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Abstract
This paper explores the following question: what kind of statistical guarantees can be given when
doing variable selection in high dimensional models? In particular, we look at the error rates and
power of some multi-stage regression methods. In the first stage we fit a set of candidate models. In
the second stage we select one model by cross-validation. In the third stage we use hypothesis testing
to eliminate some variables. We refer to the first two stages as “screening” and the last stage as
“cleaning.” We consider three screening methods: the lasso, marginal regression, and forward
stepwise regression. Our method gives consistent variable selection under certain conditions.
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1. Introduction
Several methods have been developed lately for high dimensional linear regression such as the
lasso (Tibshirani 1996), Lars (Efron et al. 2004) and boosting (Bühlmann 2006). There are at
least two different goals when using these methods. The first is to find models with good
prediction error. The second is to estimate the true “sparsity pattern,” that is, the set of covariates
with nonzero regression coefficients. These goals are quite different and this paper will deal
with the second goal. (Some discussion of prediction is in the appendix.) Other papers on this
topic include Meinshausen and Bühlmann (2006), Candes and Tao (2007), Wainwright
(2006), Zhao and Yu (2006), Zou (2006), Fan and Lv (2008), Meinshausen and Yu (2008),
Tropp (2004, 2006), Donoho (2006) and Zhang and Huang (2006). In particular, the current
paper builds on ideas in Meinshausen and Yu (2008) and Meinshausen (2007).

Let (X1, Y1),…,(Xn, Yn) be iid observations from the regression model

(1)

where ε ~ N(0, σ2), Xi = (Xi1,…, Xip)T ∈ ℝp and p = pn > n. Let X be the n × p design matrix
with jth column X•j = (X1j,…, Xnj)T and let Y = (Y1,…, Yn)T. Let
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be the set of covariates with nonzero regression coefficients. Without loss of generality, assume
that D = {1,…, s}for some s. A variable selection procedure D ̂ n maps the data into subsets of
S = {1,…, p}.

The main goal of this paper is to derive a procedure D ̂ n such that

(2)

that is, the asymptotic type I error is no more than α. Note that throughout the paper we use ⊂
to denote non-strict set-inclusion. Moreover, we want D ̂ n to have nontrivial power.
Meinshausen and Bühlmann (2006) control a different error measure. Their method guarantees
lim supn→∞ ℙ(D ̂ n ∩V ≠∅) ≤ α where V is the set of variables not connected to Y by any path
in an undirected graph.

Our procedure involves three stages. In stage I we fit a suite of candidate models, each model
depending on a tuning parameter λ,

In stage II we select one of those models Ŝ n using cross-validation to select λ ̂ . In stage III we
eliminate some variables by hypothesis testing. Schematically:

Genetic epidemiology provides a natural setting for applying screen and clean. Typically the
number of subjects, n, is in the thousands, while p ranges from tens of thousands to hundereds
of thousands of genetic features. The number of genes exhibiting a detectable association with
a trait is extremely small. Indeed, for Type I diabetes only ten genes have exhibited a
reproducible signal (Wellcome Trust 2007). Hence it is natural to assume that the true model
is sparse. A common experimental design involves a 2-stage sampling of data, with stages 1
and 2 corresponding to the screening and cleaning processes, respectively.

In stage 1 of a genetic association study, n1 subjects are sampled and one or more traits such
as bone mineral density are recorded. Each subject is also measured at p locations on the
chromosomes. These genetic covariates usually have two forms in the population due to
variability at a single nucleotide and hence are called single nucleotide polymorphisms (SNPs).
The distinct forms are called alleles. Each covariate takes on a value (0, 1 or 2) indicating the
number of copies of the less common allele observed. For a well designed genetic study,
individual SNPs are nearly uncorrelated unless they are physically located in very close
proximity. This feature makes it much easier to draw causal inferences about the relationship
between SNPs and quantitative traits. It is standard in the field to infer that an association
discovered between a SNP and a quantitative trait implies a causal genetic variant is physically
located near the one exhibiting association. In stage 2, n2 subjects are sampled at a subset of
the SNPs assessed in stage 1. SNPs measured in stage 2 are often those that achieved a test
statistic that exceeded a predetermined threshold of significance in stage 1. In essence, the two
stage design pairs naturally with a screen and clean procedure.
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For the screen and clean procedure it is essential that Ŝ n has two properties as n → ∞

