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Abstract
Spatially-distributed populations of various types of bacteria often display intricate spatial patterns
that are thought to result from the cellular response to gradients of nutrients or other attractants. In
the past decade a great deal has been learned about signal transduction, metabolism and movement
in E. coli and other bacteria, but translating the individual-level behavior into population-level
dynamics is still a challenging problem. However, this is a necessary step because it is
computationally impractical to use a strictly cell-based model to understand patterning in growing
populations, since the total number of cells may reach 1012 - 1014 in some experiments. In the past
phenomenological equations such as the Patlak-Keller-Segel equations have been used in modeling
the cell movement that is involved in the formation of such patterns, but the question remains as to
how the microscopic behavior can be correctly described by a macroscopic equation. Significant
progress has been made for bacterial species that employ a “run-and-tumble” strategy of movement,
in that macroscopic equations based on simplified schemes for signal transduction and turning
behavior have been derived [14,15]. Here we extend previous work in a number of directions: (i) we
allow for time-dependent signals, which extends the applicability of the equations to natural
environments, (ii) we use a more general turning rate function that better describes the biological
behavior, and (iii) we incorporate the effect of hydrodynamic forces that arise when cells swim in
close proximity to a surface. We also develop a new approach to solving the moment equations
derived from the transport equation that does not involve closure assumptions. Numerical examples
show that the solution of the lowest-order macroscopic equation agrees well with the solution
obtained from a Monte Carlo simulation of cell movement under a variety of temporal protocols for
the signal. We also apply the method to derive equations of chemotactic movement that are governed
by multiple chemotactic signals.

Keywords
chemotaxis equations; diffusion approximation; pattern formation; transport equations; velocity-
jump processes

1. Introduction
New techniques in cell and molecular biology have produced huge advances in our
understanding of signal transduction and cellular response in many systems, and this has led
to better cell-level models for problems ranging from biofilm formation to embryonic
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development. However, many problems involve large numbers of cells , and
detailed cell-based descriptions are computationally prohibitive at present. Thus rational
techniques for incorporating cell-level knowledge into macroscopic equations are needed for
these problems. One such problem arises when large numbers of individuals collectively
organize into spatial patterns, as for instance in bacterial pattern formation and biofilms. In
these systems the collective organization involves response to spatial gradients of attractants
or repellents. When cells move toward (away from) favorable (unfavorable) conditions, the
movement is called positive (negative) taxis if they adjust the direction of movement in
response to the signal, and kinesis if the frequency of directional changes or the speed of
movement is changed. If the active movement is in response to the gradient of a chemical we
call it chemotaxis or chemokinesis. In this paper we focus on bacterial chemokinesis, which
has been studied extensively in the bacterium Escherichia coli. Despite the clear difference in
the type of response, both taxis and kinesis are lumped together in the literature, and we do not
distinguish between them here.

Escherichia coli is a cylindrical enteric bacterium ~ 1-2 μm long, that swims using a run-and-
tumble strategy [4,5,38]. Each cell has 5-8 helical flagella that are several body lengths long,
and each flagellum is rotated by a basal rotary motor embedded in the cell membrane. When
all are rotated counterclockwise (CCW) the flagella form a bundle and propel the cell forward
in a smooth “run” at a speed s = 10-30 μm/s; when rotated clockwise (CW) the bundle flies
apart, the cell stops essentially instantaneously because of its low Reynolds number, and it
begins to “tumble” in place. After a random time the cell picks a new run direction with a slight
bias in the direction of the previous run [6]. The alternation of runs and tumbles comprises the
“run-and-tumble” random movement of the cell. In the absence of a signal gradient the run and
tumble times are exponentially distributed with means of 1 s and 0.1 s, respectively, but when
exposed to a signal gradient, the run time is extended when the cell moves up (down) a
chemoattractant (chemorepellent) gradient [6]. The molecular basis of signal transduction and
motor control will be described in Section 2.

Under certain conditions, the collective population-level response to attractants produces
intricate spatial patterns, even though each individual executes the simple run-and-tumble
strategy. For instance, in Adler's capillary assay E. coli cells move up the gradient of a nutrient
(an attractant), and the population forms moving bands or rings [1]. More recently, Budrene
and Berg found that when E. coli move up the gradient of a nutrient, they can also release
another stronger chemoattractant. They studied the patterns in two experimental
configurations, one in which a small inoculant of cells is introduced at the center of a semi-
solid agar layer containing a single carbon source, such as succinate or other highly-oxidized
intermediates of the TCA cycle. In this case the colony grows as it consumes the nutrients,
cells secret the chemoattractant aspartate, and a variety of spatial patterns of cell density
develops during a two-day period, including outward-moving concentric rings, and symmetric
arrays of spots and stripes. In the second type of experiment, wherein cells are grown in a thin
layer of liquid medium with the same carbon source, a network-like pattern of high cell density
forms from the uniform cell density, but this subsequently breaks into aggregates in 5-15
minutes. The formation of these patterns involves intercellular communication between
millions of cells through the secreted chemoattractant aspartate, and thus detailed cell-based
models of signal transduction, attractant release, and cell movement would be computationally
expensive.

Heretofore, models of these and similar patterns have employed the classical Patlak-Keller-
Segel (PKS) description of chemotactic movement [2,35,37,36,31]. Additional mechanisms
assumed in these models include nonlinearity in the chemotactic coefficient, loss of motility
under starvation conditions, or a second repellent or waste field. To understand the patterns
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formed in the soft agar, Brenner et al. [8] coupled the PKS chemotaxis equation with reaction-
diffusion equations for both the attractant and nutrient, and proposed a minimal mechanism
for the swarm ring and aggregate formation. They suggest that the motion of the swarm ring
is driven by local nutrient depletion, with the integrity resulting from the high concentration
of the attractant at the location of the ring; in contrast, the aggregates formed in the ring results
from fluctuations near the unstable uniform cell density. However, the question of how to
justify the chemotaxis equation from a microscopic description is not addressed in any of the
foregoing analyses. In [12] it was assumed ab initio that the cell density satisfies the chemotaxis
equation, and a formula for the sensitivity was obtained, but the use of the chemotaxis equation
was not justified, nor were any of the known biochemical steps in signal transduction and
response incorporated.

