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Abstract: We present a multivariate alternative to the voxel-based morphometry (VBM) approach
called source-based morphometry (SBM), to study gray matter differences between patients and
healthy controls. The SBM approach begins with the same preprocessing procedures as VBM. Next, in-
dependent component analysis is used to identify naturally grouping, maximally independent sources.
Finally, statistical analyses are used to determine the significant sources and their relationship to other
variables. The identified ‘‘source networks,’’ groups of spatially distinct regions with common covaria-
tion among subjects, provide information about localization of gray matter changes and their variation
among individuals. In this study, we first compared VBM and SBM via a simulation and then applied
both methods to real data obtained from 120 chronic schizophrenia patients and 120 healthy controls.
SBM identified five gray matter sources as significantly associated with schizophrenia. These included
sources in the bilateral temporal lobes, thalamus, basal ganglia, parietal lobe, and frontotemporal
regions. None of these showed an effect of sex. Two sources in the bilateral temporal and parietal lobes
showed age-related reductions. The most significant source of schizophrenia-related gray matter
changes identified by SBM occurred in the bilateral temporal lobe, while the most significant change
found by VBM occurred in the thalamus. The SBM approach found changes not identified by VBM in
basal ganglia, parietal, and occipital lobe. These findings show that SBM is a multivariate alternative to
VBM, with wide applicability to studying changes in brain structure. Hum Brain Mapp 30:711–724,
2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

Structural magnetic resonance imaging (sMRI) is a use-
ful tool for detecting differences in brain morphometry. It
has been used to study various illnesses including schizo-
phrenia and Alzheimer’s disease. A common approach to
study changes in brain structure is to manually or auto-
matically separate the brain into regions of interest (ROI)
and to compute volumes difference between groups. Such
studies are important and needed; however, a limitation of
this approach is they only provide information about brain
structures or regions that can be clearly defined anatomi-
cally. More recently, investigators have begun using voxel-
based morphometry (VBM) to identify group differences
throughout the brain simultaneously [Good et al., 2001].
This method is fully automated and can compare changes
in voxels throughout the whole brain via a statistical map.
However, since VBM is a univariate method, it does not
utilize any information about the relationships among vox-
els. In addition, it will only detect voxels for which a spe-
cific predicted effect is present (typically, a mean differ-
ence between two groups). In contrast, a multivariate,
data-driven approach can provide a way to pool informa-
tion across different voxels as well as identify unpredicted
patterns. The voxels that carry similar information will
group to a set of regions which we call a ‘‘network.’’ This
network exhibits intersubject covariance and differences
between groups.
Independent component analysis (ICA) is a popular sta-

tistical and computational technique for biomedical signal
analysis. The biomedical signals that we can measure are
often mixtures of signals from different underlying
‘‘sources,’’ including both noise or signals of interest. ICA
works by decomposing the mixed signals into maximally
independent components. ICA has shown considerable
promise for the analysis of fMRI [Calhoun and Adali,
2006] and EEG data [Makeig et al., 1997] and also for seg-
menting the gray matter and white matter in sMRI [Nakai
et al., 2004]. Here we propose the use of ICA to extract
maximally spatially independent sources revealing pat-
terns of variation that occur in sMRI images and to iden-
tify sMRI differences between patients and healthy con-
trols. We hypothesized that a small number of sources in
the brain would show differences between patients and
healthy controls. Under this assumption, we can apply
ICA to the preprocessed sMRI images, identify the sources,
and perform statistical analysis to identify which sources
distinguish patients from healthy controls. We refer to this
straightforward but effective approach as source-based
morphometry (SBM).
Schizophrenia is a well-studied mental illness in which

many abnormal brain regions have been identified
[Pearlson and Marsh, 1999; Shenton et al., 2001]. However,
it is not clear from previous approaches how these differ-
ent brain regions might be subdivided into naturally
grouped circuits. Therefore, we applied this novel SBM
approach to data collected from patients with schizophre-

nia and healthy controls. In principle, SBM is a proper
approach to studying group differences, because it does
not require prior definition of the ROIs. And being multi-
variate, SBM utilizes the spatial information between vox-
els to identify multiple grouped sources in a natural man-
ner. These spatially distinct sources also covary between
subjects in a particular manner. We expect SBM may well
be useful as a tool for studying schizophrenia.
In this paper, we first provide a brief overview of SBM,

including a simulation comparing SBM with the com-
monly used VBM approach. The aim of this overview is to
introduce the concept of SBM. Next, we describe in detail
the SBM approach and demonstrate the use of SBM on
gray matter segmentation images from a group of healthy
controls and patients with schizophrenia. Because of the
assumption of linear mixing, each of the maximally inde-
pendent components (sources) identified by ICA linearly
covaries in gray matter concentration from individual to
individual. We then determine the sources that differed
significantly between the two groups in order to study
structural changes occurring in patients with schizophrenia
versus healthy controls. A comparison of the identified
sources with VBM is also performed.