(3)

and

(4)

where |M| denotes the number of elements in a set M. Condition (3) ensures the validity of the
test in stage III while condition (4) ensures that the power of the test is not too small. Without
condition (3), the hypothesis test in stage III would be biased. We will see that the power goes
to 1, so taking α= αn → 0 implies consistency: ℙ(D ̂ n = D) → 1. For fixed α, the method also
produces a confidence sandwich for D, namely,

To fit the suite of candidate models, we consider three methods. In Method 1,

where β̃j(λ) is the lasso estimator, the value of β that minimizes

In Method 2, take Ŝ n(λ) to be the set of variables chosen by forward stepwise regression after
λ steps. In Method 3, marginal regression, we take

where μ̂ j is the marginal regression coefficient from regressing Y on Xj. (This is equivalent to
ordering by the absolute t-statistics since we will assume that the covariates are standardized.)
These three methods are very similar to basis pursuit, orthogonal matching pursuit and
thresholding; see, for example, Tropp (2004, 2006) and Donoho (2006).

Notation
Let ψ = minj∈D|βj|. Define the loss of any estimator β ̂  by
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(5)

where Σ̂ n = n−1XT X. For convenience, when β ̂  ≡ β ̂  (λ) depends on λ we write L(λ) instead of
L(β ̂ (λ)). If M ⊂ S, let XM be the design matrix with columns (X•j: j ∈ M) and let

 denote the least squares estimator, assuming it is well-defined. Note that
our use of X•j differs from standard ANOVA notation. Write Xλ instead of XM when M =
Ŝ n(λ). When convenient, we extend β ̂ M to length p by setting β ̂ M (j) = 0 for j ∉ M. We use
the norms:

If C is any square matrix, let φ(C) and Φ(C) denote the smallest and largest eigenvalues of C.
Also, if k is an integer define

We will write zu for the upper quantile of a standard Normal, so that ℙ(Z > zu) = u where Z ~
N (0, 1).

Our method will involve splitting the data randomly into three groups  ,  and  . For ease
of notation, assume the total sample size is 3n and that the sample size of each group is n.

Summary of Assumptions
We will use the following assumptions throughout except in Section 8.

(A1)  where εi ~ N (0, σ2), for i = 1, …, n.

(A2) The dimension pn of X satisfies pn → ∞ and pn ≤ c1enc2 for some c1 > 0 and 0 ≤ c2
< 1.

(A3) s ≡ |{j: βj ≠ 0}| = O(1) and ψ = min{|βj|: βj ≠ 0} > 0.

(A4) There exist positive constants C0, C1 and κ such that ℙ (lim supn→ ∞ Φn(n) ≤ C0) =
1 and ℙ(lim infn→ ∞ φn(C1 log n) ≥ κ) = 1. Also, ℙ(φn(n) > 0) = 1 for all n.

(A5) The covariates are standardized:  (Xij) = 0 and . Also, there exists 0 < B <
∞ such that ℙ(|Xjk| ≤ B) = 1.

For simplicity, we include no intercepts in the regressions. The assumptions can be weakened
at the expense of more complicated proofs. In particular, we can let s increase with n and ψ
decrease with n. Similarly, the Normality and constant variance assumptions can be relaxed.

2. Error Control
Define the type I error rate q(D ̂ n) = ℙ(D ̂ n ∩ Dc ≠ ∅) and the asymptotic error rate lim
supn→ ∞ q(D ̂ n). We define the power π(D ̂ n) = ℙ (D ⊂ D ̂ n) and the average power
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It is well known that controlling the error rate is difficult for at least three reasons: correlation
of covariates, high dimensionality of the covariate and unfaithfulness (cancellations of
correlations due to confounding). Let us briefly review these issues.

It is easy to construct examples where, q(D ̂ n) ≤ α implies that π(D ̂ n) ≈ α. Consider two models
for random variables Z = (Y, X1, X2):

Model 1 Model 2
X1 ~ N (0, 1) X2 ~ N (0, 1)

Y = ψX1 + N (0, 1) Y= ψX2 + N (0, 1)
X2= ρX1 + N (0, τ2) X1= ρX2 + N (0, τ2).

Under models 1 and 2, the marginal distribution of Z is P1 = N (0, Σ1) and P2 = N (0, Σ2) where

Given any ε > 0 we can choose ρ sufficiently close to 1 and τ sufficiently close to 0 such that
Σ1 and Σ2 are as close as we like and hence  where d is total variation distance. It
follows that

Thus, if q ≤ α then the power is less than α + ε.