Recently significant progress has been made toward incorporating characteristics of the cell-
level behavior into the classical description of chemotaxis [14,15]. Using a simplified
description of signal transduction, these authors studied the parabolic limit of a velocity-jump
process that models the run-and-tumble behavior of bacteria, and showed that the cell density
n evolves according to the parabolic equation

(1.1)

Here S is the attractant concentration; N is the space dimension, s is the speed of the cells, λ0
is the reciprocal of the mean run time in the absence of a signal, b reflects the sensitivity of the
motor, te and ta are the excitation and adaptation time scales, and G(S) models the signal
detection and transduction via receptors. The authors assumed that (a) the signal function G(S
(x)) is time-independent, (b) the gradient of the signal as measured by

 is shallow, (c) the turning rate depends linearly on the internal state
of the cell (λ = λ0 - by1), and (d) the quasi-steady-state approximation for intracellular dynamics
is valid in estimating the higher order moments in the moment closure step. However,
assumption (a) is often unrealistic in the context of bacterial pattern formation, and assumption
(c) imposes additional restrictions on , in order to guarantee the positivity of the
turning rate. Assumption (b) was used to justify the neglect of the higher order moments, and
while analysis showed that (b) can alternatively be replaced by (d) in order to allow larger
signal gradients, (b) is implicitly required in the perturbation analysis on the diffusion time and
space scales, as will be shown in Section 3.

In this paper we remove some of these restrictions. In Section 3 we relax the assumptions (a)
and (c) in order to allow time-dependent signals and a general dependence of the turning
frequency on the internal state of the cells, and show that when (b) is violated, diffusion time
and space scales are inapplicable. There we also develop a new method for solving the infinite
system of the moment equations, which allows elimination of (d). The method involves
systematic application of a solvability theorem to a perturbation expansion of the solution. In
Section 4 we compare the solution of the macroscopic chemotaxis equation and a stochastic
simulation of chemotactic cell movement under a variety of temporal dynamics of the signal.
In Section 5 we extend the method to allow for external force terms in the transport equation.
We illustrate the use of the resulting equation with an application to the model of spiral stream
formation in Proteus mirabilis colonies [39], where a biasing force is generated during cell
movement. Finally, we explore macroscopic chemotaxis equations for bacterial populations
when exposed to several chemosignals in Section 6. Before introducing the details of the
analysis, we describe the cell-based model of bacterial pattern formation used in [39], which
is based on a cartoon description of signal transduction introduced in [28]. The equations we
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derive incorporate measurable characteristics of signal transduction and thus are amenable to
experimental verification.

2. The cell-based model
Bacterial cells are small; the swimmers we study here are typically 1-2 μm long. Therefore,
we characterize their movement by their position  and velocity  as functions

of time t. In the experiments of Budrene and Berg [9], the cell density is , thus the

average volume fraction of the cell population in the substrate is . Even if in an
aggregate cells are 100 times more crowded than average, the volume fraction would still be

as small as . Therefore, it is plausible to assume that cells are well separated, and there
is no mechanical interaction between them. This means that we can treat the movement of
different cells as independent processes. In E. coli the cell speed is more or less constant
throughout the movement, so we assume that only the direction of the velocity changes during
a tumble. In addition, since the mean tumbling time (~ 0.1 s) is much shorter than the run time
(~ 1 s), we here neglect the tumbling time and assume that cells reorient immediately. In
addition, we neglect the rotational diffusion of cells during a run. Therefore, movement of cells
can be characterized by independent velocity-jump processes of the type introduced in [26]
and later used in [18,27,14,15].

The velocity-jump process is determined by a turning rate λ, and a turning kernel T(v, v′,…)
which gives the probability density of turning from v′ to v after making the decision to turn.
The dots indicate that T may depend on the signal or intracellular variables which are
independent of cell velocity v. Since T is a probability density it must satisfy

which means that no cells are lost during the reorientation. A generalization can be made to
include the tumbling of cells as a separate resting phase [26]. In that case, the stochastic process
would be determined by three parameters: the transition rate from the moving phase to the
resting phase λ, the transition rate from the resting phase to the next moving phase denoted as
μ, and the turning kernel T. It has been shown, in the absence of internal dynamics, that inclusion
of a resting phase results in a re-scaling of the diffusion rate and the chemotactic sensitivity in
the resulting macroscopic equation, which is essentially a re-scaling of time [27].

When there is no signal gradient, the turning rate λ is a constant, while in the presence of a
signal gradient, λ depends on the current state of the flagella motor, which in turn is determined
as the output of the underlying signal transduction network that transduces the extracellular
signal into a change in rotational state.

Signal transduction in E. coli is a very complicated input-output process (Figure 2.1). Attractant
binding to a receptor reduces the autokinase activity of the associated CheA, and therefore
reduces the level of phosphorylated CheYp, which is the output of the transduction network,
on a fast time scale (~ 0.1 s). This constitutes the excitation component. Changes in the
methylation level of the receptor by CheR and CheB restores the activity of the receptor
complex to its pre-stimulus level on a slow time scale (seconds to minutes), which is called
adaptation. Adaptation allows the cell to respond to further signals. The output CheYp in turn
changes the rotational bias of the flagellar motors, and thus changes the run-and-tumble
behavior [22, 38, 7].
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Several detailed mathematical models have been proposed to model the entire signal
transduction network [34,33,24,32]. In the deterministic models, the state of a cell can be

described by a set of intracellular variables , and different models can
be described by systems of the form

(2.1)

with different f, where S(x(t), t) is the extracellular signal and x(t) is the position of the cell at
time t. In this article we adopt a simplified cartoon description, which is minimal (q = 2) yet
captures the essential excitation and adaptation components:

(2.2)

(2.3)

Here te and ta with te << ta are the excitation and adaptation time scales, x is the current spatial
position of the cell, and G(S) is a functional of the signal detected by the receptors. If we assume
that there is no cooperative binding and the binding reaction

equilibrates rapidly, then G is given by

(2.4)

with the binding coefficient KD = k-/k+. Here R denotes the unbound receptor and  denotes
the receptor-signal complex. G(S) is bounded by G0 since the receptors will be saturated at
large concentrations of the attractant. The cartoon model has been shown to predict the input-
output behavior of the full model [34] in response to step changes in the signal [14].

We may identify y1 as the negative of the deviation of CheYp from its steady state, and
therefore, we assume the turning rate of each cell depends only on y1, i.e.,

In addition, we assume that the turning kernel T has no explicit space dependence and is
independent of the internal state y: therefore
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It has been shown experimentally that after a tumble, a cell has slight tendency to continue its
previous direction of movement [4], and this will be included later.

Finally, the above description of cell movement can be coupled with components of cell
metabolism and cell division, and with reaction-diffusion equations for the nutrient and
attractant. We note that the description of cell movement used here comes directly from the
biological observations, and by using reaction-diffusion equations for the chemicals, as in
Section 4, convection of the chemicals in the fluid flow is implicitly neglected. This
approximation is valid here because the flow is very slow as a result of the small Reynolds
number and low volume fraction of the cell population.

