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New high-throughput sequencing technologies are generating large amounts of sequence data, allowing the development
of targeted large-scale resequencing studies. For these studies, accurate identification of polymorphic sites is crucial.
Heterozygous sites are particularly difficult to identify, especially in regions of low coverage. We present a new strategy
for identifying heterozygous sites in a single individual by using a machine learning approach that generates a hetero-
zygosity score for each chromosomal position. Our approach also facilitates the identification of regions with unequal
representation of two alleles and other poorly sequenced regions. The availability of confidence scores allows for
a principled combination of sequencing results from multiple samples. We evaluate our method on a gold standard data
genotype set from HapMap. We are able to classify sites in this data set as heterozygous or homozygous with 98.5%
accuracy. In de novo data our probabilistic heterozygote detection (‘‘ProbHD’’) is able to identify 93% of heterozygous
sites at a <5% false call rate (FCR) as estimated based on independent genotyping results. In direct comparison of ProbHD
with high-coverage 1000 Genomes sequencing available for a subset of our data, we observe >99.9% overall agreement for
genotype calls and close to 90% agreement for heterozygote calls. Overall, our data indicate that high-throughput
resequencing of human genomic regions requires careful attention to systematic biases in sample preparation as well as
sequence contexts, and that their impact can be alleviated by machine learning-based sequence analyses allowing more
accurate extraction of true DNA variants.

[Supplemental material is available online at http://www.genome.org. Alignment and SNP-calling software is available at
http://www.mcb.mcgill.ca/;blanchem/reseq.]

High-throughput sequencing is revolutionizing human genetic

studies and offers the promise of deciphering the complete se-

quence of study subjects in the near future (Kuehn 2008; Wheeler

et al. 2008) (http://www.1000genomes.org). The massively parallel

sequencing technologies are also facilitating large-scale studies

targeting genomic loci of biomedical interest. In targeted rese-

quencing of human genomic regions, the goal is to catalog com-

mon or rare sequence variation in samples ascertained for a par-

ticular phenotype (Altshuler et al. 2008) or a subgroup of samples

harboring haplotypes involved in population risk of disease (Lowe

et al. 2007; Yeager et al. 2008). Targeted resequencing requires the

enrichment of regions of interest by PCR (Brockman et al. 2008) or

by capture-based methodologies (Albert et al. 2007; Gnirke et al.

2009). Both can lead to biases in coverage and allele representa-

tion. PCR-based enrichment methods often involve pooling of

fragments, which are subject to sampling variation. In addition,

preferential amplification can occur due to SNPs under primers

(Quinlan and Marth 2007). If one allele is amplified preferentially,

the ratio of reads derived from each allele will differ from the 1:1

ratio expected. When the preference for one allele is substantial or

if there is a weak preference and coverage is low, heterozygous sites

on that amplicon are likely to be missed by methods that do not

factor in this source of bias.

Existing approaches to resequencing data analysis (Quinlan

and Marth 2007; Brockman et al. 2008; Wheeler et al. 2008; Yeager

et al. 2008; for review, see Stratton 2008) often require the user to

set one or more global parameters, yielding results that are either

very conservative (high specificity, but missing many heterozy-

gous sites), or very liberal (high sensitivity, but often calling false

heterozygous sites). It can be difficult for users to identify appro-

priate parameter values to achieve a desired tradeoff between high

specificity and high sensitivity. Furthermore, a global decision

threshold will rarely achieve the same sensitivity level across dif-

ferent regions, since sequence quality, coverage, and amplification

bias vary locally. Regions or sites that cannot be accurately called

due to low coverage, poor sequence quality, or preferential am-

plification are typically not distinguished from regions for which

there is strong evidence that no polymorphism is present.

In this paper, we present an approach for targeted rese-

quencing and analysis of nucleotide substitutions in data gener-

ated by massively parallel sequencing. We focus on heterozygous

substitutions because they tend to be more difficult to identify

than variants in the homozygous state, particularly in regions of

low coverage or preferential amplification. We present a probabi-

listic approach to heterozygous site detection (ProbHD), which

provides a heterozygosity probability for each chromosomal po-

sition. Providing probabilistic confidence scores allows the user
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to select an appropriate decision threshold that takes into ac-

count the goals of their application and the relative costs of false-

positives and false-negatives. ProbHD also allows the identifi-

cation of preferentially amplified fragments and other poorly

sequenced regions. Regions that cannot be called (due to low

coverage, preferential amplification, low complexity sequence, or

poor alignments) are distinguished from regions that contain no

heterozygous sites, thereby allowing the user to identify regions

for which additional study is required. The availability of con-

fidence scores also allows for a principled combination of se-

quencing results from multiple samples. We provide a Bayesian

method that combines confidence scores from multiple samples

of interest to estimate the probability that a site is heterozygous

in all samples.

We evaluated ProbHD on genomic regions that we had pre-

viously associated with cis-regulatory variation in HapMap CEU

or YRI lymphoblastoid cell lines (LCLs). These regions were dis-

covered by allelic expression (AE) mapping as described before

(Verlaan et al. 2009). Samples showing an AE phenotype and

mapped to a common haplotype must be heterozygous for the

variant(s) causing this differential expression. Therefore, in the

targeted regions we attempted to identify all heterozygous sites,

which represent potential cis-regulatory variants. However, the

method may be applied to the study of other phenotypes and also

used in general genotype-calling, and therefore the approaches

presented below are relevant to a large body of resequencing

projects.

In our study, we used long-range PCR (LR-PCR) for target

preparation and high-throughput picoliter pyrosequencing (454

Life Sciences [Roche] Genome Sequencer FLX [GS-FLX] system

platform). The use of HapMap cell lines (Frazer et al. 2007), for

which detailed genetic variation information is available, allows

for robust estimates of our ability to ac-

curate detect heterozygous sites. Further-

more, we performed additional genotyping

assays and comparison to 1000 Genomes

Pilot data (http://www.1000genomes.

org) to derive accurate performance sta-

tistics. The primary performance metrics

we use are sensitivity and false call rate

(FCR) (the fraction of heterozygous calls

that are in error). Finally, we discuss the

sources of errors in sample preparation,

sequencing, and sequence analysis.

Results
We have developed an automated method

for detecting heterozygous sites from

high-throughput sequencing reads from

one or more targeted regions of a single

diploid sample. We developed a machine

learning approach to classify each chro-

mosomal position (a site) in the target

region as heterozygous (het) or homozy-

gous. ProbHD reports the most likely ge-

notype, as well as the probability assigned

to each genotype. Our prediction pipe-

line, shown in Figure 1, has four steps:

sequencing, alignment, feature genera-

tion, and classification, which are briefly

described below (see also Methods).

Sequencing

Target regions, ranging in size from 8 kb to 240 kb (Table 1), were

selected based on regions significantly associated with AE of par-

ticular genes in CEU and YRI HapMap LCLs (Verlaan et al. 2009).