Dimensionality is less of an issue thanks to recent methods. Most methods, including those in
this paper, allow pn to grow exponentially. But all the methods require some restrictions on
the number s of nonzero βj’s. In other words, some sparsity assumption is required. In this
paper we take s fixed and allow pn to grow.

False negatives can occur during screening due to cancellations of correlations. For example,
the correlation between Y and X1 can be 0 even when β1 is huge. This problem is called
unfaithfulness in the causality literature; see Spirtes, Glymour and Scheines (2001) and Robins,
Spirtes, Scheines and Wasserman (2003). False negatives during screening can lead to false
positives during the second stage.

Let μ̂ j denote the regression coefficient from regressing Y on Xj. Fix j ≤ s and note that

where ρkj = corr(Xk, Xj). If
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then μj ≈ 0 no matter how large βj is. This problem can occur even when n is large and p is
small.

For example, suppose that β = (10, −10, 0, 0) and that ρ(Xi, Xj) = 0 except that ρ(X1, X2) =ρ
(X1, X3) = ρ(X2, X4) = 1 − ε where ε > 0 is small. Then

Marginal regression is extremely susceptible to unfaithfulness. The lasso and forward stepwise,
less so. However, unobserved covariates can induce unfaithfulness in all the methods.

3. Loss and Cross-validation
Let Xλ = (X•j: j ∈ Ŝ n(λ)) denote the design matrix corresponding to the covariates in Ŝ n(λ) and
let β ̂  (λ) be the least squares estimator for the regression restricted to Ŝ n(λ), assuming the

estimator is well defined. Hence, . More generally, β ̂ M is the least squares
estimator for any subset of variables M. When convenient, we extend β ̂ (λ) to length p by setting
β ̂ j(λ) = 0 for j ∉ Ŝ n(λ).

3.1. Loss
Now we record some properties of the loss function. The first part of the following lemma is
essentially Lemma 3 of Meinshausen and Yu (2008).

Lemma 3.1—Let . Then,

(6)

Let . Then,

(7)

3.2. Cross-validation
Recall that the data have been split into groups  ,  , and  each of size n. Construct β ̂ (λ)
from  and let

(8)
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We would like L ̂  (λ) to order the models the same way as the true loss L(λ) (defined after
equation (5)). This requires that, asymptotically, L ̂  (λ) − L(λ) ≈ δn where δn does not involve
λ. The following bounds will be useful. Note that L(λ) and L ̂  (λ) are both step functions that
only change value when a variable enters or leaves the model.

Theorem 3.2—Suppose that maxλ∈Λn |Ŝ n(λ)| ≤ kn. Then there exists a sequence of random
variables δn = OP (1) that do not depend on λ or X, such that, with probability tending to 1,

(9)

4. Multi-Stage Methods
The multi-stage methods use the following steps. As mentioned earlier, we randomly split the
data into three parts  ,  and  which we take to be of equal size.

1. Stage I. Use  to find Ŝ n (λ) for each λ.

2. Stage II. Use  to find λ ̂  by cross-validation and let Ŝ n = Ŝ n (λ ̂ )

3. Stage III. Use  to find the least squares estimate β ̂  for the model Ŝ n. Let

where Tj is the usual t-statistic, cn = zα/2m and m = |Ŝ n|

4.1. The Lasso
The lasso estimator (Tibshirani 1996) β̃(λ) minimizes

and let Ŝ n(λ) = {j: β̃j (λ) ≠ 0}. Recall that β ̂  (λ) is the least squares estimator using the covariates
in Ŝ n (λ).

Let kn = A log n where A > 0 is a positive constant.

Theorem 4.1—Assume that (A1)–(A5) hold. Let Λn = {λ: |Ŝ n(λ)| ≤ kn}. Then:

1. The true loss overfits: ℙ(D ⊂ Ŝ n(λ*)) → 1 where λ* = argminλ∈Λn L(λ).

2. Cross-validation also overfits: ℙ(D ⊂ Ŝ n(λ̂ )) →1 where λ̂ = argminλ∈ΛnL̂ (λ).

3. Type I error is controlled: lim supn→ ∞ ℙ(Dc ∩ D ̂ n ≠ ∅) ≤ α

If we let α = αn → 0 then D ̂ n is consistent for variable selection.