A Monte Carlo scheme can be used to simulate the model, but stochastic simulation can become
extremely expensive because of cell division. Suppose that cells double in 2 hours, and that
the entire experimental process can last 2 days. Assuming that 105-107 cells are introduced
into the petri dish initially, there would be 224×(105-107) ≃ 1012 - 1014 cells after two days;
thus we need a higher level description. In the next section we introduce a new method to
embed the cell-level behavior in the population-level description, so as to derive an evolution
equation for the cell density n(x, t) from the transport equation.

3. The transport equation and its diffusion limit absent external forces
Let p(x, v, y, t) be the density of cells having position , velocity , and
internal states  at time t ≥ 0, where V is a compact subset of  and symmetric about the
origin. Then the velocity-jump process used previously [26,14,15] leads to the following
transport equation when there is no cell growth

(3.1)

Here the left hand side of the equation describes the change of the population density due to
the cell runs and the evolution of internal states, while the right hand side models the
reorientation during the tumbles. The backward equation corresponding to the transport
equation without internal variables was derived from the underlying stochastic process in
[30]. A fundamental assumption in using a velocity-jump process to model the run-and-tumble
movement is that jumps occur instantaneously, and therefore the forces are Dirac functions.
This approximation is appropriate for swimming bacteria since the Reynolds number is so
small that inertial effects are negligible.

In [27], a resting phase has been introduced to incorporate cell birth and death. While in some
organisms it is true that cells stop to divide or give birth, the swimming bacterium E. coli has
been observed to divide while swimming smoothly [3]. Thus the resting phase introduced is
not necessary here. Therefore, by assuming that the growth rate r is a function of the local
nutrient level c(x, t), the transport equation with cell growth reads

(3.2)

When cells grow in the exponential phase in a rich medium, r is a constant. By defining
 and observing that  satisfies equation (3.1), we can derive the equation for

 and therefore . For this reason we begin with the transport equation (3.1) in
the following derivation.
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Define

then from the equations (2.2, 2.3) for y1, y2, we obtain the system

(3.3)

and the turning rate becomes λ(z1) = λ(y1). The transport equation in the new internal variables
(z1, z2) reads

(3.4)

This change of variables for the internal state makes the following analysis much simpler.

In the remainder of this section we relax a number of assumptions used in [14,15] and present
a new method to derive the chemotaxis equation in the diffusion limit of the transport equation
(3.4). We first list the assumptions on the turning kernel and turning rate.

3.1. Assumptions on the turning kernel and turning rate
In our analysis we adopt the assumptions of the turning kernel T in [18,27,15]. The notation
used here coincides with that in [27,15].

Define operator  and its adjoint  : L2(V) → L2(V) as follows:

(3.5)

Denote by  to be the non-negative cone of . The assumptions
on the turning kernel T ∈ L2(V × V) are

A1
.

A2 There are functions  with the property u0, ϕ > 0 a.e. such that

.

A3 .

From these assumptions, one can prove [18] that (a)  is a compact operator on L2(V), with
spectral radius 1; (b) 1 is a simple eigenvalue with normalized eigenfunction g(v) ≡ 1.

Next define the operators
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(3.6)

Note that the operator  defined in [27] is  here; in our derivation we use  instead of 
because  is independent of y. One can easily prove that  has the following properties:

i. .

ii. , 

iii.  with positive real part,  is invertible.

For the turning rate, we introduce a more general form than used in [14,15]. We assume λ can
be expanded to a Taylor series

with a radius of convergence at least max{G0, 1}, which implies that

(3.7)

The negative signs in the expansion of λ are introduced for the convenience of later analysis.
The form λ = λ0 - by1 used in [14,15] is a special case of this general form with a1 = b positive
and ak = 0 for all k > 1.

3.2. The parabolic scaling
To simplify the exposition we assume at first that excitation is much faster than other processes,
that is, te = 0, z1 = -z2. The general result is simply stated later. Therefore the transport equation
becomes

(3.8)

Since the total cell mass is conserved, we denote

(3.9)

and scale p by setting,

(3.10)

The mean run time of E. coli is T ≃ 1 s, the speed is 10 ~ 30 μm/s [4], and a self-organized
aggregate of cells has spatial dimension of 150-250 μm [25]. Thus, let s0 = 10 μm/s, L = 1 mm,
and re-scale the variables by setting,
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Therefore, . We also re-scale

(3.11)

where KD is the binding constant defined earlier.

In these variables equation (3.8) becomes, after dropping the hats,

(3.12)

Here the space and time variation of S enters at  and  respectively.

The goal of the moment closure method is to derive an approximating evolution equation for
the cell density n(x,t) from the transport equation (3.12). To do that, we have to integrate (3.12)
with respect to both z2 and v 1. There are two places that one can apply the perturbation
expansion: (a) to the partial moments, viz, the z2-moments or v-moments; or (b) to the complete
moments which are obtained by integrating with respect to both z2 and v. The latter will be
used in Section 5 where there are external forces acting on the cells . However, in this section,
we show that because the z2-moment  is independent of v, applying the perturbation method
to the z2-moments directly can lead to the approximating equation for n(x, t) with minimal
assumptions.

3.3. The z2-moment equations
Define the moments of z2 as follows:

(3.13)

By multiplying equation (3.12) by 1,  for j ≥ 1 and integrating, we obtain the moment
equations in the following compact form:

(3.14)

Here

1In the case that the signal function depends on n(x, t), i.e., S = S(n, x, t), we can approximate S by S(n0, x, t), where n0 is defined in the
expansion n = n0 + εn1 + ε2n2 + ⋯. This approximation introduces a term of  into the transport equation (3.12), and thus won't
change the equation derived later for n0.

XUE and OTHMER Page 9

SIAM J Appl Math. Author manuscript; available in PMC 2009 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3.15)

(3.16)

and

(3.17)

where  is the operator defined in (3.6),  is a diagonal scaling

operator , and  is the shift operator that has
ones on the upper diagonal entries:

(3.18)

One can easily prove that J has the following properties:

(3.19)

(3.20)

(3.21)

Therefore, B and C are bounded linear operators on l∞(L2(V)). One can also easily prove that
D is a bounded linear operator on l∞(L2(V)) under the assumptions on the turning kernel and
turning rate introduced in Section 3.1.

Since we are interested in the long-time dynamics, we will apply the regular perturbation
method to solve the system (3.14). We explore two sets of assumptions. In the first, we assume

that  and  are of  on the parabolic scale, which corresponds to

 and  in the original variables. We show in
Section 3.5 that this assumption leads to the same chemotaxis equation as in [15]. In the second,

we relax the first set of assumptions to allow  to be , or .
This assumption means that a cell doesn't experience a significant change in the fraction of
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receptors bound during an average run time. If the gradient is very large, this assumption may
be violated and the characteristic space and time scale may be very different from those of the
diffusion process. Therefore, the solution of the diffusion-limit chemotaxis equation may not
be a good approximation of the underlying velocity-jump process at the location where sharp
spikes of the attractant arise. For this set of assumptions, we show in Section 3.7 that the
equation for the first order approximation n0 of the cell density remains the same, but the
equation for higher order terms nj depends on . First however we prove a solvability theorem
that will be used in the asymptotic analysis.