Differential AE is thought to result from heterozygous cis-acting

regulatory genetic variants (i.e., heterozygous SNPs). Therefore, we

aimed to identify all heterozygous SNPs in each of the resequenced

regions. A LR-PCR-tiling path was designed to cover each target

region, where each PCR product ranged in size from 3 kb to 10 kb.

Amplicons of each tiling path were derived from genomic DNA of

four distinct HapMap individuals (Supplemental Table 1). The tar-

get regions were grouped into three locus sets and were sequenced

using the 454 GS-FLX system. An overview of the experimental

pipeline is included in Figure 1. In total, 1220 independent LR-PCR

amplicons were sequenced, containing 4905 known heterozygous

and 11,813 known homozygous sites, according to HapMap.

Sequence alignment

The FLX System software 1.1.02 (454 GS-FLX June 2007 release)

was used to align each read to the reference human genome (build

36.1). Overlapping pairwise alignments were combined into

a multiple sequence alignment (MSA). Because these MSAs are

often inaccurate near homopolymers, we developed a new re-

alignment strategy (called hAlign), designed to improve alignment

of the 454 GS-FLX reads. Two example alignments are given in

Supplemental Table 7.

Predictive features and learning method

Our approach identifies heterozygous sites based on a set of

quantitative features that describe the characteristics of the aligned

Figure 1. Graphical overview of the four steps in the prediction pipeline. (1) Sequencing: Target
regions are amplified by LR-PCR; amplicons are sequenced using a 454 GS-FLX sequencer. A set of
sequence reads is generated by the 454 GS-FLX base-caller. (2) Alignment: Reads are aligned to the
reference sequence and combined into a multiple sequence alignment (MSA). (3) Feature extraction:
Numerical features are computed from the MSA for each site in the target region. (4) Training: Given
a training set of sites with known genotypes from the HapMap database, we train a classifier to identify
heterozygous sites from sequencing data. This classifier is then applied to novel data sets to identify
novel SNPs.
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sequencing data at each site. The features were selected with the

goal of maximizing the program’s ability to identify heterozygous

sites and assess the confidence of each call. The feature set includes

both site-specific and amplicon-level features. Site-specific features

are extracted from the MSA constructed from reads that cover

a site, as well as the base quality scores assigned to each read. The

amplicon-level features reflect the degree of preferential amplifi-

cation observed for the corresponding LR-PCR amplicon. A com-

plete description of all features used is given in the Supplemental

material, together with the relative predictive power of each fea-

ture. Given this set of features, a random forest classifier (Breiman

2001) was trained to predict HapMap genotypes. Random forests

are highly accurate and efficient machine learning predictors that

have the key advantage of rarely overfitting the training data and

of providing reliable confidence estimates.

PCR specificity, sensitivity, and bias

The LR-PCR protocol achieved excellent specificity, with 96% of all

reads successfully mapping to one of the target regions. High

sensitivity was also achieved, since >99% of amplicons yielded

sequence data. Average sequence coverage ranged from 263 to

783 between sequence runs. More specifically, 95% of LR-PCR

amplicons had at least 83 coverage, while 89% had at least 153

coverage (Fig. 2A). Improved quantification of the PCR amplicons

in Locus set 3 compared with the two previous ones resulted in

more uniform coverage across amplicons: The percentage of

amplicons with at least 83 coverage increased from 95% to 98%

while the percentage of amplicons with at least 153 coverage in-

creased from 89% to 96%. However, even with quantitative pool-

ing, a large degree of variability in coverage levels was observed:

The top 80% of amplicons spanned a fourfold range of coverage

(from 313 to 1243 coverage).

The allele-specific amplification bias was estimated probabi-

listically for each amplicon, based on the relative frequency of

alleles in reads covering known (or predicted) heterozygous sites.

Although amplification of the two alleles is rarely perfectly equal,

the estimated amplification bias is small in most cases (Fig. 2B).

Only 2.7% of amplicons show evidence of strong amplification

bias (i.e., <15% of reads derived from the underrepresented allele).

For 94% of amplicons, the underrepresented allele still derives

>35% of the reads. Allele-specific bias can be caused by heterozy-

gosity at an unsuspected SNP within the primer used for the LR-

PCR (Quinlan and Marth 2007).

Accuracy in calling known heterozygous sites

To train and test ProbHD, a gold standard data set was constructed

from the HapMap database (The International HapMap Consor-

tium 2005, 2007) (http://www.hapmap.org/). Each HapMap SNP

in each sample was labeled as heterozygous or homozygous. The

training set was supplemented with additional genotypes obtained

from sequencing and genotyping conducted in our laboratory,

resulting in a total of 12,309 homozygous and 6640 heterozygous

sites.7 A cross-validation procedure was used to train the classifier

and assess its ability to accurately identify heterozygous sites in

a diploid genome.

For each site in our target regions, ProbHD estimates the

probability that the site is heterozygous, given the observed data.

In order to classify a site as heterozygous, a decision threshold must

be selected. A high probability threshold results in highly accu-

rate heterozygote calls, but with many false-negatives. Conversely,

a lower threshold yields a higher sensitivity, but the FCR will

also be high. This sensitivity/FCR tradeoff curve (Fig. 3A) is com-

pared with the performance of the Mosaik/GigaBayes short-read

Table 1. Sequencing locus sets and related statistics

Locus set 1, total sequence length = 561,721 bp

Genes: CYP1B1, ANKH, SERPINB10, INSIG2, CHI3L2, SERPINB9, EPSTI1, SLC7A7, LRMP, GATA3, IL23R, PTGER4

Regions: chr2:38064246–38177190; chr5:14793141–14809289; chr6:2837640–2856788; chr2:118548861–118577496; chr1:111564287–
111601741; chr18:59689916–59757195; chr13:42352873–42386554; chr14:22329433–22349694; chr12:25019524–25056693; chr12:25107834–
25131336; chr10:8134100–8150388; chr1:67365466–67443715; chr5:40476319–40547282

Total # of reads = 646,859 Total # of bases = 135,713,986 Mean coverage = 603

Locus set 2, total sequence length = 808,179 bp

Genes: ANKH, SLC22A5, CXCL9, HNF1B, LRRK2, SLC2A13, ORMDL3, GSDML, CLECL1, IL2RA, KATNAL1, NCR2

Regions: chr5:14919969–14937822; chr5:131655400–131855554; chr4:77132997–77218221; chr17:33158374–33205550; chr12:38779435–
38880989; chr17:35182954–35336357; chr12:9713048–9790776; chr10:6126099–6162015; chr13:29683087–29739165; chr6:41408225–
41441318

Total # of reads = 637,919 Total # of bases = 130,908,188 Mean coverage = 413

Locus set 3, total sequence length = 868,448 bp

Genes: STAT4, TNFRSF11B, ERAP1, ERAP2, TAP2, TRAF1, BLK, C8orf13, IRF5, TNPO3, SLC9A8, ZNF313, CHI3L1

Regions: chr2:191605785–191739895; chr8:119955272–120148552; chr5: 96121271–96169539; chr5:96257845–96270513; chr6:32896620–
32904786; chr9:122722273–122731239; chr8:11318295–11396521; chr7:128356196–128487322; chr20:47861609–48100000; chr1:201420257–
201435504