Theorem 4.2—Assume that (A1)–(A5) hold. Let αn → 0 and . Then, the multi-
stage lasso is consistent,
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(10)

The next result follows directly. The proof is thus omitted.

Theorem 4.3—Assume that (A1)–(A5) hold. Let α be fixed. Then (D̂ n; Ŝ n) forms a
confidence sandwich:

(11)

Remark 4.4—This confidence sandwich is expected to be conservative in the sense that the
coverage can be much larger than 1 − α.

4.2. Stepwise Regression
The version of stepwise regression we consider is as follows. Let kn = A log n for some A > 0.

1. Initialize: Res = Y, λ = 0, Ŷ  = 0, and Ŝ n (λ) = ∅.

2. Let λ ← λ+ 1. Compute μ̂ j = n−1〈Xj, Res〉 for j = 1, …, p.

3. Let J= argmaxj |μ ̂ j|. Set Ŝ n(λ) = {Ŝ n(λ −1), J}. Set Ŷ = Xλβ̂ (λ) where

 and let Res = Y − Ŷ .

4. If λ = kn stop. Otherwise, go to step 2.

For technical reasons, we assume that the final estimator xTβ ̂  is truncated to be no larger than
B. Note that λ is discrete and Λn = {0, 1, …, kn}.

Theorem 4.5—With Ŝ n(λ) defined as above, the statements of Theorems 4.1, 4.2 and 4.3
hold.

4.3. Marginal Regression
This is probably the oldest, simplest and most common method. It is quite popular in gene
expression analysis. It is used to be regarded with some derision but has enjoyed a revival. A
version appears in a recent paper by Fan and Lv (2008). Let Ŝ n(λ) = {j: |μ̂ j| ≥ λ} where μ̂ j
=n−1 〈Y, X•j〉.

Let μj =  (μ̂ j) and let μ(j) denote the value of μ ordered by their absolute values:

Theorem 4.6—Let kn → ∞ with . Let Λn = {λ: |Ŝ n(λ)| ≤ kn}. Assume that

(12)

Then, the statements of Theorems 4.1, 4.2 and 4.3 hold.

The assumption (12) limits the degree of unfaithfulness (small partial correlations induced by
cancellation of parameters). Large values of kn weaken assumption (12) thus making the
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method more robust to unfaithfulness, but at the expense of lower power. Fan and Lv (2008)
make similar assumptions. They assume that there is a C > 0 such that |μj| ≥ C|βj| for all j which
rules out unfaithfulness. However, they do not explicitly related the values of μj for j ∈ D to
the values outside D as we have done. On the other hand, they assume that Z = Σ−1/2 X has a
spherically symmetric distribution. Under this assumption and their faithfulness assumption,
they deduce that the μj’s outside D cannot strongly dominate the μj’s within D. We prefer to
simply make this an explicit assumption without placing distributional assumptions on X. At
any rate, any method that uses marginal regressions as a starting point must make some sort
of faithfulness assumptions to succeed.

4.4. Modifications
Let us now discuss a few modifications of the basic method. First, consider splitting the data
only into two groups  and  . Then do these steps:

1. Stage I. Find Ŝ n(λ) for λ ∈ Λn where |Ŝ n(λ)| ≤ kn for each λ ∈ Λn using  .

2. Stage II. Find λ ̂  by cross-validation and let Ŝ n = Ŝ n(λ ̂ ) using  .

3. Stage III. Find the least squares estimate β ̂ Ŝ n using  . Let D ̂ n = {j ∈ Ŝ n: |Tj| > cn}
where Tj is the usual t-statistic.

Theorem 4.7—Choosing

(13)

controls asymptotic type I error.

The critical value in (13) is hopelessly large and it does not appear it can be substantially
reduced. We present this mainly to show the value of the extra data-splitting step. It is tempting
to use the same critical value as in the tri-split case, namely, cn = zα/2m where m = |Ŝ n| but we
suspect this will not work in general. However, it may work under extra conditions.