3.4. A solvability theorem
For k ≥ 1, we introduce sub-matrix operators of D defined by partitioning D as follows

Here Ek is the upper-left k×k submatrix of D, Fk is the upper-right k × ∞ submatrix, and Gk is
the lower-right remainder. Written out,

and for k > 1,

for any k ≥ 1,

with  and .

Since components of D are operators on the space L2(V), Ek is an operator on (L2(V))k. Also
by the assumption on the turning rate (3.7), Fk : l∞(L2(V)) → (L2(V))k, Gk : l∞ (L2(V)) →
l∞(L2(V)). In the following theorem we prove that for any k, the operators Gk are bounded and
invertible. We denote the l∞(L2(V)) norm by  and the corresponding operator norm by

.

Theorem 3.1. For any k ≥ 1, we have that

i.
Gk is bounded with ;

ii. Gk is invertible, i.e., .

Proof. (i) , we have
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Therefore, Φ, Λk and  are bounded operators on l∞(L2(V)). Since , we have

(ii) For , we have . Therefore Gk is invertible with

.

For , find . Since Gk is upper triangular, we
get  by observing Gk+m is invertible; we then apply Gaussian elimination to the
first m - 1 equations in GkW = 0 from the (m - 1)th row back to the 1st row to get Wj = 0, j <
m. Property (iii) of the operator  guarantees that Gaussian elimination applies. This completes
the proof.

3.5. The asymptotic analysis of (3.14)
Write M as an expansion in powers of ϵ as

(3.22)

or

(3.23)

The subscript indicates the order of the z2-moment and the superscript indicates the order of
the term in the expansion.

After substituting (3.22) into the evolution equation (3.14) and comparing terms we find that

:

By Theorem 3.1, we have

(3.24)
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By property (ii) of , we have  independent of v, i.e., . Then at :

or by using (3.24)

Again, by Theorem 3.1, we have , and the problem reduces to solving

By property (iii) of  is invertible, and thus,

By property (ii) of , 0 is a simple eigenvalue, and we can define a pseudo-inverse operator

of  as . Therefore, we obtain the representation,

(3.25)

where , i.e.,P1 = P1(x, t), is arbitrary. Notice that ; thus n1 can be

determined once P1 is known. At :

The first equation of the system implies that

By property (ii) of ,
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Using (3.25), we get an equation for 

(3.26)

By defining

(3.27)

and

(3.28)

we can rewrite equation (3.26) as

(3.29)

The cell density n(x, t) is defined as

By expanding , we find that

In particular, , thus , and therefore we obtain the chemotaxis equation

(3.30)

with a general tensor form of the diffusion rate (3.27) and the chemotaxis sensitivity (3.28).

Our standing assumption is that the cell speed is constant, and thus V is the sphere of radius
 in 3-D. In the case that cells change direction of movement purely randomly, the

turning kernel is given by the uniform density

(3.31)

In this case, the tensors Dn and  can be reduced to diagonal matrices, and thus scalars,
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(3.32)

As a result, we obtain the classical chemotaxis equation for n0

(3.33)

It is observed experimentally that the movement of E. coli shows directional persistence, and
the turning kernel only depends on the angle θ between the old direction v′ and the new direction
v [6,23], i.e.,

(3.34)

In this case,  is a symmetric operator, the average velocity  after reorientation

is parallel to the previous velocity v, and thus the diffusion rate and the chemotaxis sensitivity
are isotropic tensors (cf. [18], Theorem 3.5). As a result, one finds that  and

(3.35)

where

(3.36)

is the index of directional persistence introduced in [26]. We note that ψd can not be 1 in order
to satisfy Assumption 2 on the turning kernel, andψd has been reported to be about 0.33 in the
wild-type E. coli [4]. From (3.35), we can see that the larger ψd is, the larger Dn and χ are, and
therefore the larger the macroscopic chemotaxis velocity . The increase of uS to
the persistence has also been analyzed in [21], where weak chemotaxis coupled with rotational
diffusion was analyzed.

3.6. Macroscopic equations for higher order terms and a finite excitation rate
In order to obtain equations for higher order approximations of the cell density n(x, t), we can

repeat the above calculation. The full equation system at  is
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By reasoning as before, we find that  and

Here, the term  in  is absorbed into the v-independent term P2. By
considering the solvability condition of equations at the next order of ε, the equation for P1,
and therefore, for , can be obtained. Calculation reveals that the equation for n1 is the
same as n0 in case that v is an eigenfunction of , in particular for the turning kernel (3.34),

If we force n0 to satisfy the initial and boundary conditions of those for the cell density n, the
higher order terms nj, j > 0 should satisfy homogeneous initial and boundary conditions, and

the zero mean constraint. Therefore, we conclude that , and thus, .

By allowing a finite excitation time in the cartoon model, one can show that the chemotaxis
sensitivity tensor becomes

(3.37)

as in [15], and using the turning kernel (3.34), the chemotaxis equation becomes

(3.38)
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From this equation we can see that: (a) directional persistence increases both the diffusion rate
and the macroscopic chemotactic velocity, as analyzed in [21]; (b) inclusion of the non-
instantaneous excitation results in re-scaled chemotaxis sensitivity. The only difference by
using the full cartoon model is, that instead of using matrix representations of M and operators
B, C, D, block matrices should be used. A similar version of Theorem 3.1 can be proved without
difficulty. One can also show that inclusion of a resting phase due to tumbling would result in
a diffusion rate and chemotaxis sensitivity rescaled by the fraction of time spent running.

3.7. A weaker assumption on the extracellular signal

In the above derivation we assumed that  on the parabolic (diffusion) time
scale. However, when cells contribute to the signal field by secretion (example 4.2),

 can become large when the cell density is large. Here we relax the assumption to

allow  on the parabolic time scale, which is  in the dimensional
variables. Under this assumption, we need to regroup the terms in the z2-moment equation

(3.14). We define , then equation (3.14) can be rewritten as

(3.39)

In this case, the equations at  are

from which one finds that

(3.40)

(3.41)

In the representation of  (3.41), the term  is absorbed by P1, since
it is independent of v. Therefore the equation for n0 remains the same, i.e., (3.30). However,
if we continue the calculation for higher order terms, we obtain
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Here a1, a2, , n0 and  enter the expression of , and by considering the solvability

condition at ,

we obtain an equation for n1,

(3.42)

The first-order term n0 enters into the equation for n1 through the function h which is linear in
n0. In particular, for the turning kernel (3.34), h has the form

In this case, the solution of the n1-equation is generally nonzero, and therefore

, in contrast with the previous case.