Total # of reads = 796,954 Total # of bases = 174,788,171 Mean coverage = 503

7 Notice that the numbers of homozygous and heterozygous sites are much
more balanced than in actual genomic data—this is addressed in the section on
de novo het-calling.
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SNP-calling pipeline by Smith et al. (2008) (see Methods). By an-

alyzing base frequencies and quality scores independently at each

site, GigaBayes is able to identify 90% of all known heterozygous

sites with only a 3% FCR. In contrast, ProbHD considers additional

information such as local alignment quality and preferential am-

plification of LR-PCR fragments, and thereby reduces the FCR by

33%, to just 2%. The estimated FCR of ProbHD remains low up to

;95% sensitivity, at which point it starts increasing rapidly be-

cause of hard-to-call hets located in poorly aligned regions or

preferential amplification.

The effect of coverage level on prediction performance was

analyzed by randomly down-sampling reads to the desired cover-

age and recomputing the features for each site from this smaller

data set. For this analysis, only data from Locus set 3 were used,

since experimental improvements in this data set allowed us to

achieve more uniform coverage across all LR-PCR amplicons

(;453). This allowed us to sample reads randomly from each se-

quencing run to simulate coverage levels ranging from 53 to 453

(Fig. 4A). While 53 coverage is clearly insufficient for making ac-

curate predictions, even 153 coverage yields reasonable accuracy

(94.5% sensitivity, 6% FCR when using a heterozygous confidence

threshold of 0.5). Prediction accuracy increases steadily up to 303

(97% sensitivity, 3% FCR), but additional coverage yields little

improvement. At this level of coverage, prediction errors are

mostly due to hard-to-call SNPs near homopolymers or complete

allele dropout, for which increased coverage makes little differ-

ence. For comparison, GigaBayes maintains a low FCR even at low

coverage, but at the cost of very low sensitivity.8

The number of errors we detect when using the HapMap test

set is inflated by genotyping errors in the HapMap database. If

ProbHD has a low prediction error rate, then even a small number

of HapMap annotation errors can substantially inflate the ob-

served error rate. To obtain an estimate of the true error rate on our

test set, we genotyped a random set of sites (n = 62) for which our

classifier gave a high-confidence prediction but where our pre-

dicted genotype did not match the genotype in the HapMap da-

tabase. These additional validation results (Table 2) show that the

majority of high-confidence calls that disagree with HapMap are

Figure 2. (A) Average depth of coverage obtained for each successfully
amplified LR-PCR fragment. Regions covered by two overlapping ampli-
cons in the tiling path were excluded. (B) Frequency and magnitude of
amplification bias, for amplicons with at least four known heterozygous
sites, and average read coverage of at least 53.

Figure 3. (A) Ability of three classifiers to identify known heterozygous
sites. False call rate (FCR) (the fraction of called heterozygous SNPs that are
known to be homozygous) is shown as a function of sensitivity (the frac-
tion of known heterozygous sites called by each classifier). Three classifiers
are compared: (1) GigaBayes; (2) ProbHD local-feature classifier, which
considers all local features that could be extracted from the 454 GS-FLX
generated MSA and quality scores file; and (3) ProbHD full classifier, which
considers both local- and amplicon-level features from alignments gen-
erated by hAlign. (B) Estimated sensitivity and FCR for calling a site het-
erozygous, corrected for HapMap errors. (Dashed line) Assumes a HapMap
error rate at the upper end of the 95% confidence interval; (dotted line)
lower end; (solid line) no HapMap errors.

8 At low coverage (<153), the distribution of GigaBayes scores does not allow
much of a trade-off between sensitivity and FCR, as the majority of hets are
assigned score 0.
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actually correct. Out of the 52 high-confidence heterozygous calls

conflicting with HapMap that were tested, 51 (98%) were actually

heterozygous, while seven of 10 tested high-confidence homozy-

gous calls were validated. Therefore, we used these numbers to

factor out HapMap errors and obtain a corrected performance

graph (Fig. 3B), showing that on the HapMap test set ProbHD is

able to detect 95% of known heterozygotes with <1% FCR, and

98% of known heterozygotes can be identified with <7% FCR.

De novo identification of polymorphic sites

All the results presented above are based on the subset of sites with

known genotypes listed in the HapMap database. However, these

results cannot be extended directly to de novo SNP-calling because

the fraction of heterozygous sites in our HapMap training and test

sets (41.5%) is much higher than the fraction we expect in our

target regions (<0.1%). Consequently, the observed FCR on Hap-

Map data is not a realistic estimate of the true FCR for de novo SNP-

calling in our target region. Consider a predictor that would

achieve 100% sensitivity and 1% FCR on a balanced test set (with

equal numbers of heterozygous and homozygous sites). If the ratio

of heterozygous sites in the target region is 1:1000, then the de

novo FCR9 would actually be 91%! It is essential to correct for the

differences in polymorphism rate when estimating the error rate

for de novo heterozygous site prediction. Therefore, based on our

estimate that 0.7% of HapMap genotypes in our target regions are

incorrect (Table 2), and 1 in 1000 sites are heterozygous, a sensi-

tivity of 93% with a FCR below 5% is predicted (Fig. 4B, solid line).

We note that even better performance can be achieved by re-

moving regions in the lower tail of coverage or extremes of allelic

bias (Fig. 4B, dashed line).

We further evaluated the feasibility of ProbHD for de novo

base-calling using the genotype calls from 245 kb of unique (re-

peat masked) sequence generated at high coverage by the 1000

Genomes Pilot Project (http://www.1000genomes.org, April 2009

release) and also sequenced in our experiments in the same indi-

viduals (NA12892 or NA12891). This comparison should allow

more direct estimates of the accuracy of our method not limited

by the biases outlined above. Setting two thresholds for calling

bases, het probability <0.4 to call homozygous sites or het prob-

ability >0.92 to call heterozygous bases, allowed base calls for

99.4% of sequence (Supplemental Table 2). Genotype calls were

made for 92% of homozygous non-ref sequence sites (homovar),

and for 94% of heterozygous sites (het) reported in the 1000

Genomes database for these two individuals. Of the eight non-

reference sequence homozygous sites not covered by our base-

calling, six were located in a single poorly aligned genomic region.

Overall base-calling agreed for >99.9% of homozygous sites

(homoref/homovar). The agreement of ProbHD and 1000 Ge-

nomes genotyping calls for heterozygous and nonreference allele

homozygous (homovar) sites were 89% and 98%, respectively. We

note that for seven discordant sites there were independent geno-

typing data available, and in all cases our prediction was con-

verging with the third method. These data suggest that ProbHD

can be utilized as a general de novo base-caller in high-throughput

sequencing data.

