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The goal of many plant scientists’ research is to explain natural phenotypic variation in terms of simple changes in DNA

sequence. Traditionally, linkage mapping has been the most commonly employed method to reach this goal: experimental

crosses are made to generate a family with known relatedness, and attempts are made to identify cosegregation of genetic

markers and phenotypes within this family. In vertebrate systems, association mapping (also known as linkage disequi-

librium mapping) is increasingly being adopted as the mapping method of choice. Association mapping involves searching

for genotype-phenotype correlations in unrelated individuals and often is more rapid and cost-effective than traditional

linkage mapping. We emphasize here that linkage and association mapping are complementary approaches and are more

similar than is often assumed. Unlike in vertebrates, where controlled crosses can be expensive or impossible (e.g., in

humans), the plant scientific community can exploit the advantages of both controlled crosses and association mapping to

increase statistical power and mapping resolution. While the time and money required for the collection of genotype data

were critical considerations in the past, the increasing availability of inexpensive DNA sequencing and genotyping methods

should prompt researchers to shift their attention to experimental design. This review provides thoughts on finding the

optimal experimental mix of association mapping using unrelated individuals and controlled crosses to identify the genes

underlying phenotypic variation.

GENETIC MAPPING: IT’S ALL ABOUT RECOMBINATION

The aim of many genetic mapping studies is to identify quanti-

tative trait loci (QTL) that are responsible for phenotypic variation.

Although often viewed as fundamentally different, linkage and

association mapping share a common strategy that exploits

recombination’s ability to break up the genome into fragments

that can be correlated with phenotypic variation. The key differ-

ence between the two methods is the control the experimenter

has over recombination. On the one hand, linkage mapping is a

highly controlled experiment: individuals are crossed to generate

a mapping population in which relatedness is known. In plants,

these are generally biparental crosses, while in humans these

populations may be extended pedigrees. The experimenter

thereby creates a closed system and uses a small number of

genetic markers to infer the locations of the relatively few

recombination breakpoints. With genotype data from across

the genome, the experimenter can then determine if a chromo-

somal fragment between two specific breakpoints is associated

with a phenotype. Associationmapping, on the other hand, is not

a controlled experiment, but rather a natural experiment. Ge-

notype and phenotype data are collected from a population in

which relatedness is not controlled by the experimenter, and

correlations between genetic markers and phenotypes are

sought within this population. This open system design provides

higher mapping resolution compared with the closed system of

controlled crosses, but it is difficult to infer when and where

recombination has occurred. Moreover, the uncontrolled relat-

edness among individuals can result in spurious signals of

association in downstream analyses.

For the rest of this review, we will avoid using the terms

“linkage mapping” versus “association” or “linkage disequili-

brum” mapping, as both of these approaches identify genotype-

phenotype associations by identifying polymorphisms that are

linked to functional alleles. As we move into a world of complete

genome sequencing, the distinction between the two methods

will disappear, but questions about the optimal experimental

design and analysis will remain. We will refer to “family mapping”

whenmapping is conducted in progeny of a biparental cross and

to “population mapping” when mapping is conducted in popu-

lations in which relatedness is unknown.

Using family mapping, an experimenter can only exploit the

recombination events that have occurred during the establish-

ment of the mapping population. In this case, recombination has

not had enough time to shuffle the genome into small fragments,

and QTL are generally localized to large chromosomal regions

(10 to 20 centimorgans). In addition, family mapping can only

identify QTL from the phenotypic diversity generated from the

controlled cross, which may often represent only a small fraction

of the phenotypically relevant variation in a species. Indeed,

because different QTL segregate in different family mapping
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populations, QTL often are not consistent across mapping

populations (Holland, 2007).

It has long been recognized that population mapping offers

advantages over family mapping for the identification of QTL

(Spielman et al., 1993; Risch and Merikangas, 1996; Long et al.,

1997), and it has recently seen enormous success in human

disease research (Donnelly, 2008). Although it is currently the

method of choice for mapping human phenotypes, population

mapping is just beginning to be widely applied to plant popula-

tions (Thornsberry et al., 2001; Breseghello and Sorrells, 2006;

