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Summary
There has been a recent emphasis on the identification of biomarkers and other biologic measures
that may be potentially used as surrogate endpoints in clinical trials. We focus on the setting of data
from a single clinical trial. In this paper, we consider a framework in which the surrogate must occur
before the true endpoint. This suggests viewing the surrogate and true endpoints as semi-competing
risks data; this approach is new to the literature on surrogate endpoints and leads to an asymmetrical
treatment of the surrogate and true endpoints. However, such a data structure also conceptually
complicates many of the previously considered measures of surrogacy in the literature. We propose
novel estimation and inferential procedures for the relative effect and adjusted association quantities
proposed by Buyse and Molenberghs (1998, Biometrics, 1014 – 1029). The proposed methodology
is illustrated with application to simulated data, as well as to data from a leukemia study.
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1. Introduction
Recently, surrogate endpoints have become of great interest in clinical research (Biomarkers
Working Group, 2001). These are measures that can be collected in a shorter time period and/
or using fewer subjects than those normally considered in a classical clinical trial (e.g.,
survival). Surrogate endpoints are typically proposed based on biological considerations with
a certain progression model of disease. One example of a surrogate is CD4 count levels in
AIDS; the CD4 count can potentially serve as a surrogate endpoint for death. Another example
from cancer studies is using tumor shrinkage as a surrogate endpoint for survival or disease-
free survival. Also, high-throughput fields such as genomics and proteomics are generating
molecular profiles that scientists might wish to use as surrogate endpoints in the future.

A seminal paper in the evaluation of surrogate endpoints was the work of Prentice (1989), in
which he specifies conditions under which a test of a treatment effect on the surrogate endpoint
provides valid inference for testing for the effect of treatment on the true endpoint. Because
the so-called Prentice criterion is a difficult one to validate, many authors have focused on
alternative measures of assessing surrogacy; a comprehensive discussion of them can be found
in the recent monograph by Burzykowski et al. (2005).

We focus on the situation where the two endpoints are both times to event. We consider the
scenario when the surrogate endpoint occurs before the true endpoint. This complicates the
analysis of such data so that we have to make use of techniques from a field of survival analysis
known as semi-competing risks data (Fine et al. 2001; Ghosh, 2006) for assessment of
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surrogacy. The application of semi-competing risks approaches to the surrogate endpoints
problem is novel; in fact, in chapter 11 of Burzykowski et al. (2005), the authors write that
methods that allow for asymmetrical dependence of surrogate and true endpoints are lacking.
They discuss the possibility of using semi-competing risks data methods but do not explore it
any further. We focus on the setting of a single clinical trial and discuss issues particular to it.
While the meta-analysis paradigm has become very important to the assessment of surrogacy
(Daniels and Hughes, 1997; Gail et al., 2000; Buyse et al., 2000), it is important to start with
the single trial setting so as to clearly understand the issues involved. The structure of this paper
is as follows. In Section 2, we review the data structures observed in the paper, discuss semi-
competing risks data and their application to the analysis of surrogate endpoints. We then
review several measures of surrogacy and describe probabilistic models in Section 3. For the
analysis of the failure time endpoints, we use the linear regression model (Cox and Oakes,
1984, §5.2), whose use in the assessment of surrogacy has been recently advocated by Ghosh
(2008). However, he did not deal with semi-competing risk issue there. Because of the nature
of the data structure, both formulation and estimation of existing surrogacy measures becomes
challenging. Estimation procedures for the surrogacy measures proposed by Buyse and
Molenberghs (1998), along with attendant asymptotic results, are provided in Section 4. The
finite-sample properties of the proposed methods are assessed with application to simulated
and real studies in Section 5. We conclude with some discussion in Section 6.

2. Preliminaries and background
2.1. Data Structures and Semi-Competing Risks Rationale

We start by making the following definitions. Let a ∧ b denote the minimum of two numbers
a and b. Define I(A) to be the indicator function for the event A. Let S denote time to the
surrogate endpoint, T the time to the true endpoint and C time to independent censoring. Let
Z be the indicator for treatment group (0 = control; 1 = treatment). Assume that (S, T) and C
are conditionally independent given Z. We observe n observations  (i = 1,
…,n), a random sample from (X, δX, Y, δY ;Z), where X = S ∧ T ∧ C, δX = I(S ≤ T ∧ C), Y =
T ∧ C and δY = I(T ≤ C).