Identifying heterozygous sites shared between individuals

The probability scores generated by ProbHD are particularly valu-

able when combining predictions from different samples. This can

be exploited for quickly cataloging common variants in the same

haplotype for fine-mapping studies. A majority of the target re-

gions (20/33) were sequenced in four individuals carrying a com-

mon haplotype associated with AE, and our heterozygosity pre-

dictor was applied to each sample. For each site, individual het

probabilities and prior probabilities of polymorphism (based on

dbSNP) were combined using a Bayesian approach to obtain the

posterior probability that all four individuals are heterozygous.

To evaluate our ability to identify heterozygous sites occur-

ring in multiple sequenced individuals, we constructed a test set

Figure 4. (A) Effect of coverage depth on prediction of known hetero-
zygous sites. Sensitivity and positive predictive value (PPV, equal to 1 �
FCR) are shown as a function of average depth of coverage. ProbHD results
are shown with two different probability cutoffs for predicting heterozy-
gous sites. A cutoff of c = 0.92 yields a conservative predictor that makes
few false-positives, and a cutoff of c = 0.5 yields a very liberal predictor with
higher sensitivity but higher FCR. Results are not corrected for HapMap
errors. (B) Estimated de novo SNP-calling sensitivity and FCR, assuming
0.1% of sites are heterozygous. Well-sequenced sites are those sites with at
least 133 coverage that are located on amplicons with minor allele de-
riving at least 25% of reads. The pronounced ‘‘elbow’’ is due to the severe
imbalance between heterozygous and homozygous sites. Using a very
conservative confidence threshold yields an error rate close to zero.
However, as the threshold is lowered the percentage of homozygous sites
miscalled as heterozygous sites eventually becomes nonzero. Even when
the percentage of errors is quite small, the absolute number of errors
quickly becomes large in comparison to the number of true hets, and the
FCR climbs rapidly.

9 If f is the FCR on a balanced test set, and s is the sensitivity obtained on that set,
then the expected FCR on a data set with a polymorphism rate of p is (1� p) • f /
((1 � p) • f + p • s).
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where positive instances are sites known to be heterozygous in all

four individuals (based on HapMap), and negative instances are

sites where at least one individual is known to be homozygous. We

find 95% of known common hets with <5% FCR (Fig. 5A). Addi-

tional genotyping experiments were conducted to validate our

predictions (Table 3). Genotyping results validated our predictions

for 204 out of the 206 polymorphic sites, which suggests that at

a sensitivity level of 85%, the FCR is <1%.

Our data also allow us to analyze the number of samples

needed for cataloging common variants and the effect on follow-

up genotyping in a larger sample. For example, to achieve 95%

sensitivity, increasing the number of individuals sequenced from

one to two almost halves the number of sites to be genotyped (Fig.

5B). Adding more individuals reduces the number of predicted sites

still further, but the reduction is small in comparison.

Discussion
We show that careful consideration of alignments and systematic

biases in sample preparation in targeted human resequencing

experiments using second-generation sequencers allows the de-

tection of heterozygous sites with good accuracy. ProbHD yields

85%–93% sensitivity with <5%–11% FCR in identifying hetero-

zygous bases in human resequencing data, where about one-third

of the bases have <303 coverage. The higher sensitivity and lower

FCR stem from estimates based on HapMap data, whereas the more

pessimistic estimates are based on direct comparison to in-

dependent (1000 Genomes Pilot Project) high-throughput se-

quencing data. We speculate that true sensitivity and FCR are

within these limits, since independent genotyping of a subset of

sites resolved most conflicts in our favor. If we exclude problem

regions (low-coverage sites and preferentially amplified LR-PCR

fragments), a very high sensitivity (>99%) can be obtained with

a negligible FCR. In contrast to many existing approaches that

report a single set of predicted hets based on a particular set of

filters and parameter values (Levy et al. 2007; Wheeler et al. 2008;

Yeager et al. 2008), ProbHD reports a heterozygosity probability

for each site, allowing users to trade off false-positives for false-

negatives as desired. We compared ProbHD with the Mosaik/

GigaBayes predictor, a package designed for short-read alignment

and SNP-calling (Smith et al. 2008). We showed that ProbHD has

a small but significant advantage at high sequence coverage, and

a larger advantage at lower coverage. Furthermore, ProbHD gen-

erates many more low-confidence scores,

allowing users to achieve higher sensi-

tivity if they are willing to tolerate

a higher FCR. Finally, we show that

common variants in haplotypes can be

successfully cataloged with a relatively

sparse sampling of haplotypes of interest,

allowing investigators to fine-tune study

design by balancing the cost of high-

throughput sequencing and follow-up

genotyping (Fig. 5B).

The FCR of ProbHD for de novo

resequencing remains relatively high for

three main reasons: (1) poor sequence

alignment (as a result of long homopol-

ymers or low-complexity sequences), (2)

low coverage (as a result of pooling vari-

ation or difficult-to-sequence regions),

and (3) preferential amplification of one

allele. The impact of each source of error is detailed below.

In 454 GS-FLX reads, poor alignments typically occur in low-

complexity sequence or in regions containing long homopol-

ymers. The 454 GS-FLX sequencer, rather than sequencing a single

base at a time, estimates the lengths of homopolymer runs: The

longer the homopolymer run, the more uncertainty there is in the

Table 2. Number of sites predicted in each bin of heterozygosity probability and each
HapMap genotype

Heterozygous class probabilitya

0–5 5–15 15–50 50–85 85–95 95–100

HapMap genotypeb Homo (mono) 4278 247 218 96 5 55 (26/26)
Homo (poly) 6068 362 288 127 7 35 (25/26)
Het (poly) 21 (7/10) 25 114 159 147 4435

aThe probabilities indicate our classifier’s confidence that a site is heterozygous. The total number of sites
in each category is shown, with areas of disagreement between HapMap and our classifier highlighted in
boldface. The numbers in parentheses indicate the number of sites genotyped by an independent
method: The first number is the number of sites for which the second technology agreed with
our classifier (and HapMap is in error), and the second number is the total number of successfully
re-genotyped sites.
bEach site is categorized as either homozygous or heterozygous in HapMap, and homozygous sites are
separated into monomorphic (sites for which no variation was found in the entire HapMap population)
and polymorphic sites.

Figure 5. Common hets prediction. (A) Test set FCR (the percentage of
predicted sites in HapMap that are not common hets) as a function of
sensitivity. (B) The total number of predicted common hets as a function
of desired sensitivity, based on one to four samples.
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estimate of its length. To address this issue, we designed a modified

alignment strategy, hAlign, for generating high-quality MSAs from

454 GS-FLX sequence reads. Using alignments generated by hAlign

rather than the 454 GS-FLX-generated alignments improves pre-

dictions considerably: At 94% sensitivity, for example, the FCR

dropped from 4% to 2.5%. In addition to realigning problem

regions, our approach uses a more liberal filtering strategy than

previously used. Rather than applying stringent filters to discard all

suspect reads, we provide our classifier with features that yield

quantitative measurements of local alignment quality for each site.