SOURCE-BASED MORPHOMETRY OVERVIEW

SBM requires three fundamental steps: image prepro-
cessing, ICA, and statistical analysis (see Fig. 1). The raw
images are first preprocessed identically to VBM [Ash-
burner and Friston, 1997, 2000; Good et al., 2001]. Then
ICA is used to separate the preprocessed images to derive
the spatially independent components. Finally, we subject
the components to a statistical analysis to determine the
significant sources, remove noise, and analyze the effect of
other factors.
As shown in Figure 1, the main difference between SBM

and VBM is the introduction of ICA, which is used to
identify natural groupings in the data. This difference can
be clarified by a simple simulation (see Fig. 2). First, we
generated a circular region with a radius of 25 voxels and
a standard deviation of six voxels. Two sources were
simulated, as shown in Figure 2a,b. Every source consisted
of two separate circular regions; the upper region of
Source 1 and the upper region of Source 2 are partially
overlapping. Using these sources, we generate 100 images
that represent the gray matter images of healthy controls
(see Fig. 2c) and 100 images that represent the gray matter
images of schizophrenia patients (see Fig. 2d). For healthy
controls, the intensities of Source 1 were uniformly distrib-
uted between 70% and 90% of the original source intensity,
and the intensities of Source 2 were uniformly distributed
between 10% and 60% of the original source intensity. For
patients, the intensities of Source 1 were uniformly distrib-
uted between 40% and 60% of the original source intensity
and the intensities of Source 2 were uniformly distributed
between 10% and 60% of the original source intensity.
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Therefore, the regions associated with Source 1 had higher
mean intensity in the images of healthy controls than in
the images of patients, representing the gray matter reduc-
tion in schizophrenia. Likewise, the mean of intensity of
Source 2 in the patient images and healthy control images
are the same, simulating gray matter regions that are not
affected by illness. Gaussian noise was then added to the
200 images. SBM and VBM were carried out on these 200
images separately in order to evaluate their performance.
Figure 2e,f show the SBM result thresholded at Zj j > 3:0
and Figure 2g shows the VBM result at the same threshold
(we used a Z threshold to display the images, to provide a
fair comparison of the two). We can also compare the t
values from the voxels in VBM and the mixing matrix in
SBM. The t values for the SBM results are 13.70 (for Source
1) and 21.46 (for Source 2). The maximal t value of VBM
result is 9.99. It is clear that SBM can effectively separate
the two sources and the Gaussian noise, while VBM can
identify only voxels that match the prediction (in this case,
a difference between groups). In addition, VBM appears to
have less sensitivity when there are overlapping regions,
some of which show a group difference and some of
which do not. This is where the multivariate aspect of
SBM also provides an advantage, since SBM can assign a
single voxel to multiple sources. Since we have the ground
truth available in the simulation, we also computed ROC
curves for both SBM and VBM by varying the threshold
Zj j (see Fig. 2h), hence allowing us to clearly identify the
performance of both approaches. To compute the perform-
ance, the percentage of voxels within both the detected
regions and ground truth regions was used as a measure
of the sensitivity, and the percentage of voxels outside
both the detected regions and ground truth regions was
used as a measure of specificity. From this ROC curve, it
is clear that SBM was showing better sensitivity and speci-
ficity (the area under the ROC curve is larger) than VBM
for the example shown.

We next describe an application of SBM to real sMRI
data collected from healthy controls and patients with
schizophrenia.

SUBJECTS AND METHODS

Participants

One hundred and twenty participants with schizophre-
nia (51 females; mean age 5 42.1; SD 5 12.9; range, 20–81)
and 120 matched healthy controls (65 females; mean age 5
42.8; SD 5 16.57; range, 18–78) were scanned at Johns
Hopkins University. Exclusion criteria for all participants
included a history of overt brain disease, mental retarda-
tion, head injury with loss of consciousness for greater
than 30 min, or a diagnosis of substance abuse within the
last year or lifetime dependence. Healthy participants were
recruited using random-digit dialing as part of Phase 1 of
the Johns Hopkins aging, brain, and cognition study. All
healthy controls were screened to ensure they were free
from DSM-III-R/DSM-IV Axis I or Axis II psychopathol-
ogy (SCID) [First et al., 1997; Spitzer et al., 1989]. Patients
met criteria for schizophrenia in the DSM-IV on the basis
of a SCID diagnosis and review of the case file. All
patients with schizophrenia were stable and taking anti-
psychotic medications (the exact medication information
was not available for these data).

Imaging Parameters

Whole brain sMRIs were obtained on a single 1.5-T scan-
ner (Signa; GE Medical Systems, Milwaukee, WI). The
whole brain was evaluated in the coronal plane using a
‘‘spoiled’’ SPGR 3D imaging sequence, with the following
imaging parameters: 35 ms TR, 5 ms TE, 458 flip angle, 1
excitation, 1.5-mm slice thickness, 24-cm field of view, and
a matrix size of 256 3 256.

Figure 1.

The approach difference between source-based morphometry and voxel-based morphometry. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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Image Preprocessing

The images were preprocessed using the preprocessing
steps used for VBM [Ashburner and Friston, 1997, 2000;
Good et al., 2001] and employed the Matlab program
SPM5 (Statistical Parametric Mapping, developed by the
Welcome Institute, London, UK). Images were first
roughly normalized using a 12-parameter affine model to
the 152 average T1 Montreal Neurological Institute (MNI)
template. Normalized images were then interpolated to
voxel dimensions of 1.5 3 1.5 3 1.5 mm3 and segmented

into gray, white, and cerebrospinal fluid compartments

using a modified mixture model cluster analysis technique,

with a correction for image intensity nonuniformity

[Ashburner and Friston, 1997]. The gray matter images

were then smoothed with 12-mm full width at half-maxi-

mum Gaussian kernel. Each voxel in a smoothed image

contains the averaged partial volume of gray matter from

around and within the selected voxel, which contains gray

matter concentration, a value ranging from 0 (no gray mat-

ter) to 1 (all gray matter).

Figure 2.