4. Numerical comparisons
According to the above perturbation analysis, the bacterial cell-based model in Section 2 can
be approximated by the solution of the chemotaxis equation (3.38) when coupled with an
equation for the signal. In this section we first present two examples in 1-D to illustrate how
accurate the approximation is. In both examples, we assume no cell growth and fast excitation,
i.e., te = 0; thus the equations for the internal dynamics become

(4.1)

(4.2)

with G(S) defined by (2.4). We also assume no persistence (ψd = 0), and the turning rate
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(4.3)

which has the Taylor expansion,

In this case, we compare with the stochastic simulation with the solution of

(4.4)

We then apply the 2-D version of both the continuum model and the cell-based model to the
network-aggregate formation in E. coli colonies in Section 4.3. The numerical method used in
implementing the cell-based model is described in detail in Appendix A.

4.1. Aggregation and dispersion in one space dimension
In this example we analyze the motion of a bacterial population in response to a diffusing
attractant on a periodic domain 4 mm long. The dynamics of the attractant are described by
the diffusion equation

(4.5)

with the initial condition

(4.6)

Here, we use a nondimensional signal S. We suppose that initially the cells are uniformly
distributed in the domain at a density n(x,0) = n0 mm-1.

In Figure 4.1 we compare the stochastic simulation of the cell-based model with the solution
of the macroscopic equations (4.4, 4.5, 4.6). For the stochastic simulation, cell density is
computed as the linear interpolation of the histogram for the positions of the cells. Figure 4.1
shows that in the first few minutes, an aggregate of cells forms because of the initial attractant
gradient, but later on the aggregate tends to be dispersed because diffusion smoothes out the
attractant gradient. In this regime the attractant concentration, cell density and cumulative cell
density agree very well between the two models. We also notice that in this example

 becomes as large as 15 ϵ sec-1, but the solution of the chemotaxis equation (4.4)
still provides a good approximation of the results of the cell-based model. This means that the
chemotaxis equation may also be a good approximation of the underlying velocity-jump
process for a slightly weaker assumption than we used. For this example, equation (3.42) is
also solved together with (4.4, 4.5, 4.6) to construct the higher order approximation of n, and
both n0 and n0 + ϵn1 are plotted in Figure 4.1. However, it turns out that  and the
curves for n0 and n0+ϵn1 become indistinguishable.
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4.2. Self-organized aggregation in one dimensional space
In this example we investigate the motion of bacterial cells driven by the attractant that they
produce. Thus the attractant dynamics is governed by

(4.7)

We assume initially no attractant is added to the domain,

(4.8)

Periodic boundary conditions and the same parameters as in the first example are used. We set
the initial cell density to be

(4.9)

where ξ(x) is a small random term of zero mean.

Figure 4.2 compares the stochastic simulation of the cell-based model with the attractant
dynamics (4.7, 4.8) and the solution of the continuum model (4.4, 4.9, 4.7, 4.8). There we used

 per cell. A linear stability analysis (see Appendix B) of
the continuum model around the uniform steady state (USS) (n, S) ≡ (n0, γn0/μ) shows that
there are three unstable modes , k = 1, 2, 3 with exponential growth rates 0.1439,
0.1954, 0.0904. Thus, we expect that instabilities develop around the uniform steady state and
nonuniform peaks appear in the cell density profiles. The system (4.4, 4.7) has no solutions
that blow up in finite time [10], therefore a nonuniform steady state develops finally.

Figures 4.2 A - D show that in both models, the state of the system first evolves towards the
unstable uniform steady state (green curve), then small perturbations finally lead the system
to the stable nonuniform steady state (cyan curve). Because the perturbations in the two models
are random and the periodic boundary condition allows for translation of solutions, we cannot
expect the peaks to appear at the same x coordinate. Therefore neither averaging over different
stochastic simulations of the cell-based model nor a point-wise comparison of the solutions of
the two models is appropriate. Instead we compare the Fourier coefficients ωk of different

modes , k, j = 0, 1, . . ., Nx − 1 (Figures 4.2 E and F) in single realizations. We see
that in both models, the 0th mode amplitude ω0 of n is constant because of the conservation of
the total number of cells, and the 0th mode amplitude ω0 of S increases to its value at the USS
γn0/μ and remains there. Initially the amplitudes of the linearly-unstable modes ω1, ω2 of n
increase exponentially, and the amplitudes of the other stable modes decrease exponentially.
Thereafter due to the nonlinearity of the system, energy in the stable modes (for both n and
S) transfers to other modes, and coefficients ωk increase until the system reaches the
nonuniform steady state.

We observed that in numerical calculations the exact time for the unstable modes to amplify
sharply (around t = 70 min~ 100 min in this realization) depends strongly on the spectrum of
the initial noise of the continuum model and the intrinsic noise of the cell-based model. Once
the Fourier coefficients of the unstable modes exceeds a threshold (about 0.1 in this example),
they start to grow faster than exponential. The amplitude of the most rapidly-varying modes
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of the cell-based model was observed to be much more noisy than that of the continuum model,
because of the intrinsic time-dependent noise of the stochastic simulation.

To compare the two models in the case of multi-aggregate formation, we enlarge the domain
from 4 mm to 8 mm to allow for more unstable modes. To match the number and location of
the peaks in the early dynamics, we choose an initial cell density with a sinusoidal perturbation
plus noise

(4.10)

In order to focus on the development of the instability, we set the signal at the uniform steady
state initially

(4.11)

The numerical results for η = 0.5 are shown in Figure 4.3. We observe that aggregates form at
the locations with maximum initial cell density (20 min, 40 min). Then, due to the instability
of the multi-aggregate steady state, unevenness among different aggregates develops (180 min)
and leads to merging of aggregates. Finally the single-aggregate, stable steady state is reached
(not shown). At t = 20 min, the different origin of noise in the two models is not significant,
and the continuum model agrees well with the cell-based model (Figure 4.3 B). However, at
t = 40 min and 180 min, the noise driven instability becomes important (Figures 4.3 C, D), and
there one cannot directly compare the exact value of the solution of the two models.

From Figures 4.2 and 4.3 we conclude that the dynamics of both models agree very well except
for the location of the peaks which is sensitive to noise, and some difference in the amplitude.
This difference in amplitudes is reflective of the fact that the signal gradients exceed the
magnitudes assumed in the derivation of the macroscopic equation. In the next section, we
apply both models in the context of network and aggregate formation in the E. coli liquid assay.