In this way, high-coverage sites located in poorly aligned regions

are never given high confidence scores, but may still be presented

as candidate heterozygous sites. We note that applying other re-

cently suggested approaches for 454 GS-FLX base-calling, quality

score estimation, and read alignment (Quinlan and Marth 2007)

could further reduce error associated with imprecision in align-

ment. In particular, the performance of the GigaBayes predictor,

which relies heavily on the availability of accurate base quality

estimates, may greatly benefit from improved base-calling, as

previously reported (Smith et al. 2008). Homopolymers are less

problematic for other high-throughput sequencing technologies

(Mardis 2008), but the shorter read lengths lead to challenges in

mapping and alignment of repetitive sequences (Li et al. 2008).

Read mapping uncertainty, as well as any other technology-

dependent quantifiable sources of uncertainty, could be easily

taken into consideration by ProbHD by adding a set of additional

features to the classifier.

A critical and universal challenge in targeted resequencing

studies is to obtain adequate coverage for detection of heterozy-

gotes. In shotgun sequencing of the human genome, where unequal

allele representation is less of a concern than in targeted rese-

quencing, lower coverage (<153) should be sufficient to identify

both alleles 99% of the time (Wheeler et al. 2008). In contrast, our

results show that in targeted resequencing an average coverage of

153—although sufficient to achieve reasonable predictive value—

yields low sensitivity. Sensitivity continues to increase steadily even

up to 303 average coverage. The improvement in sensitivity af-

forded by higher coverage levels is most likely due to the presence

of preferentially amplified amplicons. The stronger the amplifica-

tion bias, the larger the number of reads required to detect hetero-

zygous sites.

Even when the average depth of

coverage is high, and amplification is un-

biased, locally low coverage is still a ma-

jor cause of missed heterozygous sites.

Locally low coverage is sometimes due

to unusual sequence composition. For

example, a 1.4-kb stretch of sequence

with 74% GC content (chr5:14924400–

14925800) yielded negligible coverage

despite successful amplification and se-

quencing of flanking regions. More often,

however, regions of low coverage result

from uneven pooling of PCR amplicons.

Our results show that efforts to derive

equimolar pools result in a significant

improvement in sensitivity: In the Hap-

Map data set, the FCR at 95% sensitivity

dropped from 2.2% to 0.5%. Further

reductions in coverage variability would

allow for higher accuracy at lower average

coverage levels. However, variation in

coverage is unlikely to be completely eliminated, and, therefore, to

achieve high sensitivity, a classifier must be able to detect hetero-

zygous sites even when coverage is low. ProbHD reports lower

confidence in low-coverage regions, but still identifies possible

heterozygous sites for further study.

The third factor that results in missed heterozygous sites is

preferential amplification. Although complete allele dropout is

relatively rare (only 3% of amplicons in our data set), it precludes

detection of heterozygous variants, and thus has a large effect on

sensitivity. It is essential to identify complete allele dropout so that

these amplicons can be targeted for follow-up by alternative

methods. Detection of complete allele dropout requires a set of

known heterozygous sites. If no prior information is available, it

could be beneficial to generate high-density genotyping data in

parallel with full sequence. Alternatively, complete allele dropout

can be virtually eliminated by a redundant design of LR-PCR

primers. It is highly unlikely that two independent sets of prim-

ers would both contain SNPs, and so—assuming complete al-

lele dropout is due to SNPs under primers and occurs in 3% of

amplicons—fewer than 1 in 1000 amplicons would exhibit near

complete allele dropout.

Even if complete allele dropout is eliminated, smaller biases

will still occur. Almost undetectable allele bias can occur early in

the LR-PCR reaction, and later be amplified to detectable levels.

Although smaller biases are less catastrophic, they are more

common: In our data, 9.5% of amplicons showed significant10

deviation from the expected 1:1 ratio. A failure to recognize these

smaller biases will lead to overly conservative probability esti-

mates, and thus, missed heterozygotes. In particular, a statistical

method that assumes that the ratio of alleles is 1:1 (Li et al. 2008;

Wheeler et al. 2008) will yield misleading statistics. Our method

does not make any assumptions about the ratio of alleles, but uses

prior information (known hets) and empirical data (predicted hets)

to estimate the amplification bias for each fragment, allowing

detection of amplification bias even when no heterozygotes

sites are known a priori. Of all the features used by our classifier,

the amplicon-level features resulted in the largest prediction

Table 3. Sensitivity and specificity in predicting heterozygous sites shared between
individuals

Bin
number

Probability
of a shared

het
Total number

of sites

True genotypesa

Estimated
sensitivityb

Estimated
specificityb

Common
het

Not a common
het

1 75%–100% 706 360
(204)

5
(14)

85% 99.7%

2 33%–75% 396 41 13 95% 99.1%
3 1%–33% 2852 20 111 99.5% 94%
4 0%–1% 1,434,964 2 2053 100% 0%

aThe numbers in parentheses are derived from experimental validation of de novo sites by Sequenom.
bAssumes all sites within this or a higher ranked bin are called as heterozygotes.
Sites are binned by the posterior probability that they are heterozygous in all four samples. True ge-
notype was determined by HapMap when available. A random subset of sites with unknown genotype
and predicted common-het probability >75% were genotyped in our panel of CEU and YRI HapMap
samples. Of these sites, a total of 218 sites were successfully genotyped in all four samples, and 206
(95%) of these sites were found to be polymorphic in the HapMap CEU sample. Of the remaining 12
monomorphic calls, many likely represent failed genotyping assays, since in a subset of such discrep-
ancies followed up earlier we observed concordant results with 454 GS-FLX resequencing upon re-
design of the genotyping assay or by independent Sanger sequencing.

10 The upper bound of the 90% Bayesian credible interval on the fraction of
reads derived from the underrepresented allele is <0.45.

Hoberman et al.

1548 Genome Research
www.genome.org



improvement (Fig. 3A), revealing the importance of quantifying

preferential amplification.

Coverage variation and preferential allele representation

introduced in sample preparation are independent of the next-

generation sequencing technology used. Similar to LR-PCR,

microarray- or solution-based sequence capture methods for target

enrichment (Albert et al. 2007; Gnirke et al. 2009) show wide

variability in coverage per base. Furthermore, a specific bias toward

calling heterozygous sites reference allele homozygotes due to

polymorphisms under capture probes has been reported (Gnirke

et al. 2009). Reported specificity of sequence capture-based geno-

type calls was high (>99%) but resulted in only ;64% sensitivity

between technical replicates (i.e., a large fraction of genotypes were

not in high-coverage sequence in both samples and genotypes

were not called) (Gnirke et al. 2009). In contrast, ProbHD allows

a user to distinguish strong negative evidence from a lack of pos-

itive evidence, which enables a user to determine the specific

regions for which additional sequencing is necessary. Training

ProbHD to include features for specific biases in the newer capture

technologies could allow more efficient extraction of genotypes

from these data as well.

