINE USE (IN-STUDY APPLICATION) 
 The industry standard for monitoring the routine use of 
an assay relies on results from QC samples placed with 
the run. If the QC sample results are suffi ciently close to 
expectations, the run results are released. This process is, 
in part, a check on the calibration (as well as other aspects 
of the assay). But there are some parameters worth moni-
toring that speak directly to the quality of the calibration 
itself. One of the most useful parameters to track is the 
mean square error (MSE) of the fi t. The MSE is a mea-
sure of the overall noise about the fi tted line. As such, it 
can function as a fi rst-line check for outliers in the cali-
brators. Other outlier checks include the range observed 
from the replicates at each concentration or, alternatively, 
%RE for each replicate, although these are generally bet-
ter used as diagnostic measures after an MSE fl ag has 
been triggered. 
 Monitoring the MSE for long-term drift is also useful. 
Method changes will often show up as jump shifts in the 
trend lines, indicating that something has altered the charac-
teristics of the assay. One could also monitor the calibration 
parameters (A, B, C, D) for long-term trends. Trends or 
shifts in A or D often indicate changes in assay limits of 
quantitation at the extremes of the range. Trends in B or C 
often point to fundamental changes in the binding charac-
teristics. It is generally not a good idea to base the release of 
an assay on these results — they function better as long-term 
measures of calibration curve performance.  

  CONCLUSIONS 
 A wide range of mathematical models has been used in fi t-
ting of experimental calibration curve data for LBAs. Selec-
tion of a calibration curve model should take into account 
the characteristics of LBAs that differentiate them from 
chromatographic assays, in particular the fact that LBA cal-
ibration curves are inherently nonlinear. One of the major 
goals in calibration model selection is to optimize accuracy 
and precision across the maximum usable calibration range. 

The accepted reference model for LBAs is the 4-PL model, 
with weighting, but this is sometimes extended to include a 
fi fth parameter (5-PL model) to optimize fi tting when cali-
bration curve asymmetry is observed. Several assay design 
parameters, such as placement of calibrator concentrations 
across the selected range, should be considered to enable 
optimal application of the 4- or 5-PL models. The fi t of the 
selected model to the experimental data should be evaluated 
primarily by assessing the %RE of the model-predicted data 
to nominal or theoretical values. It is important to assess 
this across the entire desired calibration range to determine 
the limitations of a particular model. The primary goal is to 
optimize accuracy and precision across the maximum usable 
calibration range.  
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