Note that we have censored S by the minimum of T and C and not just by C. Within the semi-
competing risks setup, we are interested in the following distributions:

1. The distribution of the true endpoint in the absence of independent censoring,
potentially adjusting for covariates;

2. The distribution of the surrogate endpoint in the absence of both the true endpoint
and independent censoring, potentially adjusting for covariates.

Because we wish to adjust for the dependent censoring in (2) by the true endpoint, this will
complicate the analysis.

In the analysis of surrogate endpoints, there has been interest in measures of dependence
between S and T, adjusting for Z. This has typically been formulated using copula models
(Nelsen, 1999; Burzykowski et al., 2001). One point of note is that these measures are typically
symmetric in S and T (Burzykowski et al. 2005, p. 194). One could argue that a more reasonable
strategy is to consider asymmetric measures of dependence between S and T. This highlights
the true endpoint as being the “gold standard” and treats the surrogate as a proxy that should
in principle be observed more quickly than the true endpoint. Under this type of scenario, it
seems reasonable to entertain probabilistic models for S and T on the wedge. The wedge refers
to the region where S ≤ T. This has not been done in the previous literature on surrogate
endpoints. It is important to note that we do not assume that P(S ≤ T) = 1; we instead seek to
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make inferential statements about surrogacy on the wedge. This is the same view adopted by
Fine et al. (2001) and Peng and Fine (2006).

We also note in passing that an alternative practical approach is to create a composite endpoint
that represents the minimum of S and T. One example of such an endpoint is disease-free
survival, defined as the minimum of time to disease recurrence and time to death. While this
has recently been used as a surrogate endpoint in colorectal cancer (Sargent et al., 2005), there
are several issues with the use of composite endpoints. First, there are difficulties in interpreting
the composite endpoint in terms of the individual events themselves. Second, if the goal is to
study the dependence between S and T, then it is impossible to do so if the composite endpoint
is used.

3. Proposed Methodology for Assessing Surrogacy
3.1. Measures of Surrogacy

For assessing surrogacy, several authors have pointed out the problems with the use of the
Prentice criteria in a purely testing format (Begg and Leung, 2000; Berger, 2004). Instead,
much of the surrogate endpoint literature has been devoted to developing estimation and
inference procedures for alternative measures of surrogacy.

Before defining the measures, it is important to formulate appropriate probabilistic models for
the true and surrogate endpoints as functions of Z. In this paper, we formulate models based
on the accelerated failure time model (Cox and Oakes, 1984, §5.2). For most existing surrogacy
measures, we would need to fit the following regression models:

(1)

(2)

and

(3)

where ε1; ε2 and ε3 are error terms and β, α and (ζ, γ) are unknown regression coefficients to
be estimated. Note that for the Prentice (1989) criteria to be true, we need β and α to not equal
zero but for γ = 0, in addition to log T and log S being correlated.

We use the AFT model rather than the proportional hazards model (Cox, 1972) in this
manuscript. By assuming linear models (1) – (3), it is possible for all these models to be
simultaneously compatible. By contrast, this does not happen with the proportional hazards
model (Lin et al., 1997). In addition, the interpretation of the AFT model is akin to that of linear
regression and is simpler than that for a hazard function; this has been discussed by Cox, among
other authors (Reid, 1994, p. 450).

The first measure of surrogacy considered in the literature is proportion of treatment effect
(PTE) (Friedman et al., 1992). PTE is defined as

(4)
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To estimate PTE, we would need to fit models (1) and (3), obtain estimators β̂ and γ̂ from these
models and plug them into (4).