5. Application
As an example we illustrate an analysis based on part of the Osteoporotic Fractures in Men
Study (MrOS, Orwoll et al. 2005). A sample of 860 men were measured at a large number of
genes and outcome measures. We consider only 296 SNPs which span 30 candidate genes for
bone mineral density. An aim of the study was to identify genes associated with bone mineral
density that could help in understanding the genetic basis of osteoporosis in men. Initial
analyses of this subset of the data revealed no SNPs with a clear pattern of association with
the phenotype; however, three SNPs, numbered (67, 277, 289) exhibited some association in
the screening of the data. To further explore the effacacy of the lasso screen and clean procedure
we modified the phenotype to enhance this weak signal and then reanalyzed the data to see if
we could detect this planted signal.

We were interested in testing for main effects and pairwise interactions in these data; however,
including all interactions results in a model with 43,660 additional terms, which is not practical
for this sample size. As a compromise we selected 2 SNPs per gene to model potential
interaction effects. This resulted in a model with a total of 2066 potential coefficients, including
296 main effects and 1770 interaction terms. With this model our initial screen detected 10
terms, including the three enhanced signals, 2 other main effects and 5 interactions. After
cleaning, the final model detected the 3 enhanced signals, and no other terms.
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6. Simulations
To further explore the screen and clean procedures, we conducted simulation experiments with
four models. For each model  where the measurement errors, εi and , are iid
Normal(0, 1) and the covariates Xij’s are Normal(0, 1) (except for model D). Models differ in
how Yi is linked to Xi and the dependence structure of the Xi’s. Models A, B and C explore
scenarios with moderate and large p, while Model D focuses on confounding and
unfaithfullness.

A. Null model: β = (0,…,0) and the Xij’s are iid.

B. Triangle model: βj = δ(10 − j), j = 1,…, 10, βj = 0, j > 10 and Xij’s are iid.

C.
Correlated Triangle model: as B, but with  for j > 1, and
ρ = 0.5.

D. Unfaithful model: Yi = β1Xi1 + β2Xi2 + εi, for β1 = − β2 = 10, where the Xij’s are iid
for j = {1, 5, 6, 7, 8, 9, 10}, but , and ,
for τ = 0.01 and ρ = 0.95.

We used a maximum model size of kn = n1/2 which technically goes beyond the theory but
works well in practice. Prior to analysis the covariates are scaled so that each has mean 0 and
variance 1. The tests were initially performed using a third of the data for each of the three
stages of the procedure (Table 1, top half, 3 splits). For models A, B and C each approach has
Type I error less than ρ, except the stepwise procedure which has trouble with model C when
n = p = 100. We also calculated the false positive rate and found it to be very low (about
10−4 when p = 100 and 10−5 when p = 1000) indicating that even when a Type I error occurs,
only a very small number of terms are included erroneously. The lasso screening procedure
exhibited a slight power advantage over the stepwise procedure. Both methods dominated the
marginal approach. The Markov dependence structure in model C clearly challenged the
marginal approach. For Model D none of the approaches controlled the Type I error.

To determine the sensitivity of the approach to using distinct data for each stage of the analysis,
simulations were conducted screening on the first half of the data and cleaning on the second
half (2 splits). The tuning parameter was selected using leave-one-out cross validation (Table
1, bottom half). As expected this approach lead to a dramatic increase in the power of all the
procedures. More surprising is the fact that the Type I error was near α or below for models
A, B and C. Clearly this approach has advantages over data splitting and merits further
investigation.

A natural competitor to screen and clean procedure is a two-stage adaptive lasso (Zou, 2006).
In our implementation we split the data and used one half for each stage of the analysis. At
stage one, leave-one-out cross validation lasso screens the data. In stage two, the adaptive lasso,
with weights wj = |β ̂ j|−1, cleans the data. The tuning parameter for the lasso was again chosen
using leave-one-out cross validation. Table 2 provides the size, power and false positive rate
(FPR) for this procedure. Naturally, the adaptive lasso does not control the size of the test, but
the FPR is small. The power of the test is greater than we found for our lasso screen and clean
procedure, but this extra power comes at the cost of a much higher Type I error rate.

7. Proofs
Recall that if A is a square matrix then φ(A) and Φ(A) denote the smallest and largest eigenvalues
of A. Throughout the proofs we make use of the following fact. If v is a vector and A is a square
matrix then
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(14)

We use the following standard tail bound: if Z ~ N(0, 1) then ℙ(|Z| > t) ≤ t−1e−t2/2. We will also
use the following results about the lasso from Meinshausen and Yu (2008). Their results are
stated and proved for fixed X but, under the conditions (A1)–(A5), it is easy to see that their
conditions hold with probability tending to one and so their results hold for random X as well.