While related computational approaches can be compared on

the same data, it is difficult to generalize from results on a set of

sites with known genotype to results for de novo SNP-calling. First,

the genotypes in these data sets were obtained by technologies that

have nonnegligible error rates, which could be higher than the

error rates in resequencing. We find particularly high error rates for

sites assigned monomorphic status in the HapMap population.

Indeed, based on our in-house genotyping and Sanger sequencing

of discrepancies between ProbHD predictions and HapMap (Table

2), we derived an estimate that 0.5%–0.7% of HapMap genotypes

are incorrect, closely approximating rates reported by others

(0.6%) (Frazer et al. 2007; Gnirke et al. 2009).

A second challenge in estimating error rates for de novo SNP-

calling arises because the proportion of homozygous and hetero-

zygous sites in the set of known SNPs in our test set is not repre-

sentative of genomic DNA. Although this bias does not affect our

ability to estimate the false-positive rate (FPR)11 (the fraction of

homozygous sites that are erroneously reported as heterozygous),

such a metric is not appropriate when the majority of examples are

negative (i.e., homozygous). In such cases, the FPR will always be

low as long as few positives are predicted. Instead, we argue that for

measuring performance in de novo SNP-calling, it is important to

report FCR (the fraction of heterozygous calls that are erroneous)

rather than specificity or FPR. However, unlike the FPR, the FCR

depends on the fraction of sites that are heterozygous. Thus, it

cannot be directly estimated from a data set comprised of pre-

specified sets of SNPs with known genotypes but unrepresentative

heterozygous to homozygous ratio, such as prior genotyping data

(Levy et al. 2007; Wheeler et al. 2008) or resequencing limited to

short polymorphic sequences (Brockman et al. 2008). In order to

determine the proportion of calls that are false, adjustments need

to be made for the polymorphism rate. We evaluated ProbHD for

de novo base-calling by comparing with the genotype calls derived

from sequence generated at high coverage by the 1000 Genomes

Pilot Project and avoided the need for such adjustments. The lower

than estimated performance of ProbHD when compared with 1000

Genomes Pilot Project high-coverage sequence data could be due

to limited overlap of data (;0.1% of our data set). Furthermore, the

April 2009 release of 1000 Genomes Pilot data does not provide

quality scores for genotypes and, in a number of cases of appar-

ently missed or false-positive base substitutions by ProbHD calls,

we observed evidence of more complex substitutions in sequence

alignments (Supplemental Table 6). The maturation of shotgun

sequencing data across population samples will allow not only

accurate measurements of ProbHD performance but also much

more realistic training sets for development of machine learning-

based sequence calls.

Overall, our analyses indicate that probabilistic approaches

for calling sequence variants in high-throughput sequence data

allow efficient identification of heterozygous sites, and show how

confounders such as preferential representation of alleles can be

integrated into the analyses. The sensitivity and FCR estimates in

our data set for single sample or multiple samples will help in study

designs to maximize utility of targeted sequencing of human ge-

nome in fine-mapping of loci identified in association studies as

well as in next-generation, sequence-based, disease association

studies.

Methods

Loci and sample selection
Target regions were selected based on allelic expression mapping in
CEU and YRI LCLs as previously described (Pastinen et al. 2005;
Verlaan et al. 2009). These experiments can map relative differ-
ences in expression of alleles within a sample to local variants that
explain such differences in the population. In most cases, a single
common haplotype was shared in a heterozygous state by all
samples showing differences in relative expression in alleles. If the
allelic expression trait observed in the population has a common
cause (a single or group of variants) across such samples, then all
‘‘candidate’’ sites should be present in heterozygous state in the
selected samples. While the latter assumptions are important for
identification of causal variants for allelic expression, the choice of
the haplotypes, samples, and loci should not affect the algorithms
described in this paper. Therefore, the sample selection can be
thought to represent a more general case of haplotype-based se-
lection of samples from a population. The loci chosen for rese-
quencing and their coordinates are shown in Table 1. Individuals
sequenced for each locus (n = 4) are further delineated in Supple-
mental Table 1.

Sample preparation and DNA sequencing

A tiling path of 3- to 10-kb LR-PCR amplicons was designed to fully
cover each target region. Each LR-PCR amplicon was inde-
pendently produced. To obtain more material and reduce the
background level of genomic DNA starting material, we performed
a second round of LR-PCR of the product obtained from the initial
LR-PCR, using the same conditions and primers. The final LR-PCR
amplicons from multiple target regions were then pooled together
using normalized quantities. For Locus sets 1 and 2, amplicon
quantities were quantified with a Nanodrop spectrophotometer,
while Locus set 3 quantities were quantified with a PicoGreen
spectrophotometer. The libraries were then amplified and se-
quenced on a 454 GS-FLX instrument.

Image and signal processing were carried out using the GS-
FLX System version 1.1.02 (454 Life Sciences [Roche], June 2007
release), with default parameter settings. Flowgrams were con-
verted to nucleotide sequences and each base is assigned a quality

11 Adding to the confusion, the term false-positive rate (FP/(FP+TN)) is some-
times used to denote what we call false call rate (FP/(FP+TP)), and specificity is
sometimes used to refer to 1� false call rate. Most often, terms are used without
a clear explanation of the mathematical quantity represented.
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score. The reads are filtered using the default FLX System software
quality control filters, and primer sequences are trimmed from the
ends of reads.

Read mapping and alignment

Mapping and alignment of reads to the human reference sequence
was conducted by the FLX System Reference Mapper software,
with default parameters. All reads were mapped to the targeted
regions of the human reference genome (NCBI Build 35 for Locus
sets 1 and 2, and NCBI Build 36 for Locus set 3). Partially mapped
reads are retained, but reads that cannot be mapped uniquely
within the target region are discarded.

Multiple sequence alignments are initially constructed from
the 454 GS-FLX Instrument pairwise alignments, such that all read
bases aligned to the same base in the reference are aligned together,
and all bases inserted i bases after a reference base are aligned to-
gether. However, these alignments often contain errors, especially
near long homopolymers and SNPs. The 454 GS-FLX sequencer,
rather than sequencing a single base at a time, estimates the
lengths of homopolymer runs. The longer the homopolymer run,
the more uncertainty there will be in the estimate of its length.
Incorrect read alignment near long homopolymers results in
a significant number of miscalls. Thus, we designed an alternative
alignment procedure for 454 GS-FLX reads. Our modified align-
ment algorithm, hAlign, uses a progressive alignment strategy, and
imposes different indel and mismatch penalties in homopolymer
regions. In particular, reduced penalties are imposed for gaps oc-
curring within homopolymers.