Simulation for SBM vs. VBM. (a) Source 1. (b) Source 2. (c) Image represents the gray matter of

the healthy control. (d) Image represents the gray matter of the schizophrenia patient (e,f). SBM

result. (g) VBM result. (h) ROC curve.
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Component Estimation

Before doing independent component analysis, we needed
to determine how many components should be extracted
from the gray matter images. We used an information-theo-
retic approach to solve this problem. First, we uniformly sub-
sampled the gray matter images until the estimated entropy
rate equaled the entropy rate of an independent and identi-
cally distributed (i.i.d.) Gaussian random process of the same
variance and data length. This subsampling is based on the
entropy rate matching principle, which makes the entropy of
the images reach an upper bound and generated an i.i.d.
image set for the component estimation [Li et al., 2007].
Next, we estimated the number of components using the

well-known Akaike’s information criterion (AIC) ([Akaike,
1974], which is a standard information-theoretic method
for estimating the number of components from the aggre-
gate data set [Calhoun et al., 2001]. The equation of this
method is given as follows,

AICðkÞ ¼ �2 3 LðkÞ þ 2 3 df ðkÞ ð1Þ

The estimate for the number of sources is determined
from the minima of the above function AIC(k) with respect
to k, where k is the number of components to be estimated,
L(k) is the maximum log-likelihood of the gray images
based on the parameter set, df(k) is a penalty for model
complexity given by the total number of free parameters.
The maximum log-likelihood [Karhunen et al., 1997; Wax
and Kailath, 1985] is given by

LðkÞ ¼ N

2
ðp� kÞ log

ðkkþ1 . . . kpÞ
1

p�k

1
p�k ðkkþ1 . . . kpÞ

 !
ð2Þ

where N is the number of voxels within one image after
subsampling, p is the number of gray matter images
(sample size), ki s are the eigenvalues of the covariance
matrix of the samples. The number of free parameters is
given by

df ðkÞ ¼ 1þ pk� 1

2
kðk� 1Þ ð3Þ

Thus, the component number k can be estimated from
the 240 gray matter images. This approach allowed us to
estimate the component number using a principled
approach rather than arbitrarily selecting the number of
components.

Independent Component Analysis

All gray matter images were processed using spatial ICA
[Calhoun et al., 2001] as implemented in the GIFT toolbox
(http://icatb.sourceforge.net). ICA was performed using a
neural network algorithm (infomax) that attempts to mini-
mize the mutual information of the network outputs [Bell
and Sejnowski, 1995; Lee et al., 1999]. Every gray matter
image is converted into a one-dimensional vector. The 120
gray matter images of schizophrenia patients and 120 gray
matter images of healthy controls were arrayed into one
240-row subject-by-gray matter data matrix. This matrix
was then decomposed into mixing matrix and source matrix
(see Fig. 3). The mixing matrix expresses the relationship
between 240 subjects and k components. The rows of the
matrix are scores which indicate to what degree that the k
components contribute to a given subject. The columns of
the matrix indicate how one component contributes to the
240 subjects. In contrast, the source matrix expresses the
relationship between the k components and the voxels
within the brain. The rows of the matrix indicate how one
component contributes to different brain voxels, and the col-
umns of the matrix are scores that indicate how one voxel
contributes to each of the components.

Statistical Analysis

We used the mixing matrix for statistical analysis. Since
every column of the mixing matrix contains the loading
parameters expressing the contribution of every compo-
nent to the 240 subjects, a two sample t-test can be used to

Figure 3.

ICA model in which the subject-by-gray matter matrix was decomposed into mixing matrix

and source matrix. [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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every column of the mixing matrix to test which compo-
nents show a difference between healthy control and schiz-
ophrenia. A corrected threshold of p < 0.05 that controls
for the false discovery rate was used as control for the
number of components tested [Genovese et al., 2002].
The effects of age and sex on the significant sources

were also determined. We regressed every columns of the
mixing matrix separately on age and sex using a threshold
of p < 0.05 to determine the sources that were significantly
affected by age and sex. Then we did linear fitting to
express the group differences versus age and sex. In order
to verify that the group differences in the significant sour-
ces were still present after removing the effect of age and
sex, we computed a two sample t-test on the residual of
the regression and tested the difference between controls
and patients.

Visualization

We used the source matrix for visualization. We
reshaped every row of the source matrix back into a 3D
image (source map). These source maps were scaled to
unit standard deviation (SBM Z map) and thresholded at a
value of Zj j > 3:0. The maps of the significant sources
were then superimposed on the MNI-normalized template
brain. The coordinates of the most significant sources were
transformed from the MNI coordinate system to the coor-
dinates of the standard space of Talairach and Tournoux
[1988] using a Matlab conversion program written by Mat-
thew Brett (http://imaging.mrc-cbu.cam.ac.uk/downloads/
MNI2tal, MRC Cognition and Brain Sciences Unit, Cam-
bridge, England). Once converted, the Talairach coordi-
nates were entered into the Talairach Daemon [Lancaster
et al., 2000] and summarized.

Comparison With VBM

We also analyzed the same sMRIs by the VBM
approach. SPM5 was employed to do this analysis. The
preprocessed images were directly entered into a two sam-
ple t-test to identify voxels that show a significant differ-
ence in gray matter concentration between healthy controls
and patients with schizophrenia (t map). In order to per-
form a valid comparison with SBM, the VBM t map was
converted to a Z map. Then the Z map was thresholded at
a value of Zj j > 3:0 and visualized on the MNI template.
For SBM, the two sample t-test on the mixing matrix was
used to determine the significant sources. The SBM Z
maps corresponding to the significant sources were then
compared directly with the VBM Z map. Because the SBM
and VBM maps are both converted to Z units, we can
directly compare them.

RESULTS

Thirty-one components were estimated at the component
estimation step. The mixing matrix and source matrix

were estimated using ICA. We then analyzed the mixing
matrix using a two-sample t-test for patients versus con-
trols, with covariates included for sex and age. Nine sour-
ces whose loading scores differed significantly between
controls and patients were identified. Upon visual inspec-
tion of the nine sources showing significant group differ-
ences, four sources were suggestive of obvious artifacts
such as showing sharp edges, especially near the boundary
of the brain or appearing primarily in regions that do not
contain gray matter (e.g. white matter or ventricles). The
remaining five sources contained areas where gray matter
was greater in controls than in patients. The Talairach
coordinates for these five sources are listed in Table I.
There were some sources showing areas where gray matter
was greater in patients versus control values, but the cor-
responding p values were not significant.