Zhao et al., 2007; Gonzalez-Martinez et al., 2008; Harjes et al.,

2008). The main advantage of population mapping is that it

exploits all of the recombination events that have occurred in the

evolutionary history of a sample, which almost invariably results

in a much higher mapping resolution compared with family

mapping. In addition, the number of QTL one canmap for a given

phenotype is not limited towhat segregates between parents of a

cross, but rather by the number of real QTL underlying the trait

and the degree to which the mapping population captures the

total genetic diversity available in nature (Zhu et al., 2008). This

approach is particularly useful in plant breeding where alleles

associated with desirable phenotypes can be introduced effi-

ciently into selected lines. Here, we focus on identifying QTL, but

it is worth noting that genomic selection, which aims to estimate

breeding values without identifying QTL, uses similar data and

populations and is showing great promise for breeding programs

(Meuwissen et al., 2001; Goddard and Hayes, 2009; Heffner

et al., 2009). Perhaps the most attractive aspect of association

mapping is its ease and cost-effectiveness compared with the

laborious and often expensive process of establishing mapping

families. This is especially the case for researchers who work on

organisms that cannot be crossed, cloned, or have long gener-

ation times (Nordborg and Weigel, 2008). In some instances,

however, population mapping can involve a significant pheno-

typing burden because of the large sample sizes required. Also,

obtaining reliable phenotypic measurements from a population

of plants that are adapted to different growing conditions may

present limitations in the use of certain germplasm. Experi-

menters must consider these points carefully when trying to

exploit the advantages of population mapping.

WHY LINKAGE DISEQUILIBRIUM MATTERS

The ultimate aim of most mapping studies is to identify the

functional genetic variants, or the quantitative trait nucleotides,

that are responsible for phenotypic variation. Current data sets

are commonly obtained using genotyping microarrays and often

consist of hundreds of thousands of genotypes from hundreds or

even thousands of individuals. Even with such large numbers of

markers, however, it is unlikely that sought after functional

variant(s) will be among the markers genotyped. (Though in the

near future, data sets will likely contain [nearly] all variants!) The

experimenter often can only hope that geneticmarkers that are in

strong linkage disequilibrium (LD) with the functional variant(s)

have been genotyped. LD refers to the correlation between

polymorphisms in a population. Thus, the genotyped markers

become proxies, or sentinels, for the functional variant because

their genotypes are highly correlated with the genotypes of the

functional variant. The power of an association study depends on

the strength of this correlation (i.e., on the degree of LD between

the genotyped marker and the functional variant). Figure 1 de-

picts a scenario in which two markers have been genotyped at a

locus, one of which is associated with the phenotype and is in LD

with the functional variant and one of which is not in LD with the

functional variant and is therefore not associated with the phe-

notype.

In general, the strength of the correlation between twomarkers

is a function of the distance between them: the closer two

markers are, the stronger the LD. The resolutionwithwhich aQTL

can be mapped is a function of how quickly LD decays over

distance. Therefore, the first step in the design of an association

study is an analysis of the structure of LD in the population under

study. The decay of LD has been shown to differ dramatically

Figure 1. A Fictional Depiction of a Simple Genotype-Phenotype Asso-

ciation Test.

The functional SNP responsible for variation in berry number in grapevine

is in gray and is not genotyped. The genotyped SNPs lie on either side of

the functional SNP. The genotyped SNP to the right is in high LD with the

functional SNP, while the genotyped SNP to the left is not in LD with the

functional SNP. The results of a simple association test (Pearson corre-

lation) are shown in the bottom box. The C allele of the high LD SNP is

significantly associated with berry number (P = 0.037), while there is no

significant association for the low LD SNP (P = 0.77).
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between species (Flint-Garcia et al., 2003), often due to differ-

ences in breeding systems. Selfing reduces opportunities for

recombination (Nordborg, 2000), so inbreeders such as rice

(Oryza sativa), for example, can have LD that extends to 100 kb or

more (Garris et al., 2005). Conversely, in outcrossers, LD gener-

ally breaks down more rapidly. For example, LD decays within

300 bp in the grapevine (Vitis vinifera; Lijavetzky et al., 2007) and

within 100 bp in Norway spruce (Picea abies; Heuertz et al.,

2006). Even within a species, LD decay can vary significantly. In

maize (Zea mays), for example, LD decays within 1 kb in land

races (Tenaillon et al., 2001), within 2 kb in diverse inbred lines

(Remington et al., 2001), and can extend up to 500 kb in

commercial elite inbred lines (Rafalski, 2002; Jung et al., 2004).