Wang and Taylor (2002) and Ghosh (2008) explored the properties of a PTE-type quantity
termed the F measure. The idea is to compare the distribution of the surrogate endpoints
between the two treatment groups in which the distributions are weighted by the conditional
distribution of the true endpoint, given treatment and the surrogate endpoint. An F value of
zero corresponds to the surrogate endpoint being useless, while that of one implies it is perfect.
Wang and Taylor (2002) show that their F measure reduces to the PTE in the case of uncensored
data for a bivariate normal distribution conditional on covariates. Ghosh (2008) showed how
to calculate a version of the F measure with bivariate censored data.

Buyse and Molenberghs (1998) argued for two alternative measures of surrogacy, the relative
effect and the adjusted association. Their argument was based on the premise that surrogates
are meaningful quantities to consider if the effect of treatment on the surrogate endpoint can
be used to predict treatment effects on the true endpoint. The relative effect (RE) is defined,
using the notation of models (1) and (2) as

(5)

If the variance of log T and log S are the same, then a RE value of one corresponds to the
surrogate being useful, while that of zero corresponds to the surrogate being useless. Note that
with the semi-competing risk data structure, log S ≤ log T, so the variances of the two random
variables will generally not be the same.

The adjusted association (AA) is the correlation between the true and surrogate endpoint,
adjusting for the treatment effect. Calculation of the adjusted association requires estimations
of models (1) and (2), where (ε1; ε2) have a joint distribution parametrized by an association
parameter. The RE and AA measures fit into the framework of Buyse and Molenberghs
(1998) in which the treatment effect on the surrogate endpoint is used to predict the treatment
effect on the surrogate endpoint. If the RE measure will be equal to one, then the surrogate is
a perfect population-level surrogate (Buyse et al., 2000). By contrast, what the adjusted
association measures is the correlation between the two endpoints at the individual level.

In the literature on semi-competing risks data, a popular class of models for modelling
dependence is copula models on the wedge, which we describe in the next section.

3.2. Copula models on the wedge
Let H(s, t) ≡ Pr(S > s, T > t) denote the joint survival distribution of (S, T). Then a copula model
decomposes H into the marginal survival distributions:

(6)

where C is the copula function, θ is a dependence parameter, and FS and FT are the marginal
survivor functions of S and T. The point of model (6) is to decouple the joint distribution of
(S, T) into univariate components. In principle, the estimation of the marginal distributions can
be decoupled from that of the dependence between S and T. While that does not happen here,
we still think the copula formulation a useful one for formulating the appropriate probabilistic
model.
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One popular example of a copula is the Clayton-Oakes model (Clayton, 1978; Oakes, 1986).
It is defined as follows. Let the cross-ratio function (Oakes, 1989) between S and T be defined
by

(7)

where

and A is a subset of the interval (0,∞). The Clayton-Oakes model makes the assumption that
θ(s, t) in (7) is constant for all s and t, i. e. θ(t, s) = θ. In terms of model (6), the Clayton-Oakes
model corresponds to Cθ(u, υ) ≡ {u−θ+υ−θ−1}−1/θ with θ > 0.

In the semi-competing risks literature, several authors have postulated Clayton-Oakes model
only for the upper wedge of the joint distribution of (S, T). Day et al. (1997) considered this
model and proposed a test of the independence of S and T. Fine et al. (2001) provided a closed
form estimator of θ using modified weighted concordance estimating functions from Oakes
(1982, 1986) along with an asymptotic variance estimator. Wang (2003) proposed an
estimation procedure in this model, applicable more generally to copula models, based on a
Doob-Meyer decomposition of appropriate counting processes.

For our setting, we wish to have models for the joint distribution of (S, T) on the wedge. By
defining the model in this manner, several facts obtain. First, goodness of fit of the model can
be assessed because the joint distribution of S and T when S ≤ T is identifiable from the observed
data. This is proved in Fine et al. (2001). Second, even though this feature of the joint
distribution is identifiable on the wedge, the marginal distribution of S is still not easily
estimable using the observed data. In fact, while H(s, 0) is typically the marginal survivor
function for S in the unconstrained case, this will not be the case in the situation where S ≤ T.
Finally, because we have imposed the constraint that S ≤ T, they are by definition dependent
in this model. Even though Day et al. (1997) and Fine et al. (2001) propose tests for
“independence” for the Clayton-Oakes model on the wedge, what they really refer to is a test
for quasi-independence, in the sense of Tsai (1990). Conceptually, quasi-independence means
that on all squares contained in the region S ≤ T, S and T are independent.