Anatomy of the Significant Sources

All of the five sources showed regions where gray mat-
ter concentrations were relatively greater in healthy con-
trols than in schizophrenia patients. They are listed by the
anatomical regions they represent in the order of increas-
ing p values (decreasing significance).

Source 1: Bilateral Temporal

The largest gray matter difference between diagnostic
groups was found in the region of the superior temporal
gyrus (STG), with healthy controls having more gray mat-
ter than schizophrenia patients (see Fig. 4, red blob). These
gray matter differences were notably constrained to the
STG and its medial counterparts, the transverse temporal
gyrus and insula, suggesting a clear distinction between
these structures and the rest of the temporal lobe.

Source 2: Thalamus

The second source was localized bilaterally to the thala-
mus and hypothalamus, where less gray matter was also
seen in cuneus and lingual gyrus in schizophrenia patients
(see Fig. 4, green blob).

Source 3: Basal Ganglia

The third source was localized to the basal ganglia area
and included the putamen, lateral and medial globus pal-
lidus, and claustrum, with less gray matter in schizophre-
nia patients (see Fig. 4, blue blob).

Source 4: Parietal

This source consisted of bilateral parietal gray matter
concentration that was greater in healthy controls than in
schizophrenia patients. The gray matter differences were
most marked in precuneus, superior parietal lobule, infe-
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TABLE I. Talairach labels for regions of the five significant sources

Brodmann area L/R volume (cc) L/R: max Z(x, y, z)

Source 1 area
Superior temporal gyrus 22, 38, 41, 42, 13, 21 17.3/18.6 12.1(245, 13, 28)/12.3(45, 3, 24)
Insula 13, 41, 40 8.4/11.2 9.0(242, 8, 25)/13.7(45, 8, 25)
Inferior frontal gyrus 47, 45, 13, 9, 44 8.6/13.6 11.9(242, 15, 212)/14.0(43, 13, 29)
Precentral gyrus 6, 44, 13, 43 2.8/2.4 10.0(246, 29, 5)/4.9(53, 11, 6)
Anterior cingulate 32, 25, 24, 10 6.5/3.0 7.7(21, 45, 22)/8.0(0, 45, 3)
Medial frontal gyrus 10, 11, 9, 32, 6, 8, 25 13.2/3.7 7.0(0, 51, 7)/7.2(0, 51, 2)
Transverse temporal gyrus 41, 42 1.9/2.2 6.7(248, 217, 12)/7.2(43, 221, 12)
Thalamus 4.5/1.9 6.2(0, 217, 6)/4.5(4, 220, 9)
Postcentral gyrus 40, 43 1.9/1.3 5.9(258, 221, 16)/6.1(59, 223, 14)
Uncus 34, 38, 28, amygdala 1.3/2.6 5.4(227, 6, 220)/6.1(21, 5, 222)
Cingulate gyrus 32, 24 2.4/na 6.1(0, 35, 27)/na
Parahippocampal gyrus 34, 27, 30, 35, 28, amygdala 2.8/3.2 4.6(215, 1, 216)/5.2(18, 2, 218)
Basal ganglia 1.3/2.8 3.8(24, 13, 21)/5.1(37, 213, 5)
Superior frontal gyrus 9 0.4/na 4.8(21, 52, 24)/na
Rectal gyrus 11 na/0.2 na/4.9(1, 34, 219)
Subcallosal gyrus 25, 34 0.9/0.4 4.3(21, 8, 213)/3.7(4, 5, 210)
Middle temporal gyrus 21, 38 0.6/0.2 4.1(252, 22, 211)/3.1(52, 2, 211)
Middle frontal gyrus 9, 46, 6, 8 na/0.9 na/4.0(48, 13, 30)
Inferior parietal lobule 40 0.2/0.9 3.9(256, 228, 22)/4.0(52, 228, 21)
Orbital gyrus 11 0.2/na 3.7(0, 40, 221)/na

Source 2 area
Thalamus 15.1/13.0 17.4(210, 214, 10)/15.5(10, 216, 10)
Cuneus 17, 23, 18, 30, 7, 19 9.5/8.0 9.3(27, 283, 6)/8.7(3, 283, 8)
Lingual gyrus 18, 17, 19 6.9/7.8 9.3(21, 283, 4)/7.9(4, 281, 3)
Middle frontal gyrus 9, 46, 11 0.9/2.4 4.5(236, 22, 31)/8.2(34, 17, 25)
Posterior cingulate 30, 31, 23 2.6/1.3 7.2(27, 269, 12)/5.8(4, 268, 10)
Inferior parietal lobule 40 1.5/0.6 6.8(236, 248, 40)/4.6(37, 255, 40)
Precuneus 31, 7, 23, 19 6.5/2.8 6.5(0, 269, 17)/6.8(4, 270, 21)
Middle and inferior occipital gyrus 18, 19 2.4/1.3 6.1(219, 285, 25)/4.1(27, 278, 19)
Parahippocampal gyrus 30, 27, 36, 35, amygdala 0.6/1.9 4.8(213, 231, 24)/4.2(18, 233, 0)
Supramarginal gyrus 40 0.4/na 4.6(237, 242, 38)/na
Uncus 20, 28 na/0.9 na/4.4(27, 216, 229)
Cingulate gyrus 31, 24 0.4/na 4.3(24, 260, 28)/na
Fusiform gyrus 19, 20 1.1/na 4.2(221, 282, 210)/na
Superior temporal gyrus 39, 22 0.9/na 4.1(248, 253, 12)/na
Medial frontal gyrus 6 1.3/0.2 4.0(29, 218, 53)/3.1(7, 219, 59)
Middle and inferior temporal gyrus 11, 39 0.6/na 3.7(239, 275, 11)/na
Postcentral gyrus 3, 1 na/1.1 na/4.0(30, 234, 46)
Basal ganglia 0.8/0.6 4.2(212, 213, 21)/3.7(30, 5, 28)
Insula 13 na/0.4 na/3.3(36, 23, 18)
Inferior frontal gyrus 11 na/0.2 na/3.2(13, 34, 222)
Precentral gyrus 6, 4 na/0.4 na/3.1(45, 22, 43)