Theorem 7.1 (Meinshausen and Yu, 2008)
Let β̃(λ) be the lasso estimator.

1. The squared error satisfies:

(15)

where m = |Ŝ n(λ)| and c > 0 is a constant.

2. The size of Ŝ n(λ) satisfies

(16)

where .

Proof of Lemma 3.1—Let D ⊂ M and . Then

where . Conditional on X,  where . Let

. By Hoeffding’s inequality, (A2) and (A5), ℙ(En) → 1 where
. So
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But  and (6) follows.

Now we lower bound L(β ̂ M). Let M be such that D ⊄ M. Let A = {j: β̂ (j) ≠ 0} ∪ D. Then |
A| ≤ m + s. Therefore, with probability tending to 1,

Proof of Theorem 3.2—Let Ỹ denote the responses, and X̃ the design matrix, for the second
half of the data. Then Ỹ = X̃β + ε̃. Now

and

where δn = ||ε̃||2/n, and  and Σ̃n = n−1 X̃T X̃. By Hoeffding’s inequality

for some c > 0 and so

Choose εn = 4/(cn1−c2). It follows that

Note that
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Hence, with probability tending to 1,

for all λ ∈ Λn, where

and . Now  since ||β ̂ (λ)||2 = OP (kn/φ(kn)). Thus,
||β ̂ (λ) − β||1 ≤ C(kn + s) with probability tending to 1, for some C > 0. Also, |μi(λ)| ≤ B||β ̂ (λ) −
β||1 ≤ BC(kn + s) with probability tending to 1. Let W ~ N (0, 1). Conditional on  ,

so .

Proof of Theorem 4.1—(1) Let , M = Ŝ n(λn) and m = |M |. Then, ℙ(m ≤ kn)
→ 1 due to (16). Hence, ℙ(λn ∈ Λn) → 1. From (15),

Hence, . So, for each j ∈ D,

and hence ℙ(minj∈D|β̃j(λn)| > 0) → 1. Therefore, Γn = {λ ∈ Λn: D ⊂ Ŝ n(λ)} is nonempty. By
Lemma 3.1,

(17)

On the other hand, from Lemma 3.1,

(18)
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Now, nφn(kn)/(kn log pn) → ∞ and so, (17) and (18) imply that

Thus, if λ* denotes the minimizer of L(λ) over Λn, we conclude that ℙ(λ* ∈ Γn) → 1 and hence,
ℙ(D ⊂Ŝ n(λ*)) → 1.

(2) This follows from part (1) and Theorem 3.2.

(3) Let A = Ŝ n ∩ Dc. We want to show that

Now,

Conditional on (  ,  ), β ̂ A is Normally distributed with mean 0 and variance matrix

 when D ⊂ Ŝ n. Recall that

where M = Ŝ n,  and ej= (0, …, 0, 1, 0, …, 0)T where the 1 is in the jth
coordinate. When D ⊂ Ŝ n, each Tj, for j ∈ A, has a t-distribution with n − m degrees of freedom
where m = |Ŝ n|. Also, cn/tα/2m → 1 where tu denotes the upper tail critical value for the t-
distribution. Hence,

where an = o(1), since |A| ≤ m. It follows that
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Proof of Theorem 4.2—From Theorem 4.1, ℙ(D ̂ n ∩ Dc ≠ ∅) ≤ αn and so ℙ(D ̂ n ∩ Dc ≠
∅) → 0. Hence, ℙ(D ̂ n ⊂ D) → 1. It remains to be shown that

(19)

The test statistic for testing βj = 0 when Ŝ n = M is

For simplicity in the proof, let us take σ ̂  = σ, the extension to unknown σ being straightforward.
Let j ∈ D, ℳ = {M: |M| ≤ kn, D ⊂ M}. Then,

Conditional on  ∪  , for each M ∈ ℳ, Tj(M) = (βj/sj) + Z where Z ~ N (0, 1). Without loss
of generality assume that βj > 0. Hence,

Fix a small ε > 0. Note that . It follows that, for all large n, . So,

The number of models in ℳ is

where we used the inequality
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So,

by (A2). We have thus shown that ℙ(j ∉ D ̂ n) → 0 for each j ∈ D. Since |D| is finite, it follows
that ℙ(j ∉ D ̂ n for some j ∈ D) → 0 and hence (19).