4.3. Bacterial pattern formation: E. coli network and aggregate formation in liquid culture
When E. coli cells are suspended in a well-stirred liquid medium with succinate as the nutrient,
they secrete the attractant aspartate and initially self-organize into a thread-like network, which
quickly breaks into aggregates. The network-aggregate pattern appears on a time scale of 10
min. Since excess succinate is provided, cells grow in the exponential phase, and nutrient
depletion is not involved. In this example, we model the above dynamics in 2-D by both the
hybrid cell-based approach and the macroscopic PDE approach, and compare the results.

The dynamics of the attractant is governed by the reaction-diffusion equation (4.7). The total
cell number in the domain is N0 and the average cell density n0. We use no-flux boundary
conditions since there is no material exchange of the system with the environment. The uniform
steady state of the continuum model (3.33, 4.7) is (n, S) = (n0, γn0/μ). A linear analysis (see
Appendix B) around the uniform steady state explains the pattern formation as the result of the
amplification of the unstable modes of the fluctuations. To focus on the dynamics during pattern
formation, we start from the uniform steady state with a small perturbation as the initial values,

(4.12)
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(4.13)

In Figure 4.4, we compare the numerical results of the continuum model (4.4, 4.7, 4.12, 4.13)
with one realization of the stochastic simulation of the cell-based model. We used COMSOL
Multiphysics to solve the 2-D continuum model (with 15648 triangles, using Lagrange
elements), and the numerical algorithm given by Appendix A to simulate the cell-based model.
The initial values for the continuum model are obtained by interpolating from the initial values
of the cell-based model. Although the exact details of the transient dynamics can be different
because of different noise in the two models, we note that both models predict comparable
temporal and spatial features of the dynamical evolution from the network to aggregate
formation.

5. Chemotactic movement in external fields
Bacterial cells can swim in more complicated environments with external forces acting on
them. For example, when the cell density becomes large, there may be mechanical interactions
between cells, which may affect their swimming speed and direction. Another example arises
when gravity becomes important. During the formation of bio-convection patterns reported in
[11], aerotaxis drives the cells toward the top of the medium, while gravity acts downward.
Therefore, the above analysis should be generalized to incorporate both forces between cells
and forces due to external fields. The transport equation with external forces has the form

(5.1)

Previous results have been obtained for crawling cells [16], where the active force generation
is incorporated by a simple description, and the velocity jumps model random polarization of
cells when no signal gradient is detected. Because the internal state of each cell varies spatially,
further dimension reduction is needed in that analysis.

Here we extend the analysis in Section 3 to include external forces and consider a particular
case in which bacteria swim close to a surface. In three dimensional space, bacterial cells swim
in straight “runs”, but are subject to rotational diffusion. However, when they move near a
surface, the “runs” display a consistent clockwise bias when observed from above [17,13]. The
bias can be explained by the interaction between the surface and the cell [20]. During a run,
the cell body rotates clockwise while the flagella rotate counterclockwise when observed from
behind. Therefore, when a cell swims parallel to a surface a larger viscous force is exerted on
the bottom of the cell (closer to the surface) than that on the top of the cell, and thus net forces
arise on both the cell body and the flagella. These net forces induce the bias in the motion.

In the patterns formed in P. mirabilis colonies in [39], cells swim in a thin fluid-like slime layer
on top of the hard surface, and therefore the runs are biased. By incorporating a constant
swimming bias to each cell's right, a two dimensional cell-based model predicts the chirality
of spiral stream formation in P. mirabilis colonies [39]. In this section, we derive a
corresponding macroscopic chemotaxis equation from the cell-based model with swimming
bias. We also incorporate persistence in the motion and thus assume the form of the turning
kernel given by (3.34). The resulting equation enables us to see the interplay of chemotaxis
and the swimming bias.

Let ω0 be the constant angular velocity during a run. Then the acceleration has the form a =
ω0v × ν, where ν is the normal vector of the surface pointing to the fluid side, i.e., a = (ω0v2,
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-ω0v1). Let p(x, v, z2, t) be the cell density function. After nondimensionalization, the transport
equation reads,

By multiplying 1, , and integrating with respect to z2, we obtain a system of equations
for the z2-moments M(t, x, v), where M is defined as in (3.13),

(5.2)

If we apply the perturbation method directly to equation (5.2), there is no easy way to derive
an approximating equation of the cell density, since  is no longer independent of v, and thus
there is no simple relation between the cell density n and . Instead, we choose to proceed
by multiplying (5.2) by 1, v1 and v2, and integrating with respect to v to get the complete
moment equations.

We define the density moments

and the velocity flux moments

The subscript j is the index of the order of the z2-moment, and subscripts k, l are the indices of
the velocity moment. We decompose C defined at (3.16) into C = C1 + C2, where

(5.3)

Here J is the matrix operator defined in (3.18), but now acting on . We also define matrix
operators

(5.4)

To obtain the complete moment equations, we have to calculate ∫V DMdv and ∫V vkDMdv.
Notice that, by property (ii) of , for any f(v),
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therefore ∫V DMdv = D1n. Assuming the turning kernel (3.34) and considering that

we obtain

Therefore the complete moment equations are

(5.5)

(5.6)

(5.7)

Here B is defined by (3.15). To close the moment equations, we follow [15] and assume the
second velocity moments are isotropic, which is exact in 1-D:

(5.8)

Then the moment equations reduce to

(5.9)

(5.10)

(5.11)
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Assuming the regular perturbation expansions, with superscript indicating the order of
expansion,

substituting into the moment equations (5.9-5.11), and comparing terms of equal orders of ε,

we obtain, :

(5.12)

(5.13)

(5.14)

:

(5.15)

(5.16)

(5.17)

:

(5.18)

From equation (5.12) we get , , or n0 = (n0, 0, 0, ⋯)t. From equations (5.13, 5.14),

we see that , . Since all the eigenvalues of 
are positive, it follows that .

Therefore equation (5.15) reduces to , which means that , or n1 = (n1, 0,
0, ⋯)t. Applying a similar argument to the 3rd and higher components of the equations (5.16,

5.17) gives . Thus the first two components of (5.16, 5.17) become
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(5.19)

(5.20)

(5.21)

(5.22)

From equations (5.20, 5.22), we find that

(5.23)

From equations (5.19, 5.21), we obtain

(5.24)

The first component of equation (5.18) is

(5.25)

Substituting ,  by equations (5.24) gives the final chemotaxis equation,

(5.26)

where

(5.27)
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(5.28)

(5.29)

and

From the forms of Dn, χ0 and β0, we notice that when ω0 = 0, (5.26) reduces to the chemotaxis
equation we derived in Section 3.5 in a two-dimensional space. (5.26) can also be derived by
using the assumptions in Section 3.7. The macroscopic chemotactic velocity in (5.26) is given
by

(5.30)

The magnitude of uS is

(5.31)

The angle between uS and ∇S is

(5.32)

which, surprisingly, is independent of ∇S and a1.