In the surrogate endpoints problem, it does seem natural to consider models on the wedge, as
it is necessary for S and T to be correlated in order for S to serve as a useful surrogate endpoint.
Typically, there is strong scientific and empirical evidence to show that S and T are correlated.
If this is not the case, then it would be make absolutely no sense to be considering S as a
surrogate for T. It is important to note that this reasoning is applicable to a single trial. In the
setting where data from multiple trials are considered, it is possible for the individual-level
correlation between S and T to be weak but for the trial-level correlation to be strong
(Burzykowski et al., 2005, Ch. 7). This would require a meta-analytical treatment of the AA
and RE measures and is beyond the scope of our manuscript.

3.3 Limitation of PTE-type measures of surrogacy with semi-competing risks data
In this section, we discuss conceptual limitations to using the PTE and F measures of surrogacy
with semi-competing risks data. With such a data structure, we noted earlier that P(S > s, T >
t|Z) is identifiable from the observed data given s ≤ t. What is not nonparametrically estimable
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is the conditional distribution of T given S and Z. This is because as noted by Fine et al.
(2001), the marginal distribution of S given Z is not identifiable. Using [A] to denote the
distribution of a random variable A, we have

While the conditional distribution of (T, S) conditional on covariates can be estimated non-
parametrically on the wedge, [S|Z] cannot. Thus, in particular, the PTE and F measures with
semi-competing risks data suffer from an inherent identifiability identifiability issue.

What is needed for estimation of [T|S,Z] is a model on the lower wedge (i.e., the region where
S > T). If such a model is available, then the distribution of S|Z is estimable using the observed
data. In the work of Fine et al. (2001), they propose using the gamma frailty model on the entire
(S, T) in order to estimate the marginal distribution of S. However, one cannot assess goodness
of fit for the model on the lower wedge using the observed data. Thus, derivation of the
distribution of S given Z requires making unverifiable assumptions with semi-competing risks
data. This result is analogous to that of Tsiatis (1975) for ordinary competing risks.

These arguments give further evidence against the use of the PTE and F measures for assessing
surrogacy with semi-competing risks data. In the next section, we will instead focus on
estimating the measures of Buyse and Molenberghs (1998).

3.4 Limitation of causal inference surrogacy with semi-competing risks data
Recently, there has been work exploring surrogate endpoints in the setting of models from
causal inference (Frangakis and Rubin, 2002; Taylor et al., 2005). The focus is on estimating
causal effects of the treatment within a certain subpopulation of the study subjects. It turns out
that identification of causal effects and the feasibility of causal inference depends on whether
or not potential outcomes can be defined on the region S > T. Suppose that T is time to death
(survival). It has been noted by Robins (1995) that counterfactual outcomes for S when S > T
are not well-defined at all. Zhang and Rubin (2003) refer to this as “truncation by death.” Given
this fact, one cannot identify subpopulations with the same potential outcomes for (S, T), which
leads to the inability to define causal effects. Thus, all of the surrogacy measures that are
nonparametrically identifiable using the observed data will have no causal interpretation if T
is time to death. On the other hand, if T is time to disease recurrence and if S is time to biomarker
positivity, then it is possible to define causal effects, as one can define the potential outcomes
for (S, T) under the treatment groups for all individuals. While we do not pursue methods for
causal inference here, we simply wish to point out that the interpretation of S and T on the
lower wedge crucially affects the possibility of causal inference.

4. Estimation Procedures and Asymptotic Results
We will now develop methods of estimation and inference for the RE and AA quantities using
semi-competing risks data. While these have been explored in the case of bivariate survival
data by Burzykowski et al. (2001) and Ghosh (2008) for marginal proportional hazards and
marginal AFT models, neither author explicitly dealt with semi-competing risks data.
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4.1 Relative Effect
Because of the semi-competing risks structure to the surrogate and true endpoints, we are
unable to decouple the estimation of the marginal regression model (2) with the dependence
estimation. This complicates estimation of the RE and AA measures.