Finally, LD decay also varies among loci within a population,

sometimes due to positive selection, which can generate LD that

extends much farther than the genome-wide average (e.g., Whitt

et al., 2002). Since the resolution with which QTL can bemapped

is a function of LD decay, population mapping may offer little or

no advantage over family mapping in cases where LD is exten-

sive. It is therefore crucial that the experimenter choose a diverse

set of germplasm that exploits the recombination events that

have occurred in the history of the species of interest.

FROM CANDIDATE GENES TO GENOME-WIDE STUDIES

The first population mapping attempts within a species usually

involve candidate gene studies: genetic markers are genotyped

at a locus thought to be involved in some phenotype, and one

tests for an association between these genetic markers and the

phenotype. The candidate gene approachwaswidely used in the

search for disease-gene associations in humans but has recently

been declared woefully inadequate as most confirmed disease

genes went undetected using this approach (Altshuler et al.,

2008). In plants, population mapping has been successful for

candidate genes in relatively simple pathways (Harjes et al.,

2008; Zheng et al., 2008) and for candidate genes with extensive

prior evidence of a role in the phenotype of interest (Werner et al.,

2005). However, the choice of candidate genes and the markers

within them often involves some guesswork, so the insights one

can gain into the genetic control of the phenotype of interest will

necessarily be limited.

Sowhy not just cover the entire genomewith geneticmarkers?

The strategy of a genome-wide association (GWA) study is to

genotype enough markers across the genome so that functional

alleles will likely be in LD with at least one of the genotyped

markers. GWA has revolutionized genetic mapping in humans

(Altshuler et al., 2008; Donnelly, 2008) and is increasingly being

adopted in plants (Nordborg and Weigel, 2008). Of course, the

first step in this process is the discovery of a large number of

genetic markers, typically single nucleotide polymorphisms

(SNPs), as a reference resource. In humans, the International

HapMap Project currently boasts over three million SNPs (http://

www.hapmap.org/), and similar projects are underway for Ara-

bidopsis thaliana (http://walnut.usc.edu/2010), rice (http://irfgc.

irri.org), and maize (http://www.panzea.org/). The number of

markers and their density are defined by genome size and LD

decay and will therefore vary considerably among species. For

example, while 140,000markers provide reasonable coverage of

the 125 Mb Arabidopsis genome (Kim et al., 2007), a rough

estimate suggests that over two million markers will be required

to cover the 475 Mb genome of the grapevine, and 10 to 15

million may be necessary for diverse maize varieties. While

genotyping microarrays have been the technology of choice so

far, the decreasing costs of next-generation sequencing (such as

Illumina’s Genome Analyzer, Applied Biosystems’ SOLiD, and

Roche’s 454) will make it possible for future projects cost-

effectively to obtain full sequence data from large population

samples. The construction of genotyping microarrays necessar-

ily involves an ascertainment bias: SNPs are discovered in a

small set of samples and are then genotyped in a larger set of

samples. Thus, polymorphisms not present in the initial SNP

discovery panel (i.e., primarily low frequency SNPs) remain

undetected in the larger sample. Whole-genome sequencing

will provide a significant advantage over the use of microarrays

as it avoids the erosion of power due to ascertainment bias by

detecting all polymorphisms in the mapping population (Clark

et al., 2005).

FINDING THE MISSING HERITABILITY

Most GWA studies proceed first by identifying a set of reference

SNPs that segregate at intermediate frequency in a small panel of

individuals. These SNPs are then genotyped in large samples for

which phenotype data are available. The motivation for this

strategy is the assumption that common phenotypic variationwill

be caused by common genetic variation. In humans, a version of

this assumption is known as the common disease-common

variant hypothesis (Lander, 1996), and it was the impetus for the

International HapMap project. Although GWA studies in humans

have uncovered thousands of significant associations, they often

account for very little of the variation in a phenotype. For

example, human height is known to be 80 to 90% heritable,

but the 40 variants associated with height from GWA studies

account for just over 5% of height’s heritability (Maher, 2008).

Quantitative geneticists are beginning to ask themselves: where

is the missing heritability?

Low frequency functional alleles are among the likely culprits.