Poorly aligned portions of the target region are first selected
for realignment. The read sequences overlapping these regions
are collected. The reference and reads are then input to hAlign.
The realignment procedure is based on a modified Needleman–
Wunsch alignment algorithm (Needleman and Wunsch 1970).
First, a preprocessing step identifies long near-homopolymeric
regions, allowing for intermittent and nonconsecutive occur-
rences of other nucleotides. A specialized gap scoring scheme was
designed for these regions, reducing gap opening and extension
penalties to better model length variations of the regions. Also,
when nucleotides other than the repeated base occur in these
regions, matches of these nucleotides are weighted more heavily.
Reads are progressively aligned, in an order that is based on pair-
wise alignment score with the reference.

Progressive alignments are sensitive to the ordering of the
sequences to be aligned. ‘‘Noisy’’ reads often resulted in alignments
where the two alleles of a heterozygous position appeared in sep-
arate columns. These positions commonly covaried (i.e., a gap is
seen in one column whenever a nucleotide is seen in the other).
We thus introduced a post-processing step in the alignment pro-
cedure to screen the initial realignments for such column pairs and
reprioritize the order of the alignment of the read sequences,
postponing the alignment of the reads causing the problem. Full
details about the realignment procedure are available in the Sup-
plemental material.

Feature selection

The multiple sequence alignments produced by hAlign are used to
define site-specific and amplicon-level features from which het-
erozygosity predictions will be made. A column of the MSA that
contains variant bases may indicate a heterozygous site. However,
observed variant bases may also be a result of sequencing or
alignment errors. When calling heterozygotes, the main sources of
error and uncertainty include low depth of coverage, low-quality
reads/bases, incorrectly mapped reads, preferential amplification,

and poor alignment. Poor alignments can occur as a result of
neighboring polymorphisms, low-complexity sequence, and neigh-
boring homopolymers. Thus, the types of local features used to
predict heterozygotes in 454 GS-FLX data include: (1) total number
of reads covering the site (forward and reverse), (2) number of reads
with a variant allele at the site (forward and reverse), (3) number of
variants that occur near the end of their read, (4) base quality scores
of each allele, (5) local alignment quality, and (6) length of neigh-
boring homopolymers. The complete list of features is described in
the Supplemental material.

When predicting heterozygous sites based on reads derived
from amplicons, it is also necessary to consider the possibility that
unknown SNPs within the PCR primer sites caused preferential
amplification of one allele (Quinlan and Marth 2007). Thus, global
amplicon-level features are also provided to the classifier. These
features include our maximum a posteriori estimate of the fraction
of reads originating from the nonpreferred allele, as well as the
confidence interval on this estimate.

Training and test sets

The data set comprised all sites in each sample with known geno-
types in the HapMap database (release 22 for Locus set 1 and 2 and
release 23 for Locus set 3). According to the genotype, each site was
labeled as heterozygous, homozygous reference (i.e., identical to
the reference genome), or homozygous variant.

The training set consisted of these instances: a number of
additional polymorphic12 sites genotyped at our center using
Sequenom panels, and a set of genotypes obtained using Sanger-
chemistry sequencing. A small fraction of HapMap genotypes that
conflicted with our Sequenom results were corrected or removed
from the training set, but remained unaltered in the test set.

This training set contained very few sites with low coverage.
However, we wanted our classifier to generate accurate confidence
values even for sites covered by very few reads. For this reason the
training set was supplemented with additional training instances,
generated by randomly down-sampling reads (to obtain coverage
levels of 53, 103, 153, 203, and 303) and then recomputing
feature values for sites with known genotypes. Each site is thus
represented several times in our training data, at different coverage
levels.

Learning and cross-validation procedure

Our classifier was benchmarked against the test set using a five-
fold cross-validation procedure. The set of sites with known geno-
types was randomly divided into five equal-sized subsets. Each
subset in turn was used for testing. Any training instance matching
a test instance (i.e., with the same chromosomal position and
sample ID) was removed from the training set, and the remain-
der of the training instances was used for training. The perform-
ances on the five test sets were averaged to obtain an overall error
estimate.

The randomForest package (Breiman 2001) in the R statistical
software package (http://www.r-project.org) was used to train a
classifier to distinguish between heterozygous and homozygous
sites. The classifier builds 250 unpruned decision trees, each from
a different random subset of the training instances and features.
Specifically, each tree is trained on a random subset of five features,
and from a random, balanced set of examples (equal number of
hets and non-hets). The proportion of trees that classify a site as

12 For training the classifier, only sites classified as polymorphic by Sequenom
were included.
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heterozygous is used as an estimate of the probability that the site
is a het.

Mosaik/GigaBayes predictions

454 GS-FLX reads and base quality scores were aligned against the
selected regions of the reference human genome using Mosaik-
Aligner 0.9.0891 with arguments recommended for 454 GS-FLX
read alignment: ‘‘-hs 15 -mmp 0.05 -a all -m unique -mhp 100 -act
26 -mmal -p 2.’’ Roughly 95% of reads uniquely align to the de-
sired target region. Alignments were sorted and assembled using
MosaikSorter and MosaikAssembler. Heterozygous sites were pre-
dicted using GigaBayes 0.4.1 with arguments ‘‘–sample single–PSL
0.001–ploidy diploid–QRL 1–QAL 1.’’ We note that the values of
QRL and QAL (minimum read base quality and minimum aggre-
gate allele quality, respectively) were set much lower than the
defaults (10 and 40, respectively). This allowed increased sensi-
tivity and did not affect FCR.

Validation by Sequenom and Sanger sequencing

Validation of candidate heterozygous sites was done using the
Sequenom MassARRAY iPLEX Gold (Sequenom Inc.). Allele detection
was performed using matrix-assisted laser desorption/ionization-
time-of-flight mass spectrometry.

A subset of sites that could not be validated either on HapMap
or by Sequenom genotyping was further tested by Sanger se-
quencing of PCR amplicons using Big Dye Terminator protocols
(Applied Biosystems) and capillary sequencing in Applied Bio-
systems 3730 XL DNA instrument (detailed protocols available
upon request).

Estimating corrected, de novo prediction performance

To estimate de novo prediction performance, we corrected for
errors in the HapMap database as well as the low rate of hetero-
zygosity in genomic DNA compared with our test set. Based on the
validation results shown in Table 2, we estimated the number of
genotypes for which HapMap, rather than our classifier, is in error.
We assumed that HapMap is always correct in cases where our
classifier has low confidence (<85% for heterozygous calls, <95%
for homozygous calls). For confident calls, we estimate the number
of genotypes for which HapMap is in error based on the 95%
confidence interval computed from the number and proportion of
validated calls in each probability bin. This confidence interval
yields a lower and upper bound on the number of HapMap geno-
types in error. Summing the estimated number of errors from each
confidence bin yields an estimate of the total proportion of Hap-
Map genotypes in error: 0.98% –1.2% for ‘‘monomorphic’’ sites,
and 0.33% –0.5% for polymorphic sites, yielding an overall Hap-
Map error rate of 0.5%–0.7% for our target regions.