We first consider estimating the RE measure. While the estimation of the treatment on the true
endpoint can be assessed using standard rank-based estimating function approaches, estimating
the treatment effect on the surrogate endpoint is more complicated. For the estimate of the
regression coefficient in (1), we use the following log-rank estimating function:

(8)

where Ỹi(β) = Yi exp(−β′Zi), i = 1,…,n. Let β̂ be a zero-crossing of U1(β). This is the estimating
function proposed by Louis (1981).

For the estimation of α, we use the artificial censoring approach of Lin et al. (1996). The
intuitive idea is to artificially trim the transformed surrogate endpoint time by a factor that
allows for valid comparison between the two treatment groups. Define η = (α,β). This leads to
the following estimating equation for estimation of η:

(9)

where X̃i(η) = {Si exp(−αZi) ∧ Ti exp(−βZi − d) ∧ Ci exp(−βZi −d)},

and d = 0 if α ≤ β and β−α otherwise. Let α̂ be a zero-crossing of α from setting U2(η̃) = 0,
where η̃ = (α,β̂). Once we have an estimate of β and α, the relative effect estimate is given by

 In the Appendix, we prove the consistency and asymptotic normality of (α̂,β ^) and

Suppose we do not do the artificial censoring. An alternative approach would be to construct
an estimating function for α similar to (8) based on the data , i=1,…,n. However,
under model (2), it can be shown that the expected value of the estimating function at α0 is not
zero, which implies that estimates from this approach would be biased. This is why the artificial
censoring in (9) is needed. Note that in (9),  is modified and converted to . It
is the case that for one of the treatment arms, δX = 1 but δ̃X = 0; this is what is referred to as an
artificial censoring event. The treatment group that is artificially censored depends on the
relative magnitude of α and β If α ≤ β, then subjects in the Z = 0 are artificially censored, while
subjects on treatment are potentially artificially censored if α > β.

In more recent work, Peng and Fine (2006) have developed a pairwise analog of the artificial
censoring approach of Lin et al. (1996). Their approach led to greater efficiency gains in the
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simulation settings considered. Since the only covariate used in the regression models here is
Z, the two methods are equivalent.

Note that the proposed estimating functions proposed are discontinuous functions of the
regression coefficients, so this makes their standard error estimation difficult. We instead use
a resampling-based method developed by Parzen et al. (1994) to derive confidence intervals
for RE. We construct the pair of equations

(10)

(11)

where (G1,…,Gn) are independent standard normal random variables,

and

and  and  are Nelson-Aalen type estimators of the net hazard and cause-specific hazard
functions for the true and surrogate endpoints on the time-transformed scales. Denote the
solution to equations (10) and (11) by η* = (β*,α*)′. Note that the equations (10) and (11) are
constructed conditional on the observed data and that the only stochastic component to them
is (G1,…,Gn).

Define U(η) = {U1(β), U2(η)}. Obviously, , where ψ̂i = (ψ ^1i, ψ ^2i)′. It then
follows from (16) that

(12)

The conditional distribution of , given the data, is zero-mean

normal with covariance matrix , which converges in probability to V. Therefore,
the conditional distribution of n½(η* − η) is asymptotically equivalent to the unconditional
distribution of n½(η̂−η). To approximate the distribution of η, we obtain a large number of
realizations of η* by repeatedly generating the random samples (G1,…,Gn) while fixing the
data and solving equations (10) and (11). The empirical distribution of η* can then be used to
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perform hypothesis testing or interval estimation on α and β. For the purposes of surrogacy,
the empirical distribution of η* yields an empirical distribution of the relative effect measure,
which can then be used to construct a 95% CI for RE.