The power to detect an association is a function of allele

frequency: functional variants at low frequency have little influ-

ence on the population as a whole, and their signal is therefore

difficult to detect (Figure 2A). Even if a low frequency allele has an

enormous effect on the phenotype, populationmapping normally

will have little power to detect it. Unfortunately, it is a well-known

result from population genetics theory that, in the majority of

species, most alleles are rare (Figure 2B). For example, 30% of

the polymorphisms in a diverse panel of 27maize inbred lines are

unique to a single line (www.panzea.org). This raises a funda-

mental biological question: Is the frequency distribution of func-

tional alleles similar to that of random alleles in Figure 2B? If so,

we will have difficulty accounting for most phenotypic variation

using association mapping because most of it will be caused by

rare alleles. Fortunately, family mapping can be used to identify

such low frequency functional alleles. By creating crosses, the

experimenter can artificially inflate the allele frequencies in the
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progeny to provide increased power for mapping. It is arguably

only through the use of controlled crosses that we eventually will

gain an understanding of the frequency distribution of functional

alleles.

Perhaps the most important factor that accounts for the

missing heritability, however, is the genetic architecture of the

trait under study. The power to detect an association between a

functional variant and a phenotype is also a function of the effect

that the functional variant exerts on the phenotype (Figure 2A).

Phenotypic variation controlled by numerous small effect QTL

will be inherently more difficult to dissect to the genetic level than

variation caused by a small number of large effect QTL. Deter-

mining the genetic architecture underlying phenotypic variation

has generated enormous interest, but it is unclear whether there

are any definitive trends. For example, a singleQTL explains 86%

of the variation in flowering time in an interspecific mapping

family in sorghum (Sorghum bicolor; Lin et al., 1995), whereas 50

QTL are required to explain 50% of the variation in kernel oil

concentration in maize (Laurie et al., 2004). To what extent the

genetic architecture differs among species and among traits

remains largely unknown (Flint andMackay, 2009). Future studies

with sufficient power to detect small effect QTL promise to elu-

cidate the genetic architecture of common phenotypic variation.

RELATEDNESS: A COMMON CONFOUNDER

Except in population genetics theory, randomly mating popula-

tions probably do not exist. Nonrandom mating has generated

complex patterns of population structure and relatedness in

crops and wild plants (Flint-Garcia et al., 2005; Nordborg et al.,

2005). In population mapping, complex patterns of genetic

relatedness among individuals can be problematic when trying

to map a phenotype whose variation is correlated with genetic

relatedness. In such cases of genotype-phenotype covariance,

many genetic markers across the genome will appear to be

associated with the phenotype, when in fact these genetic

markers simply capture the genetic relatedness among individ-

uals. This problem is particularly apparent when trying to map

traits that have been subject to local adaptation, like flowering

time (Aranzana et al., 2005; Flint-Garcia et al., 2005) because

variation in these phenotypes between populations is highly

correlated with allele frequency differences between popula-

tions. Even for a set of common traits of agronomic interest in

maize, such allele frequency differences account for an average

of 9.3% of the phenotypic variation across all traits (Flint-Garcia

et al., 2005). It has long been known that genotype-phenotype

covariance can lead to spurious associations (Lander and

Schork, 1994), and recent attempts to map such traits have

resulted in extremely high false positive rates (Aranzana et al.,

2005).

There has been intense interest in the development ofmethods

to correct for genetic relatedness in population mapping studies.

The methods used to correct for genetic relatedness involve

using random markers throughout the genome to estimate

relatedness among individuals within a mapping population.

These estimates of relatedness provide baseline predictions of

background QTL sharing among individuals and are used to

determine whether a candidate marker actually explains more

variation than a random marker does. These methods are most

effective when the trait is complex and controlled by many QTL.

The principle underlying these approaches is similar to the

principle applied in family mapping, where background markers

are used as covariates to control for QTL outside of the genomic

region of interest.

The first generation of methods for correcting for relatedness

focused on large-scale clinal or island-like population structure.

Structured association (Pritchard et al., 2000b) involves using the

program STRUCTURE (Pritchard et al., 2000a) to identify pop-

ulations and then estimate the proportion of each individual’s

Figure 2. Important factors affecting the power of population mapping studies.

(A) The power of an association test is a function of the allele frequency and the effect size.

(B) The allele frequency spectrum from 3641 SNPs genotyped in 25 diverse maize inbred lines (www.panzea.org) demonstrates that most alleles in a

population are rare. Therefore, if the frequency spectrum of functional alleles is similar to the frequency spectrum of random SNPs, most functional

alleles will remain undetected through population mapping because of low power.