Proof of Theorem 4.5—A simple modification of Theorem 3.1 of Barron, Cohen, Dahmen
and DeVore (2008) shows that

(The modification is needed because Barron, Cohen, Dahmen and DeVore (2008) require Y to
be bounded while we have assumed that Y is Normal. By a truncation argument, we can still
derive the bound on L(kn).) So

Hence, for any ε > 0, with probability tending to 1, ||β ̂  (kn) − β||2 < ε so that |β ̂ j| > ψ/2 > 0 for
all j ∈ D. Thus, ℙ(D ⊂ Ŝ n(kn)) → 1. The remainder of the proof of part 1 is the same as in
Theorem 4.1. Part 2 follows from the previous result together with Theorem 3.2. The proof of
Part 3 is the same as for Theorem 4.1.

Proof of Theorem 4.6—Note that . Hence, . So,
for any δ > 0,

By (12), conclude that D ⊂ Ŝ n(λ) when λ = μ̂ (kn). The remainder of the proof is the same as
the proof of Theorem 4.5.

Proof of Theorem 4.7—Let A = Ŝ n ∩ Dc. We want to show that
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For fixed A, β ̂ A is Normal with mean 0 but this is not true for random A. Instead we need to
bound Tj. Recall that

where M = Ŝn,  and ej = (0, …, 0, 1, 0, …, 0)T where the 1 is in the jth
coordinate. The probabilities that follow are conditional on  but this is supressed for
notational convenience. First, write

When D ⊂ Ŝ n,

where , and βŜ n (j) = 0 for j ∈A. Now,  so that

for j ∈ Ŝ n. Therefore,

Let γ = n−1XTε. Then,
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It follows that

since κ > 0. So,

Note that γj ~ N (0, σ2/n) and hence

There exists εn → 0 such that ℙ(Bn) → 1 where Bn = {(1 − εn) ≤ σ ̂ /σ ≤ (1 + ε)}. So,

8. Discussion
The multi-stage method presented in this paper successfully controls type I error while giving
reasonable power. The lasso and stepwise have similar performance. Although theoretical
results assume independent data for each of the three stages, simulations suggest that leave-
one-out cross-validation leads to valid Type I error rates and greater power. Screening the data
in one phase of the experiment and cleaning in a followup phase leads to an efficient
experimental design. Certainly this approach deserves further theoretical investigation. In
particular, the question of optimality is an open question.

The literature on high dimensional variable selection is growing quickly. The most important
deficiency in much of this work, including this paper, is the assumption that the model Y =
XTβ + ε is correct. In reality, the model is at best an approximation. It is possible to study linear
procedures when the linear model is not assumed to hold as in Greenshtein and Ritov (2004).
We discuss this point in the appendix. Nevertheless, it seems useful to study the problem under
the assumption of linearity to gain insight into these methods. Future work should be directed
at exploring the robustness of the results when the model is wrong.

Other possible extensions include: dropping the Normality of the errors, permitting non-
constant variance, investigating the optimal sample sizes for each stage, and considering other
screening methods besides cross-validation.
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Finally let us note that the example involving unfaithfulness, that is, cancellations of parameters
to make the marginal correlation much different than the regression coefficient, pose a
challenge for all the methods and deserve more attention even in cases of small p.
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Appendix

Prediction
Realistically, there is little reason to believe that the linear model is correct. Even if we drop
the assumption that the linear model is correct, sparse methods like the lasso can still have
good properties as shown in Greenshtein and Ritov (2004). In particular, they showed that the
lasso satisfies a risk consistency property. In this appendix we show that this property continues
to hold if λ is chosen by cross-validation.

The lasso estimator is the minimizer of . This is equivalent to

minimizing  subject to ||β||1 ≤ Ω, for some Ω. (More precisely, the set of
estimators as λ varies is the same as the set of estimators as Ω varies.) We use this second
version throughout this section.

The predictive risk of a linear predictor ℓ(x) = xTβ is R(β) =  (Y − ℓ(x))2 where (X, Y) denotes
a new observation. Let γ = γ(β) = (−1, β1, …, βp)T and let Γ =  (ZZT) where Z = (Y, X1, …,
Xp). Then we can write R(β) = γTΓγ. The lasso estimator can now be written as β ̂  (Ωn) =

argminβ∈B(Ωn) R̂ (β) where R̂  (β) = γTΓ ̂ γ and .