4.2 Adjusted Association
We now consider estimation of the adjusted association measure for surrogacy. We consider
use of the Clayton-Oakes copula model in this paper. Because the covariate Z is typically
discrete, this leads to a very simple two-step algorithm for estimation of the AA measure. First,
within each level of Z, estimate the dependence parameter using the approach of Fine et al.
(2001). This leads to an estimator θ̂Z defined by

(13)

where DijZ = I(X̃ij < Ỹij < C̃ij, Zi = Zj = Z) and ΔijZ = I{(Xi − Xj)(Yi − Yj) > 0,Zi =Zj = Z}, C̃ij =
Ci ∧ Cj, X̃ij = Xi ∧ Xj, Ỹij = Yi ∧ Yj, i, j = 1,…,n. The advantage of this type of estimator is that
it does not require estimation of high-dimensional nuisance parameters or the marginal
distribution of S. Applying arguments similar to those in Fine et al. (2001), we can show that
n½(θ ̂Z − θZ) converges in distribution to a normal random variable with mean zero and variance

, where

and

Simple and consistent estimators of  are given by  for Z = 0 and Z = 1.

At the second step, given the estimates θ̂Z, we construct a weighted average of the estimates

 this serves as our measure of the AA parameter. It is straightforward to see that
n½(θ ̂ − θ) converges in distribution to a mean-zero normal random variable with variance

. Using this variance, we are able to derive the optimal weights for combining

estimators as . Again, this is easy to estimate using the observed data. The
main appeal of the estimation procedure proposed here is ease of calculation. One could also
adapt the estimators proposed by Wang (2003) to this situation, but the computation of the
estimator becomes more cumbersome.

In theory, it is possible to consider estimators of θZ using weighted versions of (13). However,
both Fine et al. (2001) and Ghosh (2006) have found that unweighted versions of these
dependence estimators tend to perform quite competitively relative to weighted estimators, so
we focus on unweighted estimates of θZ in this manuscript. Note that a crucial assumption is
that there is no interaction between the dependence parameter in the Clayton-Oakes model and
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treatment group. If there is such an interaction, then use of the adjusted association measure
would be statistically invalid and lead to erroneous conclusions. We instead would wish to
report the estimates θ̂0 and θ ^1, along with their associated standard errors.

5. Numerical Examples
5.1 Acute Myelogeneous Leukemia Data

The motivating data example comes from a Phase III clinical trial (Berman et al., 1991)
comparing two treatments for acute myelogenous leukemia. The first treatment is the standard,
daunorubicin (DNR) and cytosine arabinoside (Ara-C), while the experimental therapy was
idarubicin (IDR) and Ara-C, all three of which are chemotherapeutic agents. The surrogate
endpoint of interest here is time to complete remission, defined as the leukemia cells being
killed by the chemotherapies. There are 130 patients in this randomized study; 65 are in each
treatment arm. In this example, the standard therapy was the DNR/Ara-C, so it was coded as
Z = 0, while Z = 1 corresponds to the IDR/Ara-C combination.

While IDR and DNR are have similar functions, there are slight differences in the molecular
structure of the two compounds that lead clinicians to believe that the IDR might be less toxic
than DNR. The goal of the study is to determine if compare the efficacy of the DNR/Ara-C
combination versus that of IDR/Ara-C with respect to several study endpoints, among them
complete remission and survival, as discussed by Berman et al. (1991). Complete remission
refers to leukemia cells being killed by the therapy. Here and in the sequel, we will use the
terms complete remission and remission interchangeably. Detailed descriptives of the surrogate
and true endpoints can be found in Ghosh (2008).

In a prior analysis of these data using AFT models, Ghosh (2008) obtained estimated effects
of −0.69 for treatment on remission (standard error = 0.34) and 0.51 for treatment on survival
(standard error = 0.24). Thus, we find that patients on IDR/Ara-C tend to have longer survival
and shorter times to remission than those on DNR/Ara-C. Combining the regression parameter
estimates yields an estimated relative effect of 0.74 in magnitude; a 95% nonparametric
bootstrap gave a confidence interval of (0.40, 1.15) for the RE.