For (A), phenotype data were simulated for 1000 haploid samples as a normal distribution with mean = 0 and SD = 1 for one allele and mean 0 + effect

size and SD = 1 for the other allele. Effect size is therefore defined as the difference between the mean phenotypic values of the two alleles. Power is

defined as the proportion of association tests (Pearson correlation) significant at P < 0.05 out of 5000 simulated data sets.
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variation that came from a particular population. The matrix of

these estimates is called Q, and the estimates are used as

covariates to control for population structure in population

mapping. Structured association was extended to quantitative

traits and has been used in plants (Thornsberry et al., 2001).

Alternatively, using principal components analysis (PCA) to re-

duce the high-dimensional genotype data to a small number of

dimensions, one can then use the axes of variation from these

dimensions to calculate ancestry-adjusted genotypes and phe-

notypes (Price et al., 2006). Estimation of the Q matrix using

STRUCTURE is computationally intensive and is designed for

unrelated individuals from populations in Hardy-Weinberg equi-

librium, whereas PCA is fast, makes no assumptions about the

structure of the populations, and performs similarly or better than

STRUCTURE (Zhao et al., 2007).

The problem with both of these approaches is that individuals

can only vary along a few axes of differentiation that may or may

not be well captured by the STRUCTURE or PCA models. An

extreme nonclinal type of relatedness is an extended pedigree,

for example, where many individuals have close relationships

that cannot be described by a single vector of relatedness. An

alternative approach to capture this complex differentiation is to

estimate the pairwise relatedness between all individuals in the

sample. Like Q, one can use pairwise relatedness to control for

the effects of relatedness in population mapping. The statistical

approach used to relate the pairwise relatedness matrix to a

phenotype is the mixed model, where the variance explained by

pairwise relatedness is fit to the vector of phenotypes. This

approachwasoriginallydeveloped for cattlebreeding (Henderson,

1975). One can envision the mixed model as a statistical method

to obtain a weighted average phenotypic prediction based on

relatedness.

While the first generation of mixed models used pedigree

information, random geneticmarkers are nowmost often used to

generate a pairwise relatedness matrix called the kinship matrix,

or simply K. This approach of using geneticmarkers in estimating

relatedness has been used to predict breeding values in animals

and plants (Meuwissen et al., 2001; Schaeffer, 2006; VanRaden,

2008; Heffner et al., 2009) and to correct for relatedness in

population mapping studies in both human families and inbred

maize lines (Yu et al., 2006). The application of mixed model

methods using the K matrix in maize, human, mouse, Arabidop-

sis, and potato (Solanum tuberosum) demonstrates that the

additional correction for pairwise relatedness significantly de-

creases false positives and false negatives over and above

corrections involving only the Q matrix (Yu et al., 2006; Malosetti

et al., 2007; Zhao et al., 2007; Kang et al., 2008). Intuitively, this

makes good sense: While Q takes only a few axes of variation

into account, the K matrix captures the relatedness between

each possible pair of individuals in a sample. In general, the

mixedmodel (K) is far superior to the clinal approaches (Q), but in

many cases a combination (Q+K) of these approaches appears

to be most powerful.

It is not trivial, however, to define the K matrix. One may

expect, for example, that the pedigree data available for many

mapping populations could provide accurate estimates of the K

matrix. However, marker-based kinship coefficients are more

accurate than pedigree-based estimates because they account

for deviations from expected parental contributions due to

independent assortment (Mendelian sampling) or segregation

distortion (selection) (Bernardo, 1993; Bernardo et al., 1996).

Figure 3 demonstrates that the expected contribution from one

parent to the progeny of a recombinant line (RIL) population

varies widely from 20 to 80% (Figure 3). The distribution in Figure

3 only takes the effects of independent assortment into account.

Selection applied during breeding can widen the tails of this

distribution. This demonstrates that marker-based estimates of

kinship are highly preferred over pedigree-based estimates.

Currently, there are twomain difficulties with the application of

the mixed model that are being addressed by statistical genet-

icists. First, more sophisticated methods are being developed to

refine marker-based estimates of relatedness in the generation

of the Kmatrix, as previously used estimates of relatedness were

rather simplistic (Yu et al., 2006; Zhao et al., 2007). The difficulty

lies in determining whether alleles that are identical by state (i.e.,

the same genotype) are also identical by descent (IBD; i.e.,

inherited from a common ancestor). A recently proposed re-

stricted maximum likelihood estimate of the probability of two

alleles at the same locus being identical by state but not IBD

improves the power of the mixed model (Stich et al., 2008). The

second difficulty is computational speed. The original mixed

model mapping method presented by Yu et al. (2006) is compu-

tationally intensive and is prohibitively time-consuming in anal-

yses of most large, genome-wide data sets. A more recent

method, efficient mixed model association, substantially in-

creases computation speed (Kang et al., 2008), and recently

developedmethods in our laboratory promise tomake themixed

model method accessible to most genome-wide data sets (Z.