Source 3 area
Lentiform nucleus 15.6/16.4 25.4(227, 2, 3)/25.8(27, 21, 4)
Claustrum 7.6/5.0 18.8(230, 6, 5)/15.1(33, 23, 2)
Insula 13 1.5/0.2 6.5(233, 11, 8)/3.5(33, 21, 15)
Middle frontal gyrus 6, 8 1.7/2.8 4.9(230, 17, 41)/6.2(28, 8, 42)
Subcallosal gyrus 34 0.2/0.2 5.9(227, 2, 29)/3.0(27, 4, 29)
Cingulate gyrus 32 na/0.4 na/5.5(22, 8, 42)
Thalamus 1.3/5.2 3.7(215, 223, 7)/5.2(18, 25, 13)
Caudate 1.1/0.9 4.9(215, 11, 8)/5.2(15, 8, 9)
Parahippocampal gyrus Amygdala 0.2/0.4 4.1(225, 23, 210)/3.7(24, 26, 210)
Precuneus 7 na/0.4 na/3.6(25, 252, 40)
Precentral gyrus 9 0.2/na 3.5(230, 21, 36)/na
Middle and superior temporal gyrus 39, 38 0.2/0.4 3.3(240, 20, 231)/3.4(34, 258, 28)
Cuneus 18, 17 0.6/na 3.4(218, 278, 20)/na
Medial frontal gyrus 9 na/0.2 na/3.2(25, 39, 17)
Middle occipital gyrus 18 na/0.2 na/3.1(18, 287, 13)
Inferior frontal gyrus 47 0.2/na 3.0(240, 32, 24)/na
Fusiform gyrus 20 na/0.2 na/3.0(43, 211, 226)

Source 4 area
Precuneus 7, 19, 31, 39 22.0/19.7 11.5(21, 273, 45)/10.8(1, 270, 49)
Superior parietal lobule 7 11.9/12.7 10.6(27, 267, 53)/10.3(6, 266, 54)
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rior parietal lobule (IPL), and postcentral gyrus (see Fig. 4,
yellow blob).

Source 5: Frontal/Temporal

This source consisted of the bilateral middle frontal
gyrus (along the border between gray matter and white
matter), inferior frontal gyrus and medial frontal gyrus,
plus portions of superior and middle temporal gyrus, ante-
rior cingulate, and the temporoparietal junction (see Fig. 4,
purple blob). The healthy controls had more gray matter
than schizophrenia patients in this source.

Age and Sex Effect

There was no significant relationship of sex on any of the
five sources. The effect of age on Sources 1 and 4 was sig-
nificant. The correlation plots between age and ICA weights
for Sources 1 and 4 are presented in Figure 5. The ICA
weight (and hence gray matter concentration) decreased as
age increased. The absolute value of the negative slope of
the controls was slightly larger than that of the schizophre-
nia patients, although there was not a significant group dif-
ference in the slopes. The intercept of the controls was also
slightly less than schizophrenia patients, again not signifi-

TABLE I. (continued)

Brodmann area L/R volume (cc) L/R: max Z(x, y, z)

Inferior parietal lobule 7, 40, 39 11.9/9.1 8.0(243, 256, 50)/8.6(39, 265, 47)
Postcentral gyrus 7, 5, 3, 40, 2 7.6/5.0 8.4(221, 252, 65)/7.7(15, 252, 65)
Cuneus 19, 7, 30, 18 5.0/6.0 7.9(21, 281, 37)/6.4(28, 280, 30)
Angular gyrus 39 2.2/1.5 6.0(237, 276, 33)/5.1(43, 274, 31)
Superior occipital gyrus 19, 39 2.6/1.9 5.8(234, 280, 28)/5.3(34, 280, 30)
Paracentral lobule 5 0.2/0.2 5.3(0, 246, 63)/3.2(7, 245, 59)
Middle and inferior temporal gyrus 19, 39 1.5/0.8 4.9(237, 278, 23)/3.8(43, 274, 26)
Lingual gyrus 18 0.2/na 4.0(0, 268, 2)/na
Posterior cingulate 30, 29, 23 0.9/na 3.9(0, 262, 11)/na
Middle frontal gyrus 9, 6 0.4/na 3.9(225, 33, 23)/na
Middle occipital gyrus 19 0.2/0.2 3.2(237, 287, 18)/3.4(30, 285, 21)
Insula 13 na/0.4 na/3.3(45, 241, 21)
Parahippocampal gyrus 36 0.2/na 3.0(230, 220, 229)/na