5.1. Numerical comparison of the macroscopic chemotaxis velocity
The analytical prediction of the macroscopic chemotaxis velocity (5.30) is shown to agree very
well with statistics from the cell-based model at different signal gradients and bias levels ω0

in Figure 5.1. Even for the large signal gradient  (i.e., ),
the difference is still within 10%.
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In Figure 5.1, the macroscopic chemotaxis velocity from the cell-based model is computed in
the following way. For a given combination of ∇G(S) and ω0, we used G(S) = S, and a time-
independent signal S = Rx2 in order to guarantee ∇G(S) to be constant R in the whole path of
a cell. Other parameters used remain the same as in previous examples. For each parameter
combination, 6 × 103 cells are put at the same location x = 0 with random initial velocity and
zero initial y2. The positions of each cell are recorded every 1 min for a 30 min period. The
position vector xi at time ti = i min is computed by averaging all the cell positions. Then the
macroscopic velocity vector is computed by applying the least square method to the averaged

position, i.e., by finding v that minimizes , where j = 1, 2 is the index of the space
direction.

6. Chemotaxis induced by multiple signals
Single chemical induced chemotactic movement has been studied experimentally for various
types of cells and modeled mathematically both microscopically and macroscopically [22,38,
19]. However, many cell types are known to have multiple receptor types and thus can respond
to many different chemicals. For instance, E. coli has five major types of receptors for various
nutrients, oxygen, etc. [38]. How these signals are integrated inside the cell is not generally
known and may depend on the cell type. Macroscopic phenomenological chemotaxis equations
have been proposed in [29]. In this section, we derive chemotaxis equations from a modified
cell-based model by allowing multiple chemosignals.

In the case of E. coli, the signalling pathways for different chemicals share the same
downstream phosphorl-relaying network (including reactions of CheA, CheW, CheY, CheB,
CheR, CheZ etc.), the only difference is the upstream transmembrane receptor. In the cell-
based model in Section 2, G(S) describes detection of the signal, and y describes the state of
proteins within the cell. When there are multiple signals, G is generally a function of all possible
signals, G = G(S1, S2, ⋯, Sm). By performing the standard procedure in Section 3, a chemotaxis
equation for multiple signals can be derived that has the following form

(6.1)

where

(6.2)

The functional form of G depends on the binding of the signal molecules to the receptors.
Consider for example, the case of two attractants, and assume that all the binding is non-
cooperative, and the two attractants S1, S2 competitively bind to the same receptor R as follows

(6.3)

Then according to the law of mass action, we have

XUE and OTHMER Page 28

SIAM J Appl Math. Author manuscript; available in PMC 2009 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6.4)

If we further assume that the total number of receptors R0 is conserved, then

Since the time scale of ligand binding is typically , which is small compared to the
excitation and adaptation time, we may approximate the number of bound receptors by the
quasi-steady state value,

and G can be written as

If the two signals bind to different receptors, then a similar argument leads to the form,

In E. coli, the functioning units of chemoreceptors are observed to be trimers of dimers, and
different types of receptors can form hetero-trimers in vivo; thus the form of the function of
G actually can be even more complicated.

7. Discussion
In this paper we developed a new method for deriving macroscopic equations for the evolution
of cell density from cell-level descriptions of chemotactic movement in bacterial pattern
formation. The method involves solving the infinite y-moment equations systematically by
applying regular perturbation methods. It allows us to treat more general signal fields and cell-
level descriptions than those used earlier [14,15]. These generalizations include, allowing (a)
time-dependent signal functions, (b) nonlinear turning frequency λ(y1) and (c) external force
fields acting on cells. We also note that although we adopted the cartoon description of
excitation and adaptation in their paper, the method proposed can manage autonomous ODE
models with polynomial right-hand-sides, as long as the time scales of intracellular reactions
can be separated from the diffusion time scale of cells. Another advantage of the method is
that it doesn't require unnecessary quasi-steady-state assumptions on the internal dynamics for
closing the moments. The work is focused on studying run-and-tumble chemotactic movement
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because it is the most understood biological system. However, the derivation method can also
be applied to other systems with minor change, but the limiting macroscopic equation may be
different depending on the details of the specific internal dynamics.

In the derivation of equation 3.33 we assumed that the signal detected by the cell in one “run”
doesn't change significantly. This assumption is satisfied in most cases, but it may be violated
in self-organized aggregates. In this case, using a diffusion time and space scale may not be
appropriate, and therefore a chemotaxis equation is not guaranteed to be a good approximation.
However, in the numerical examples, we showed that the chemotaxis equation still captures
the main dynamics of the cell-based model, although it seems to over-predict the amplitude
and sharpness of the aggregates.

To derive macroscopic equations applicable for large signal gradients, a more detailed
description of the internal dynamics is needed. The adaptation time ta can range from a few
seconds for small signals to minutes for large signals [34]. To handle the case of a large signal
one must incorporate the dependence of the adaptation time on the signal strength, and this can
be done by incorporating the fact that chemoreceptors have multiple methylation sites into the
cartoon description used here. When the adaptation time is large the time scale for the
intracellular response may be comparable to macroscopic time scales, and different balances
of the component processes may arise. To treat such cases new moment closure techniques
may be needed, and this may lead to other types of macroscopic equations than the classical
chemotaxis equation. Finally, in the cell-based model we assumed that cell density is low
enough so that there is no mechanical interaction between cells. However, in some cases, the
cell density can be high, and direct interaction between cells through the fluid, or more directly,
through their flagella, can not be neglected.
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Appendix A. Numerical algorithm of the cell-based model
In the implementation of the cell-based model, cell motion is simulated by a standard Monte
Carlo method in the whole domain, while the equations for extracellular chemicals are solved
by an alternating direction method (Crank-Nicolson in 1-D) on a set of rectangular grid points
(Figure A.1, left). In this appendix, we present the numerical algorithm in a two-dimensional
domain with only one chemical - the attractant - involved (as in Section 4.3). Each cell is

described by its position , internal variables , direction of movement θi and age
Ti (the superscript i is the index of the cell). Concentration of the attractant is described by a
discrete function defined on the grid for the finite difference method (Figure A.1, left). We
denote the time step by k, the space steps by h1 and h2. Since two components of the model
live in different spaces, two interpolating operators are needed in the algorithm.  is used to

evaluate the attractant concentration that a cell senses. For a cell at , inside the square

with vertex indices (n - 1, m - 1), (n, m - 1), (n - 1, m) and (n, m),  is defined by the
bi-linear function:

(A.1)
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where A = h1h2 and Aj, j = 1, 2, 3, 4 are the area fractions (Figure A.1, right). On the other
hand, the attractant secreted by cells is interpolated as increments at the grid points by .