Zhang, E. Ersoz, C.-Q. Lai, R.J. Todhunter, H.K. Tiwari, M.A.

Gore, P.J. Bradbury, J. Yu, D.K. Arnett, J.M. Ordovas, and E.S.

Buckler, unpublished data).

Figure 3. The Expected Genetic Contribution from Each Parent to the

Progeny of a Biparental RIL Family with a Genetic Map Size of Maize.

Progeny can be much more closely related to one parent than another. In

fact, ;9% of progeny are $2 times more closely related to one parent

than the other.
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Correcting for various types of relatedness is beginning to

allow successful weeding out of false from true positives in

several studies in plants. For example, previously reported

associations in maize and Arabidopsis were subsequently found

to be likely due to the confounding effects of relatedness (Wilson

et al., 2004; Zhao et al., 2007). Thornsberry et al. (2001) reduced

the number of false-positive associations with flowering time

traits in maize by almost fivefold using the Q matrix to correct for

population structure. However, the associations between vari-

ants in dwarf8 and flowering time in maize have never been

formally proven or disproven, as all the analyses are confounded

with relatedness despite every attempt to control for it statisti-

cally (Thornsberry et al., 2001; Andersen et al., 2005; Camus-

Kulandaivelu et al., 2006). Through a combination of family

mapping and mixed model estimation, it can be shown that

effects at dwarf8 were overestimated by at least 10-fold using a

simple Q model and may not be significant (S. Larsson and E.S.

Buckler, unpublished data). The evidence for effects on flowering

time from variation at Vgt1 in maize is unequivocal, but effect

estimates for this locus using Q alone are overestimates, while a

correction using Q+K generates relatively accurate effect esti-

mates (Buckler et al., 2009). It is becoming increasingly clear that

corrections using only Q often are inadequate, especially in

species with complex patterns of relatedness. Currently, mixed

model approaches should be the method of choice among plant

scientists for population mapping studies. Software for mixed

model analyses is freely available at http://www.maizegenetics.

net/tassel and http://mouse.cs.ucla.edu/emma.

Although themixedmodel provides a robustmethod to correct

for relatedness in population mapping studies, attempts to map

phenotypes that are strongly correlated with relatedness will

remain problematic. Using population mapping, there is simply

no way statistically to determine whether a genetic variant is a

true QTL if the phenotype is so strongly correlated with related-

ness that random genetic variants throughout the genome as-

sociate equally well with the trait. As is the case for detecting low

frequency functional variants, family mapping can come to the

rescue when encountering the confounding effects of related-

ness (e.g., Balasubramanian et al., 2006; Manenti et al., 2009).

The generation of controlled crosses can break up the covari-

ance between genotypes and phenotypes and enhance power to

detect QTL. Thus, in cases where Q+K explain most of the

phenotypic variance, population mapping will be severely un-

derpowered, and the experimenter will need to consider family

mapping to detect the underlying QTL. In fact, many QTL will

remain practically undetectable without the help of controlled

crosses. Figure 4 provides an illustration of how controlled

crosses can be used to break up the genotype-phenotype

covariance to enhance power to detect QTL.

JOINT FAMILY POPULATION MAPPING

As we have previously discussed, there are scenarios in which

population mapping will have little power to detect an associa-

tion (e.g., low frequency alleles and QTL with small effect) or will

generate an excess of false positives (e.g., genotype-phenotype

covariance). In these scenarios, we suggested that the experi-

menter manipulate allele frequencies and population structure to

their advantage by generating controlled crosses and using

family mapping to enhance power. In the past few years, several

elegant statistical approaches have been developed to combine

family and population mapping, often called joint linkage-

association mapping (e.g., Wu and Zeng, 2001; Meuwissen

et al., 2002; Wu et al., 2002; Blott et al., 2003). The primary sta-

tistical challenge encountered with these methods involves the

estimation of probabilities of IBD across the genome. However,

with near full genomesequencedata, these challengescan readily

be overcome. Computationally intensive estimation of IBD prob-

abilities will no longer be necessary when near complete genome

sequence data are available. Experimenters must now consider

that, by the time the phenotypic data are collected in 3 to 4 years,

Figure 4. Genotype-Phenotype Covariance Can Be Broken up by Generating Controlled Crosses.