Source 5 Area
Middle frontal gyrus 9, 10, 11, 46, 8, 47, 6 10.4/7.3 19.2(234, 12, 28)/8.3(37, 15, 28)
Inferior frontal gyrus 9, 47, 46, 11 3.9/6.3 12.6(234, 6, 29)/12.3(33, 10, 27)
Precentral gyrus 9, 6 2.4/3.0 11.9(234, 12, 34)/10.4(34, 4, 29)
Superior temporal gyrus 13, 39, 38, 22, 41, 42, 21 7.6/10.6 6.2(250, 240, 20)/9.8(43, 247, 22)
Insula 13 2.6/3.9 8.2(245, 240, 20)/8.7(34, 17, 18)
Middle temporal gyrus 39, 21, 19, 22 4.1/1.7 7.5(237, 269, 16)/5.2(49, 212, 212)
Inferior parietal lobule 40, 2 3.2/0.9 6.8(245, 241, 26)/7.3(49, 247, 22)
Precuneus 31, 39 0.2/0.9 3.5(239, 267, 31)/6.9(31, 273, 16)
Middle occipital gyrus 19, 18 1.9/2.4 5.8(237, 275, 8)/6.1(34, 277, 12)
Anterior cingulate 10, 32, 24 9.5/7.1 6.0(218, 47, 22)/5.3(3, 32, 4)
Medial frontal gyrus 6, 10, 25, 8, 9, 11 4.5/8.6 5.6(215, 39, 210)/5.9(12, 26, 60)
Superior frontal gyrus 10, 11, 6, 9 2.2/4.8 5.6(222, 48, 2)/4.8(15, 23, 64)
Supramarginal gyrus 40 1.3/0.9 5.5(242, 245, 29)/5.4(43, 247, 30)
Cingulate gyrus 31, 32, 24 2.6/2.2 5.2(213, 232, 38)/4.7(13, 227, 36)
Fusiform gyrus 20 0.4/0.9 3.6(246, 27, 224)/5.0(42, 230, 214)
Posterior cingulate 30, 31 0.6/1.3 4.9(231, 268, 17)/3.6(28, 268, 17)
Orbital gyrus 47 na/0.6 na/4.7(16, 27, 223)
Angular gyrus 39 0.4/na 4.5(239, 259, 35)/na
Uncus 20, 28 0.6/na 4.5(231, 216, 233)/na
Rectal gyrus 11 na/0.6 na/4.3(10, 18, 222)
Lingual gyrus 18 0.9/0.6 4.1(215, 283, 22)/4.1(12, 277, 21)
Inferior temporal gyrus 20, 37 0.6/na 4.1(246, 28, 219)/na
Postcentral gyrus 2, 5 0.9/0.2 3.8(239, 224, 39)/3.8(33, 229, 40)
Basal ganglia 0.6/0.6 3.2(212, 25, 24)/3.7(28, 18, 16)
Cuneus 18 na/0.4 na/3.6(10, 277, 27)
Inferior occipital gyrus 19 0.2/0.4 3.2(237, 276, 0)/3.2(40, 283, 22)
Parahippocampal gyrus 30 0.2/na 3.0(219, 248, 9)/na

Voxels above the threshold of Zj j > 3:0 were converted from Montreal Neurological Institute (MNI) coordinates to Talairach
coordinates and entered into a database to provide anatomic and functional labels for the left (L) and right (R) hemi-
spheres. The volume of voxels in each area is provided in cubic centimeters (cc). Within each area, the maximum Z value
and its coordinate are provided.
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Figure 4.

Sources discovered by SBM. The voxels above the threshold of Zj j > 3:0 are shown. Red,
bilateral temporal source; green, thalamus source; blue, basal ganglia source; yellow, pa-
rietal source; purple, frontal/temporal source.
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cantly. After removing the effect of age, the group differen-
ces in the sources remained unchanged, with the exception
that the significance level for Source 4 increased.

VBM vs. SBM

In Figure 6 we present the voxels determined by VBM
superimposed on a canonical gray matter image. Table II
provides the Talairach table summaries of the VBM results,
which reveal that the gray matter reduction in schizophre-
nia is significant in thalamus, basal ganglia, STG, and fron-
tal gyrus. The identity of the regions found by SBM and
VBM differed in size and intensity. Nearly all the regions
found by VBM approach were also identified by SBM. The
SBM approach showed more regions of difference in basal
ganglia, parietal lobe, and occipital lobe, which did not
appear in VBM. The most significant source found by SBM
(based upon the t-test of the mixing parameters) was the
STG, followed by thalamus, occipital lobule, basal ganglia,
and frontal and parietal lobule. For VBM, the order (based
upon the voxelwise t-values) was thalamus, followed by ba-
sal ganglia and frontal gyrus and temporal gyrus. Neither
method found regions showing increases in gray matter
concentration in schizophrenia versus healthy controls.

DISCUSSION

SBM Analysis

In this paper, we propose the use of ICA as an approach
to decompose gray matter segmentation images into natu-
ral groups showing similar covariation between subjects.
We define this approach as SBM. This approach can be
considered a multivariate version of the commonly used

VBM. We present an application of this approach to detect
structural gray matter concentration differences between
120 healthy controls and 120 patients with schizophrenia.
SBM successfully identified five sources that significantly
differentiated the groups. All of the five sources corre-
sponded to regions that showed higher gray matter con-
centration in healthy controls than patients with schizo-
phrenia. Since the initialization of ICA is picked randomly
by the infomax algorithm included in the GIFT tool box,
we ran the SBM procedure several times to make sure that
the results were consistent. A study of the consistency of
several different ICA algorithms in the GIFT tool box can
be found in Correa’s paper [Correa et al., 2007]. We now
provide a brief discussion of the results from the schizo-
phrenia analysis, followed by a discussion of SBM and the
differences between SBM and VBM.
Source 1, the most significant source region of gray mat-

ter disturbance, contains a large continuous region of tem-
poral lobe that included the bilateral STG, transverse tem-
poral gyrus, and insula, but not most of middle or inferior
temporal regions. This is consistent with previous reports
of selective reductions in the STG [Hirayasu et al., 2000;
Mitelman et al., 2005; Pearlson, 1997].
Source 2 consisted of thalamic areas and hypothalamus,

consistent with some previous work showing thalamic vol-
ume reductions in schizophrenia [Csernansky et al., 2004;
Gaser et al., 2004]. The cuneus and lingual gyrus reduc-
tions agree with the occipital lobe volume reductions
reported by others [Andreasen et al., 1994].
Source 3 showed gray matter differences in basal gan-

glia. This is consistent with reports of basal ganglia
decrease [Corson et al., 1999] with the newer, atypical anti-
psychotic medications, although basal ganglia increases in

Figure 5.