Suppose during one time step k, a cell staying at  secretes Δ amount of attractant, we
then interpolate the increment of the attractant concentration at the neighboring grid points as
follows:

(A.2)

We consider here a periodic boundary condition. The detailed computing procedure is
summarized as follows.

S1 Initialization.

a. Initialize the chemical fields.

b. Initialize the list of swimmer cells. Each cell is put in the domain with random position,
moving direction and age. yi is set to be 0.

S2 For time step l (= 1 initially), update the data of each cell.

a. Determine the direction of movement θi by equation (3.34).

i. Generate a random number r ∈ U[0, 1];

ii. If , update θi with a new random direction.

b. . Apply periodic boundary condition to

make sure  inside the domain,

c. . IF  2 hours, then divide the cell into two daughter cells. This
step is only considered when cell growth is considered.

d. Update  by equations (4.1, 4.2).

i. Determine the attractant concentration before the cell moves  and after
the cell moves (Si)l by using the interpolating operator .

ii. Estimate the attractant level during the movement by

 and integrate equation (4.1) to get .

iii. .

S3 Compute the source term of the attractant  due to the secretion by the cells using the
interpolator ,
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where Δ = γk.

S4 Apply the alternating direction implicit method to the equation of the attractant (4.5):

For the boundary grid points, use the periodic scheme.

S5 . If lk ≤ T0, repeat S2-S4; otherwise, return.

Appendix B. linear analysis on the stability of the uniform steady state of the
continuum model

Linear analysis of the classical chemotaxis equation system has been done in the literature. For
readers' convenience, we include it here. Consider the system

(B.1)

The uniform steady state is , where n0 is the averaged cell density. Without
loss of generality, we assume a one-dimensional domain [0, L] with periodic boundary
conditions, as in the example 4.1 and 4.2. The analysis can be extended without difficulty in
the two dimensional case of example 4.3.

Let u = n - n0, v = S - S0 with  By linearizing around the uniform steady state, we get
the system

(B.2)

Assume

with . The system can thus be reduced to

(B.3)

for any . The uniform steady state of the nonlinear system is unstable if the
linearized system (B.2) has exponentially growing non-homogeneous modes, which means
that there exists a wave number q such that Aq has a positive eigenvalue.
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Simple calculation leads to

•

•

•
.

Therefore Aq is simple with eigenvalues

(B.4)

 is always negative and approaches -∞ as  can be positive when

. Thus, the instability condition→of∞the uniform steady state is,

which is equivalent to

(B.5)

. The growth rate of an unstable mode in the linear system is given by .

From the instability analysis, we can also see that if the qth mode is unstable, the lower modes
are always unstable. This leads to multiple nonuniform steady states of the nonlinear system
(B.1), but only the one with a single high peak is stable.
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Fig. 2.1.
The signal transduction pathway for E. coli chemotaxis. Chemoreceptors (MCPs) span the
cytoplasmic membrane (hatched lines), with a ligand-binding domain on the periplasmic side
and a signaling domain on the cytoplasmic side. The cytoplasmic signaling proteins are
represented by single letters, e.g., A = CheA. (From [34] with permission.)
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Fig. 4.1.
Aggregation and dispersion in a time-dependent signal field. First order and second order
approximations of the cell density n0 and n0 + ϵn1 computed from equation (4.4, 3.42) (smooth
line) are compared with stochastic simulation of the cell based model when coupled with the
attractant dynamics (4.5, 4.6). The left, center and right columns are the attractant concentration
scaled by KD, the cell density and cumulative cell density scaled by the average cell density
n0 at t = 2, 5, 30 and 90 min. G(S), λ and T(v, v′) are given by equations (2.4, 4.3, 3.31). 4 ×
103 cells are used for the Monte Carlo simulation (n0 = 103). Other parameters used are λ0 =
1 s−1, b = 1 s−1, ta = 2 s, s = 20 μm/s, KD = 200, G0 = 200, Ds = 8 × 10−4 mm2/s.
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Fig. 4.2.
Self-organized aggregation in bacterial colonies. (A)-(D): the solution of system (4.4, 4.9, 4.7,
4.8) is compared with one realization of the stochastic simulation of the cell based model
coupled with the attractant dynamics given by equation (4.7, 4.8). The blue, green, red and
cyan curves represent profiles taken at t = 0, 20, 40, 180 min. (resp.) (E), (F): comparisons of
the amplitudes of the first 4 Fourier modes of the solutions. Smooth lines: solution for the PDE
system; dotted lines: stochastic simulation. 4 × 103 cells are used for the Monte Carlo simulation
(n0 = 103). μ = 1/3 × 10-2 s-1, γ = 1/6 × 10-4 s-1 per cell. Other parameters used are the same as
in Figure 4.1.
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Fig. 4.3.
Multi-aggregate formation in bacterial colonies. In the top four plots, the time-lapse shots of
the cell density obtained from the continuum model (red line) is compared with one realization
of the stochastic simulation of the cell based model (blue line) with initial conditions (4.10,
4.11). In the bottom two plots, the amplitude of the first 4 Fourier modes of the solutions are
compared. Smooth lines: solution of the PDE system; dotted lines: stochastic simulation. 8 ×
103 cells are used for the Monte Carlo simulation (n0 = 103). The same parameters are used as
in Figure 4.2.
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Fig. 4.4.
E. coli network and aggregate formation. (A), (B): the cell density from the continuum model
(A: t = 7min, B: t = 13min); (C), (D): the positions of the cells calculated from the cell-based
model at the same time points; (E), (F): the interpolated cell density from (C) and (D).
Parameters used include λ0 = 1 s-1, b = 5 s-1, ta = 2 s, s = 20 μm/s, kd = 40, Ds = 8 × 10-4

mm2/s, μ = 1/3 × 10-2 s-1, γ = 1/6 × 10-1/n0 s-1, n0 = 400, L = 1mm.
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Fig. 5.1.
Comparison of the macroscopic velocity from equation (5.30, 5.32) with statistics from the
cell-based model. In the first three plots, we compare (uS, vS) = (uS ⋅ ∇S uS ⋅ (∇S)⊥) as a
function of ∇G(S) for ώ0 = 0.02π, 0.04π, 0.06π. Solid lines are computed from equation (5.30),
dots are computed from the cell-based model; upper lines and dots are for uS , lower lines and
dots are for vS. The fourth plot is a comparison of the predicted angle θuS,∇S by equation (5.32)
with simulation at different parameters. All other parameters are the same as the previous
examples.
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Fig. A.1.
Left: a schematic figure of the domains. The reaction-diffusion equations are solved on the
grid, while the cells can move around the whole domain. Right: the area fractions used in
defining the interpolators (A.1, A.2).

XUE and OTHMER Page 42

SIAM J Appl Math. Author manuscript; available in PMC 2009 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


