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As the cost of DNA sequencing drops, we are moving beyond one genome per species to one genome per individual to
improve prevention, diagnosis, and treatment of disease by using personal genotypes. Computational methods are fre-
quently applied to predict impairment of gene function by nonsynonymous mutations in individual genomes and single
nucleotide polymorphisms (nSNPs) in populations. These computational tools are, however, known to fail 15%–40% of
the time. We find that accurate discrimination between benign and deleterious mutations is strongly influenced by the
long-term (among species) history of positions that harbor those mutations. Successful prediction of known disease-
associated mutations (DAMs) is much higher for evolutionarily conserved positions and for original–mutant amino acid
pairs that are rarely seen among species. Prediction accuracies for nSNPs show opposite patterns, forecasting impediments
to building diagnostic tools aiming to simultaneously reduce both false-positive and false-negative errors. The relative
allele frequencies of mutations diagnosed as benign and damaging are predicted by positional evolutionary rates. These
allele frequencies are modulated by the relative preponderance of the mutant allele in the set of amino acids found at
homologous sites in other species (evolutionarily permissible alleles [EPAs]). The nSNPs found in EPAs are biochemically
less severe than those missing from EPAs across all allele frequency categories. Therefore, it is important to consider
position evolutionary rates and EPAs when interpreting the consequences and population frequencies of human muta-
tions. The impending sequencing of thousands of human and many more vertebrate genomes will lead to more accurate
classifiers needed in real-world applications.

[Supplemental material is available online at http://www.genome.org.]

Unshrouding the mysteries of human genome variation is the es-

sential precursor to the development of personalized medicine

where the aim is to relate the genotype with the phenotype in

better understanding an individual’s susceptibility to disease and

response to treatment. Already, complete genomes from many

individual humans have been sequenced, and projects are un-

derway to expand that number to over a thousand genomes in the

near future (Levy et al. 2007; Bentley et al. 2008; Wang et al. 2008;

Wheeler et al. 2008). These projects have revealed that every

individual carries thousands of amino acid–altering (nonsyn-

onymous) nucleotide mutations and that a large number of these

mutations are novel in terms of their location and the type of

amino acid change induced. Experimental and other functional

information are rarely available for the association of phenotypic

effect with these mutations, so computational methods are used

instead (e.g., Miller and Kumar 2001; Ramensky et al. 2002; Ng and

Henikoff 2003; Shastry 2007; Tian et al. 2007; Lohmueller et al.

2008). These in silico predictions are of great interest in detecting

variants for Mendelian and complex diseases, in prioritizing

polymorphisms for experimental research in humans and other

species, and in analyzing data from genome-wide association

studies (e.g., Rudd et al. 2005; Bhatti et al. 2006; Kryukov et al.

2007; Doniger et al. 2008). Using various prediction tools, up to

one-fourth of nonsynonymous mutations have been diagnosed to

be not strictly neutral and are thus thought to harbor signatures of

negative or positive selection (Yampolsky et al. 2005; Eyre-Walker

et al. 2006; Levy et al. 2007; Shastry 2007; Bentley et al. 2008;

Boyko et al. 2008; Wang et al. 2008; Wheeler et al. 2008).

The de novo prediction methods to predict functional effects

of novel mutations often do not directly incorporate many bi-

ological attributes (e.g., interactions among multiple sites or genes,

environmental influences on phenotypes, and allele state in the

paired chromosome) because of the lack of information and the

difficulty in modeling them mathematically. Still, these methods

offer up to 80% accuracy for mutations in genes implicated in

Mendelian diseases (for reviews, see Bhatti et al. 2006; Ng and

Henikoff 2006; Bromberg and Rost 2007; Shastry 2007; Tian et al.