The correlation plots between age and ICA weights for Sources 1 and 4. Left, the correlation

for Source 1; right, the correlation for Source 4. Red dots, correlation for the controls; blue

dots, correlation for the patients; red line, trend for red dots; blue line, trend for blue dots.
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volume are well described as a side effect of treatment
with first-generation antipsychotic medications [Hokama
et al., 1995]. Reductions in claustrum were reported by
Salgado-Pineda et al. [Salgado-Pineda et al., 2003].

Source 4 revealed that healthy controls had greater gray
matter concentrations in precuneus, IPL, and superior pari-
etal and postcentral gyrus. Although there have been a
number of reports showing differences in the volumes of

Figure 6.

Differences in gray matter concentration between healthy controls and schizophrenia delineated

by VBM. The voxels above the threshold of Zj j > 3:0 are shown.
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IPL, superior parietal region, and postcentral gyrus [Fred-
erikse et al., 2000; Shenton et al., 2001], our findings sug-
gested that, in addition, the precuneus, which has not
been well studied, might also be a key area in the regional
brain abnormalities which underlie the disease.
Source 5 showing gray matter deficits in schizophrenia in

the middle frontal and inferior frontal gyri was consistent
with prior reports [Buchanan et al., 1998; Goldstein et al.,
1999; Gur et al., 2000] and replicated Mitelman’s reports of
differing intercorrelations of prefrontal and temporal vol-
umes between patients and controls [Mitelman et al., 2005].
Every source reveals a set of regions that are signifi-

cantly different between the two diagnoses. Although most
regions identified in different sources implicate regional
difference of particular brain areas, examination of the
Talairach tables reveals overlap in several sources. Indeed,
the overlapping regions appear to underlie aspects of
higher cortical function such as language and executive
function that appear to be most disturbed in schizophrenia
patients. The thalamus is a major relay station in the brain
and deals with inputs from many other brain regions. The
executive function makes it not surprised to identify some
parts of thalamus in Sources 1, 2, and 3. As a part of the

multifunctional basal ganglia, the caudate nucleus was
identified in Sources 1, 2, and 5. The insula was seen in all
sources, implying its role of various highly conserved
functions. In addition, the posterior cingulate cortex (BA
30, 31, 23, and 29) found in Sources 2, 4, and 5, mesial
temporal regions including the uncus found in Sources 1,
2, and 5, and the parahippocampal gyrus identified in
Sources 1, 2, 3, 4, and 5 are frequently found to be struc-
turally altered in individuals with schizophrenia.
More interestingly, some of these overlapping regions are

likely normally highly reciprocally interconnected (this
could be tested in follow-up studies using more direct
measures of connectivity, e.g. diffusion tensor imaging
data). For example, the dorsolateral prefrontal cortex (BA 9
and 46) that appears in Sources 1, 2, and 5, the STG (BA 22,
39, 41, and 42) identified in Sources 1, 2, 3, and 5, and IPL
(BA 39 and 40) seen in Sources 1, 2, 4, and 5 are connected
to the anterior cingulate cortex (BA 24, 31, 32) implicated in
Sources 1, 2, 3, and 5. These comprise the most important
core nodes in the heteromodal association cortical circuit
[Pearlson et al., 1996; Ross and Pearlson, 1996].
We found no sex effect on any source, and significant

age effects were only for Sources 1 and 4. The negative

TABLE II. Talairach labels for the result of VBM

VBM area Brodmann area L/R volume (cc) L/R: max Z(x, y, z)