The analysis done by Ghosh (2008) treated death as a censoring event for the surrogate
endpoint. Doing so models the cause-specific hazard of remission (Kalbeisch and Prentice
2002, §8.2.2), which is a fundamentally different quantity than the net hazard of remission,
which is what gets modelled here. Applying the proposed methodology, we get an estimated
treatment effect on survival of 0.59 (standard error = 0:28) and −2.00 for treatment on remission
(standard error = 0.41). This leads to a relative effect estimate of 0.30 in magnitude; the
proposed resampling method yields a 95% CI of (0.11, 0.49). In terms of the parameter
estimates, the reason for the difference in the treatment effect on survival is because in Ghosh
(2008), the method of Jin et al. (2003) was used, while here, the method of Louis (1981) was
used. This leads to the slight difference in parameter estimates and standard errors. For the
effect of treatment on complete remission, we are modelling a much different quantity for
remission than in Ghosh (2008). The standard error increases for the proposed methodology
because of the artificial censoring. 18 of the 89 complete remission events have been artificially
censored here; this is needed so as to obtain an approximately unbiased estimate of the effect
of treatment on time to complete remission. A key finding is that we have less evidence for
surrogacy based on using the relative effect measure.

Next, we describe the estimation and inference for adjusted association. In Ghosh (2008), we
obtained an adjusted association parameter of 0.61 along with an associated 95% CI of (0.47,
0.83). Thus, after adjusting for treatment, there is a significant negative association between
time to complete remission and time to death. This makes biological sense; if the cancer cells

Ghosh Page 10

Biometrics. Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



die sooner, then this would correlate with longer survival. Applying the proposed methodology
in Section 4.2, we obtain an estimate of the adjusted association parameter of 0.42 and
associated 95% confidence interval of (0.34, 0.50). This is even more evidence of negative
association between the two endpoints than in the original analysis of Ghosh (2008), as the
AA estimate deviates more from one. This suggests greater evidence of surrogacy based on
this criteria. One other point to note is that the confidence intervals for the adjusted association
and relative effect measures become narrower.

Applying the proposed methodology gives conflicting evidence of surrogacy in this example.
A potential way to resolve this would be to have data from multiple trials testing these two
treatments. For that scenario, the AA measure would assess individual-level surrogacy, while
the RE would be a measure of trial-level surrogacy.

5.2 Simulation Study
We also performed a simulation study to assess the finite-sample properties of the RE and AA
estimators from Section 4. For the RE simulation, data are generated using marginally standard
normal distributions for (logT, logS) conditional on Z with means µTZ and µSZ. Since we are
mimicking a clinical trial situation, we assume that P(Z = 1) = 0.5 for the simulation.
Dependence between log S and log T was generated by a Clayton-Oakes model with
dependence parameter θ common to the treatment and control groups.

In this model, the population relative effect is given by RE = (µT1 − µT0)/(µS1 − µS0). We
considered (µS0, µS1, µT0, µT1) = (0, 1, 0, 0.8) and (0, 1, 0, 0.4). These configurations yield RE
values equal to 0.8 and 0.4. The adjusted association is given by θ, which we took to equal 1.1
and 1.6. For each simulation setting, 1000 simulation samples were generated and 1000
resamplings were generated for each simulation sample. As noted by Fine et al. (2001, §4),
there are issues in attempting to generate data from a proper probabilistic model on the region
S ≤ T. We generate (S, T) conditional on Z using the above model and create the observed data
structure , i = 1,…,n. We seek to estimate RE and AA using the data observed
on the region S ≤ T. In particular, this model implies that P(S < T|Z = 0) = 0.5 for both scenarios
and P(S < T|Z = 1) ≈ 0.33 and 0.44 for the two scenarios (i.e., RE = 0.4 and = 0.8, respectively).
Censoring (C), distributed independently of (S,T), was generated using the logarithm of a
Uniform[0,3] random variable. This leads to approximately 60% and 40% censoring for
(S,T) for the RE = 0.4 and RE = 0.8 situations. We also considered the naive approach to
estimation of relative effect, which was described in Section 4.