Given an estimate of the total number of erroneous HapMap
genotypes, we estimated our predictor’s error rates for a range of
probability thresholds. Predicted probabilities were divided into
100 discrete bins, and the number of hets and non-hets in each
bin was tallied. The distribution of HapMap errors among the bins
was calculated by assuming false-positive errors (sites incorrectly
labeled heterozygous) follow the probability distribution displayed
by known homozygous sites, and similarly for false-negative
errors. The number of observed errors in each bin was reduced by
the estimated number of HapMap errors in that bin. Finally, the
number of het and non-het sites in each bin was corrected for the
expected heterozygosity rate. Known heterozygous sites from
HapMap comprise 0.055% of target sites. Assuming HapMap SNPs
account for half of all SNPs in the region suggests an approximate

heterozygosity rate of 1:1000 (compared with 294:1000 in the
HapMap set).

1000 Genomes Pilot data comparison

Two samples (NA12892 and NA12891) included in the high-
coverage sequencing of the 1000 Genomes Pilot Project were also
included in a subset of our sequencing experiments. We compared
data from 245 kb of unique sequence included in chr2:38064246–
38177190 (NA12892), chr12:9713048–9790776 (NA12891), chr10:
6126099–6162015 (NA12891), chr2:191605785–191739895
(NA12892), and chr7:128356196–128487322 (NA12892). Geno-
type calls for 1000 Genomes in these samples were downloaded
from ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/ for the April
2009 release (L Brooks, G McVean, and G Abecasis, pers. comm.).
Sites with no genotyping calls were considered homozygous for
reference allele. A comparison of ProbHD predictions and 1000
Genomes genotypes is given in Supplemental Table 2.

Identifying preferentially amplified fragments

For each LR-PCR amplicon, we estimate a parameter r, the fraction
of reads that were derived from the nonpreferentially amplified
allele. When r = 0.5, both chromosomes were amplified equally,
and when r = 0 only one chromosome was amplified. We would
like to find the posterior distribution of r, given the data D =

(D1,. . .,Dl), where Di represents the data at position i in the MSA,
and l is the length of the amplicon. If we make the simplifying
assumption that sequencing and alignment errors are indepen-
dent at neighboring locations in the amplicon, then we can esti-
mate the posterior probability density function as follows:

fðr jDÞ} fðrÞ
Y

i = 1...l
PðDi j rÞ

= fðrÞ
Y

i = 1...1
PðDi jHi = 1; rÞ

3PðHi = 1Þ + PðDi jHi = 0Þð1 � PðHi = 1ÞÞ

where Hi = 1 if site i is heterozygous and Hi = 0 otherwise. A uni-
form distribution on (0,0.5) was used as the prior f(r). The proba-
bility that site i is heterozygous, P(Hi = 1), is computed from the
probability estimated by the random forest classifier as described
above, assuming every amplicon was amplified in an unbiased
fashion (i.e., r = 0.5). These raw probabilities are adjusted to reflect
estimated HapMap error rates and estimated heterozygosity rates,
as described above. For any site with a known genotype, we set P(r)
= 0.99 if the site is heterozygous and P(r) = 0.01 if the site is ho-
mozygous. However, when testing our classifier, we took care to
avoid using known genotypes when computing amplicon-level
features. For each site in the training and test set, amplicon-level
features were computed without knowledge of that site’s genotype.

The data Di are summarized with two statistics: ni, the total
number of reads aligned at position i in the MSA, and ki, the fre-
quency of the second most common base observed in position i.
We assume the probability of observing the data Di given that site i
is heterozygous is P(Di | Hi = 1,r) = P(X = ki) + P(X = ni� ki), where X
follows a binomial distribution X ; Bin(ni,r). The probability of
Di = (ni,mi,ki) given that the site is homozygous is modeled as
a mixture of this binomial distribution and a uniform distribution:
P(Di | Hi = 0) = l (P(X = ki) + P(X = ni � ki)) + (1 � l) / (bni / 2� + 1).
Parameters were selected to maximize the likelihood of the ob-
served data for known homozygous sites in the training data ( p =

0.015 and l = 0.85). For training a classifier, the posterior distri-
bution was summarized with five statistics: the maximum a pos-
teriori value of r, the probability that r $ 0.35, the probability that
r < 0.15, and the upper and lower bounds of the 90% confidence
interval for the parameter r.
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Combining individual scores to identify common hets

Given 454 sequence data for k individuals of interest, for each site i
in the reference sequence, we want to estimate the probability that
site i is a common het, i.e., that it is heterozygous in all k indi-
viduals, given (Di

1,. . .,Di
k), the 454 data for site i. The probability

that the site is heterozygous in all k sequenced individuals is:

PðH1
i = 1; . . .;Hk

i = 1 jD1
j ; . . . ;Dk

i Þ

= PðH1
i = 1; . . .;Hk

i = 1Þ •
Y

j = 1...k
PðDj

i jH
j
i = 1Þ=

ð+ðh1 ;...;hkÞ 2 f0;1Þk PðH1
i = h1

;...;Hk
i = hkÞ

Y
j = 1...k

PðDj
i jH

j
i = h jÞÞ

In order to compute this probability we must determine the
prior probability of observing each combination of heterozygotes
and homozygotes at a random site, in these k individuals. This
probability will depend on whether the site is polymorphic. If
P(Yi = 1) is the prior probability that site i is polymorphic in the
population, then P(Hi

1 = h1,. . .,Hi
k = hk) = P(Hi

1 = h,. . .,Hi
k =

hk | Yi = 1)P(Yi = 1) + P(Hi
1 = h1,. . .,Hi

k = hk|Yi = 0)P(Yi = 0). Note
that P(Hi

1 = h1,. . .,Hi
k = hk | Yi = 0) is nonzero only if h1 = . . . = hk = 0.

We estimate P(Hi
1 = h1,. . .,Hi

k = hk | Yi = 1) empirically from the
set of polymorphic sites in our training set.

To estimate the probability P(Di | Hi = h), we summarize the
sequencing data Di with a single statistic, ci, the probability that
site i is heterozygous as estimated by the single-individual het
predictor described above: P(Di | Hi = h) » P(Ci = ci | Hi = h), which is
estimated empirically on held-out HapMap training data. The prior
that a site is polymorphic in these samples, P(Yi = 1), is set heu-
ristically to 0.25 for SNPs previously reported in dbSNP, and 0.0015
otherwise.

Correlation between primer design and preferential
amplification

We sequenced every target region in four individuals. In most cases
a single tiling path was used in all four individuals, but in some
cases different primers were selected. The 1220 amplicons gener-
ated in our experiments can be grouped into 418 distinct sets,
according to primer design, where each primer design was used
with one to four samples. Of the 1220 amplicons, we detected
36 amplicons (2.95%) for which one allele was severely un-
derrepresented. However, the 36 failed amplicons represent only
21 of the 418 primer sets, which is substantially fewer sets than
would be expected if amplicons failed independently in each
sample. In other words, amplicons generated from the same pri-
mers, but in different individuals, have preferential amplification
ratios that are more correlated than would be expected by chance.
This suggests that preferential amplification can be reduced by
creating two independent tiling paths for each target region.
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