Define

where

Thus, ℓ*(x) = xT β* is the best linear predictor in the set B(Ωn). The best linear predictor is well
defined even though  (Y | X) is no longer assumed to be linear. Greenshtein and Ritov
(2004) call an estimator β ̂ n persistent, or predictive risk consistent, if

as n → ∞.

The assumptions we make in this section are:

(B1) pn ≤ enξ for some 0 ≤ ξ < 1 and

(B2) The elements of Γ ̂ satisfy an exponential inequality:
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for some c3, c4 > 0 and

(B3) There exists B0 < ∞ such that, for all n, maxj;k (|ZjZk|) ≤ B0.

Condition (A2) can easily be deduced from more primitive assumptions as in Greenshtein and
Ritov (2004) but for simplicity we take (A2) as an assumption. Let us review one of the results
in Greenshtein and Ritov (2004). For the moment, replace (A1) with the assumption that pn ≤
nb for some b. Under these conditions, it follows that

Hence,

The latter term is oP (1) as long as Ωn = o((n/log n)1/4). Thus we have:

Theorem 8.1 (Greenshtein and Ritov 2004)
If Ωn = o((n/log n)1/4) then the lasso estimator is persistent.

For future reference, let us state a slightly different version of their result that we will need.
We omit the proof.

Theorem 8.2
Let γ > 0 be such that ξ + γ < 1. Let Ωn = O(n(1−ξ−γ)/4). Then, under (B1) and (B2),

(20)

for some c > 0.

The estimator β ̂ (Ωn) lies on the boundary of the ball B(Ωn) and is very sensitive to the exact
choice of Ωn. A potential improvement—and something that reflects actual practice—is to
compute the set of lasso estimators β ̂ (ℓ) for 0 ≤ ℓ ≤ Ωn and then select from that set based on
cross validation. We now confirm that the resulting estimator preserves persistence. As before
we split the data into  and  . Construct the lasso estimators {β ̂ (ℓ): 0 ≤ ℓ ≤ Ωn}. Choose ℓ̂
by cross validation using  . Let β ̂  = β ̂ (ℓ ̂ ).
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Theorem 8.3
Let γ > 0 be such that ξ + γ < 1. Under (A1), (A2) and (A3), if Ωn = O(n(1−ξ−γ)/4). then the
cross validated lasso estimator β̂ is persistent. Moreover,

(21)

Proof—Let β*(ℓ) = argminβ∈B(ℓ)R(β). Define h(ℓ) = R(β*(ℓ)), g(ℓ) = R(β ̂ (ℓ)) and c(ℓ) = L ̂
(β ̂ (ℓ)). Note that, for any vector b, we can write R(b) = τ2 + bTΣb −2bT ρ where ρ = ( (Y X1),
…,  (Y Xp))T.

Clearly, h is monotone nonincreasing on [0, Ωn]. We claim that |h(ℓ + δ) − h(ℓ)| ≤ cΩnδ where
c depends only on Γ. To see this, let u = β*(ℓ), v = β*(ℓ + δ) and a = ℓ β*(ℓ + δ)/(ℓ + δ) so that
a ∈ B(ℓ). Then,

where C = maxj,k |Γj,k| = O(1).

Next we claim that g(ℓ) is Lipschitz on [0, Ωn] with probability tending to 1. Let β ̂ (ℓ) =
argminβ∈B̂ (ℓ)R̂ (β) denote the lasso estimator and set û  = β ̂ (ℓ) and v̂  = β ̂ (ℓ + δ). Let εn =
n−γ/4. From (20), the following chain of equations hold except on a set of exponentially small
probability:

A similar argument can be applied in the other direction. Conclude that

except on a set of small probability.

Now let A = {0, δ, 2δ, …, mδ} where m is the smallest integer such that mδ ≥ Ωn. Thus, m ~
Ωn/δn. Choose δ = δn = n−3(1−ξ−γ)/8. Then Ωnδn → 0 and Ωn/δn ≤ n3(1−ξ−γ)/4. Using the same
argument as in the proof of Theorem 3.2,

where σn = oP (1). Then,
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and persistence follows. To show the second result, let β̃ = argmin0≤ℓ≤Ωn g(ℓ) and β ̄ =
argminℓ∈A g(ℓ). Then,

and the claim follows.
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