The results are presented in Table 1. We find that the proposed estimators perform satisfactorily
in finite samples. There is a small bias in the relative effect estimator that diminishes with
larger sample size. By contrast, the naive approach is biased for all scenarios considered and
yields poor coverage for the 95% confidence intervals. The resampling-based method tends to
provide slightly conservative coverage for the 95% confidence intervals.

We also assessed the finite-sample properties of the proposed methodology for AA.
Conditional on Z, we generated data from a bivariate Clayton-Oakes model under two
scenarios. In the first, θ1 = θ2 = 1.6, while in the second, θ1 = 2 and θ2 = 4. The second situation
is to consider the performance of the proposed methodology under model misspecification.
The marginal distributions of T and S were generated as for the data considered in Table 1.
The results are presented in Table 2. We note that despite in the case where the simulation
scenario is correctly specified, the proposed methodology has good small-sample properties.
In the situation where the model is misspecified because of the interaction between the
dependence parameter with treatment, there is a bias that appears to persist with larger sample
sizes.
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6. Discussion
In this paper, we have described a semi-competing risks approach to the analysis of surrogate
endpoints. Using this formulation clarifies inherent asymmetry of the surrogate and true
endpoints. This is in keeping with the spirit of the surrogate endpoint serving to potentially
replace the true endpoint in clinical practice. By incorporating the constraint that S ≤ T, there
is also a narrowing of the confidence intervals in the measures of surrogacy, leading to a gain
in confidence about this assessment. While we have focused on existing measures of surrogacy,
many limitations and complications were discovered, primarily in the case of quantities such
as the PTE. New measures that take into account the data structure may be necessary.

One important issue is appropriate selection of an appropriate copula model. While such
methods have been recently proposed (e.g., Wang and Wells, 2000), we have focused on the
Clayton-Oakes model primarily because of its widespread use in the semi-competing risks
literature and because it leads to very simple estimation procedures that do not involve
estimation of nuisance parameters. Obviously, model assessment would be important to
perform in practice for the data analyst.

As was alluded to in the paper, it would be important to also consider the meta-analysis setting
for the purposes of assessing surrogacy. A natural approach would be to consider a hierarchical
model that would incorporate both within- and between-trial information. While Daniels and
Hughes (1997), Gail et al. (2000) and Buyse et al. (2000) have described methods for assessing
surrogacy in the meta-analysis setting, they did not extend their methodologies to accommodate
semi-competing risks data. A natural extension to models (1) and (2) in the meta-analysis
problem is

where i indexes study and (ai, bi) are random effects for the ith study, assumed to be drawn
from some distribution. Research on this topic is currently under investigation.
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Appendix

Appendix

Asymptotic results for (α̂,β ^) and :Define  and

where  is the hazard function of T when Z = 0. Then
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Where . Because M1i(t) ≡ M1i(t, β0) (i = 1,
…,n) are martingales with respect to the marginal filtration ℱt = σ{N1i(s, β0), I{Ỹi(β0) ≥
s},Zi; 0 ≤ s ≤ t, i = 1,…,n}, the martingale central limit theorem (Fleming and Harrington,
1991, Theorem 5.3.5) implies that n−½U1(β0) is asymptotically zero-mean normal and that

(14)

where z¯(1)(t) is the probability limit of Z¯(1) (t; β0). In (14), oP (1) denotes a random variable
that converges in probability to zero.

Similarly, define

where  it the cause-specific hazard function for S when Z = 0. By applying similar martingale
arguments as above, we can establish that

(15)

where z¯(2)(t) is the probability limit of Z¯(2) (t; η0).

Write U(η) = {U1(β), U2(α; β)}′. Because both the right-hand sides of (14) and (15) consist of
su ms of n independent random variables, the multivariate central limit theorem implies that
n−1/2U(η0) is asymptotically bivariate normal with mean zero and covariance matrix

where  and . By extending the
asymptotic linearity arguments of Ying (1993), we can show that, for η in a small neighborhood
of η0,

(16)
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where A is the asymptotic slope matrix of n−1U(η0). It follows that n½(η − η0) is asymptotically
zero-mean normal with covariance matrix A−1VA−1. The asymptotical normality of

 then immediately follows by the multivariate delta method.
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