Thalamus 6.5/7.8 5.0(26, 29, 2)/6.5(7, 29, 22)
Basal ganglia 7.7/4.4 5.4(236, 6, 23)/4.1(34, 10, 22)
Inferior frontal gyrus 47, 13, 11, 45, 9, 10, 44, 46 13.8/14.0 5.2(234, 16, 25)/4.4(40, 17, 28)
Insula 13, 40 6.3/3.2 4.9(234, 12, 21)/4.7(34, 14, 26)
Superior temporal gyrus 38, 22, 13, 41, 39, 21 12.5/11.2 4.8(236, 2, 213)/3.9(33, 1, 218)
Medial frontal gyrus 11, 10, 6, 9, 8 8.9/9.3 4.0(212, 28, 53)/4.7(7, 46, 214)
Parahippocampal gyrus 34, 27, amygdala, 36, 35, 19, 30, 28 1.7/2.4 4.7(230, 4, 214)/4.1(21, 231, 26)
Postcentral gyrus 43, 3, 40, 7 2.8/1.3 4.7(258, 29, 18)/3.6(56, 214, 17)
Inferior temporal gyrus 20, 21, 37 5.6/1.7 4.3(261, 220, 215)/3.5(62, 218, 217)
Uncus Amygdala, 28, 20, 36, 38 3.7/2.6 4.3(228, 0, 221)/3.7(30, 28, 236)
Middle occipital gyrus 19, 18 0.9/1.5 3.7(228, 278, 20)/4.3(31, 279, 21)
Middle frontal gyrus 11, 46, 47, 10, 9, 8 4.8/10.4 4.2(225, 25, 218)/3.9(43, 39, 210)
Cingulate gyrus 24, 31, 32 1.1/1.7 4.0(212, 242, 39)/4.2(12, 24, 43)
Superior frontal gyrus 9, 10, 8, 11 1.5/8.9 3.3(230, 55, 24)/4.1(16, 38, 31)
Anterior cingulate 10, 32, 25, 24 2.4/2.4 4.0(29, 48, 22)/3.7(10, 35, 20)
Middle temporal gyrus 21, 39, 19 4.3/2.6 3.9(264, 222, 211)/3.5(40, 268, 30)
Precentral gyrus 4, 44, 6, 43, 9 2.4/1.5 3.8(259, 24, 17)/3.4(49, 11, 6)
Precuneus 31, 7, 19 1.9/1.1 3.8(222, 273, 19)/3.5(27, 276, 18)
Inferior parietal lobule 40, 7 0.9/0.6 3.7(233, 243, 44)/3.5(53, 244, 26)
Orbital gyrus 47, 11 0.2/1.9 3.1(23, 41, 220)/3.7(19, 32, 222)
Cuneus 17, 18 na/0.4 na/3.6(10, 287, 10)
Rectal gyrus 11 na/0.4 na/3.5(9, 38, 220)
Transverse temporal gyrus 41, 42 0.4/1.1 3.5(242, 230, 13)/3.2(62, 211, 14)
Superior occipital gyrus 19 0.2/1.5 3.1(230, 283, 22)/3.4(33, 279, 26)
Angular gyrus 39 0.2/0.2 3.0(246, 271, 33)/3.3(39, 274, 31)
Inferior occipital gyrus 19, 18 0.2/0.2 3.2(240, 280, 24)/3.0(33, 282, 23)
Subcallosal gyrus 34 na/0.2 na/3.2(25, 5, 212)
Supramarginal gyrus 40 0.4/0.2 3.1(255, 245, 23)/3.0(49, 247, 29)
Superior parietal lobule 7 0.4/na 3.1(242, 264, 54)/na
Fusiform gyrus 20, 37 0.4/na 3.1(256, 217, 223)/na

Voxels above the threshold of Zj j > 3:0 were converted from Montreal Neurological Institute (MNI) coordinates to Talairach
coordinates and entered into a database to provide anatomic and functional labels for the left (L) and right (R) hemi-
spheres. The volume of voxels in each area is provided in cubic centimeters (cc). Within each area, the maximum Z value
and its coordinate are provided.
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slopes of the correlations between ICA weights and age of
both the healthy control and schizophrenia for these two
sources reveals that their volumes decreased with the age
in both diagnostic groups. The absolute value of the slope
for healthy controls was higher than patients while the
intercept was lower for controls than patients for both
sources, suggesting that the source volumes in patients
decrease at an early age and continue declining with
increasing age. By age 75, the source volumes reached a
similar size for both schizophrenia and healthy controls.
For Sources 1 and 4, we noted the reduction of STG
[Keshavan et al., 1998] and parietal lobe respectively with
age for schizophrenia.
In summary, SBM identified five sources (groups of

regions that covary in a particular manner from individual
to individual). An advantage of the SBM approach is it
incorporates the additional information about the grouping
of the regions within several distinct, anatomically consistent
sources. This contrasts with VBM, which identifies a large
set of regions but does not recognize relationships among
them. We now provide a comparison of SBM and VBM.

SBM vs VBM: Strengths and Limitations

Because SBM is a multivariate approach, it can take into
account the interrelationship between voxels in order to
identify naturally grouped regions. The sources revealed
by SBM provide information about the localization of gray
matter changes. The mixing matrix columns containing the
linear combinations of the sources provide information
about the pathological and normal variation among indi-
viduals. Through the mixing matrix, the contribution of
individual brain variations to the sources can be clearly
represented. An additional benefit of our approach is that
SBM can remove sources that exhibit obvious artifactual
patterns, and thus we are in effect performing a spatial fil-
tering of the results (see Fig. 2 and simulation). In sum-
mary, we have shown that SBM can result in less-noisy
sources of interest, enable examination of their association
with subject variables (such as diagnosis or age), and pro-
vide information about the interrelationship between the
sources because of its multivariate nature. While VBM is a
powerful and easy approach to implement, its results do
not provide information about how regions identified are
related to one another. VBM also does not incorporate spa-
tial filtering, and our empirical VBM results appeared gen-
erally noisier. Therefore, SBM is a useful method for iden-
tifying regions exhibiting similar underlying covariation in
gray matter among subjects and can be considered a multi-
variate complement to VBM, with the specific advantages
discussed earlier.

CONCLUSION

The use of SBM allowed us to identify the source net-
works showing significant differences between schizophre-
nia and healthy controls. Each identified source represents

a distinct set of regions derived from the dataset. Our
approach provides at least three distinct advantages over
VBM. First, SBM allows noise reduction of the results by
spatially filtering artifactual sources. Second, SBM is a
multivariate method that takes the interrelationship among
voxels into account. Third, SBM estimates the mixing ma-
trix parameters that captures the covariation of specific
sources among individuals. Specifically, the mixing matrix
parameters allow the identification of sources that exhibit
group differences or particular relationships with other vari-
ables of interest (e.g. age and sex). In addition, because the
SBM statistical tests are performed on a small set of sources,
instead of on each voxel as in VBM, it offers the additional
benefit of minimizing the number of comparisons. SBM is
particularly well suited for capturing natural constellations
of brain volumes within groups of subjects that may reflect
valid sets of regions. The application of SBM to structural
brain images thus creates new opportunities to identify dis-
tinct brain source networks between groups.
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