The left panel is a scenario of an extreme correlation between relatedness and phenotypic similarity. Individuals, represented by dots, who are closely

related have similar phenotypes, and distantly related individuals are more phenotypically dissimilar. In these cases, random genetic markers

throughout the genome will be strongly associated with the phenotype, and population mapping will therefore lack power to detect real QTL. By

generating controlled crosses, this genotype-phenotype covariance can be broken, and a population of individuals can be generated in which this

correlation is weakened. In the right panel, phenotypic differences between individuals are no longer strongly associated with relatedness, and the

power to detect QTL is significantly enhanced.
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full sequence data will in many cases be available for an exper-

iment planned today. Thus, the relevant question is not what the

nature of the genotype data will be, but rather how to select

germplasm that will maximize allelic diversity and the power to

dissect complex traits.

With this in mind, the maize community has developed the

largest publicly available platform for complex trait dissection of

any species. In the maize Nested Association Mapping popula-

tion (NAM), 25 diverse maize lines were crossed to the reference

maize inbred B73 (Yu et al., 2008). The reference design was

chosen to reduce the confounding physiology effects of having

too much flowering time variation. From each cross, 200 RILs

were generated, for a total of 5000 lines. The controlled crosses

in NAM reduce the confounding effects of population structure,

while the large numbers of progeny derived from the crosses

allow for family mapping with substantial statistical power.

Moreover, with full sequence information from the 26 founder

lines and low-density genotyping in the progeny, the genotype

information from the founders can be projected to the progeny,

optimizing genotyping costs. This design provides significant

power to identify QTL underlying complex traits and estimate

additive effects and some epistatic interactions among QTL.

A publicly available platform for joint linkage association also

exists in mouse, where 1000 RILs are derived from eight founder

lines (Churchill et al., 2004). With only eight founder lines,

however, functional alleles segregating in mouse, but not found

in the founders, will remain undetected. In addition, the number

of ancestral recombination events captured in such a design is a

function of the number of founder lines used to generate the

population. Thus, although joint family population mapping

approaches show great promise for the dissection of complex

traits, questions about optimal experimental design remain. For

example, the founder lines in NAM were chosen largely to

maximize genetic variation. Would NAM be more powerful if

the founder lines had been chosen to maximize physiological

variation? Should more than one reference founder be used in

the NAM design? Also, how many founder lines are required to

capture the desired amount of genetic variation and number of

ancestral recombination events in the species of interest? How

should experimental design change according to the population

structure of the species under study and the genetic architecture

of the phenotypes of interest? Simulation studies help address

these issues by investigating the effects of experimental design

(e.g., number of crosses and sample size) on QTL detection

power under varying genetic architectures (Wu et al., 2002;

Verhoeven et al., 2005). These simulations have limitations,

however, in that they are forced to make assumptions about

the sharing of QTL among individuals and their frequency distri-

butions. In the future, the results from current large-scale QTL

mapping projects, such as those in maize and mouse, will

provide valuable guidelines for the design of future joint family

population experiments.

CONCLUSIONS

The days when the design and implementation of genotyping

assays were both time-consuming and expensive will soon be

behind us. Full resequencing of mapping populations is likely to

be within reach in the next decade. Now is the time to concen-

trate on experimental design, so that the deluge of genotype data

can be fully exploited when it arrives in the future. While it is often

optimal or even necessary to generate specific mapping popu-

lations, experimenters should also consider mining useful vari-

ation from the massive germplasm collections we already have.

For example, the National Plant GermplasmSystem of the USDA

currently holds >500,000 accessions (http://www.ars-grin.gov/

npgs). Paying careful attention to the selection of germplasm to

maximize genetic diversity will pay dividends in the end. Finally,

as the proportion of an experiment’s costs dedicated to geno-

typing approaches the negligible, it is clear that the collection of

high-quality phenotypes will often be the main bottleneck to

many mapping studies. Experimenters should now be con-

cerned with determining the appropriate experimental design

that maximizes their phenotyping efforts. It is imperative that

experimenters begin to select germplasmof appropriate levels of

relatedness and to generate high-quality phenotype data, as

these factors will be major determinants of the power to identify

QTL in the future world of inexpensive, large-scale genotyping.
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