2007). PolyPhen is the most widely used method for estimating

potential deleterious effects of amino acid mutations; it is available

as a web-based service, and it relies on information from sequence

conservation, physiochemical differences, proximity of mutations

to predicted functional domains, and structural features (Sunyaev

et al. 1999; Ramensky et al. 2002). PolyPhen and SIFT (Ng and

Henikoff 2003) have been used in hundreds of studies, including

the evaluation of nonsynonymous single nucleotide polymor-

phisms (nSNPs) found in complete genomes. Many other ap-

proaches have been proposed over the last decade, but these are

not yet widely used (e.g., Bromberg and Rost 2007; Tian et al. 2007;

Cheng et al. 2008).

In recent years, scientists have employed many strategies in

efforts to build super-classifiers, using sophisticated computational

approaches to improve the accuracy of computational prediction
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tools in diagnosing known disease-associated mutations (DAMs) to

be function-altering (damaging; true-positives) and nSNPs to be

neutral (benign; true-negatives). These strategies have resulted in

some gains compared with classical methods such as PolyPhen and

SIFT (e.g., Bromberg and Rost 2007; Tian et al. 2007). However, the

anatomies of the misdiagnoses of different types of DAMs and

nSNPs remain poorly understood, as the primary correlates of the

observed failures are yet to be explored. With a focus on PolyPhen

and the comparison of the observed patterns with those from SIFT,

we have taken an evolutionary approach in examining the patterns

of successes and failures of mutational diagnosis. Given that Poly-

Phen (and other methods) already considers a host of evolutionary

and primary sequence attributes in making decisions, it is reasonable

to work with the null hypothesis that the accuracy of correct pre-

diction is similar for mutations occurring at positions evolving with

different evolutionary rates and that the accuracy of the correct

prediction is similar for different original and mutated amino acids.

The choice of evolutionary conservation of positions, original amino

acids, and mutant alleles reflects practical considerations, because

these three attributes are readily available or calculable for all

mutations. Other factors, such as secondary, tertiary, and higher

structures undoubtedly play an important role, but that infor-

mation is not yet available for an overwhelming proportion of

known DAMs and nSNPs for human populations.

Results
We begin with a report on the accuracy of correctly diagnosing

known DAMs implicated in Mendelian diseases (>9000 DAMs

from >500 genes) (Supplemental Fig. S1). These DAMs were sub-

jected to the most recent version of the PolyPhen web service,

which classifies them into three categories—benign, possibly-

damaging, and probably-damaging—based on the logarithmic ra-

tios of the likelihood of occurrence of a given DAM at the specific

position and the likelihood of that amino acid occurring at any

position (Ramensky et al. 2002). A probably-damaging designation

indicates that the mutation’s chance of affecting protein function

is the highest, whereas a benign designation suggests little or no

putative impact on the protein function.

PolyPhen designated 60% of DAMs to be probably-damaging,

which is the correct inference in this case (Fig. 1A). However, 21%

of DAMs were identified to be benign, which provides a lower limit

on the false-negative rate of inference. Similar accuracies are

reported in other studies, as well (Ng and Henikoff 2006; Chan

et al. 2007; Tian et al. 2007; Cheng et al. 2008; Lohmueller et al.

2008). Pooling of the benign and possibly-damaging (ambiguous)

diagnoses increases the false-negative rate for DAMs to 41%, while

the pooling of the possibly-damaging and probably-damaging

categories increases the DAM-prediction accuracy of PolyPhen to

79%. However, it appears to be more prudent to use only the

probably-damaging category to represent the correct inference for

DAMs, because PolyPhen classified a very similar fraction of DAMs

and nSNPs into the possibly-damaging category (20% and 18%,

respectively) (cf. Figs. 1A and 2A). We compared PolyPhen results

with those obtained from SIFT, which classifies mutations into

only two categories: tolerant or not-tolerant (Ng and Henikoff

2006). SIFT designated 21% of DAMs to be tolerant, which is

similar to the DAM misclassification rates in PolyPhen (Supple-

mental Fig. S2).

For identifying the correlates of successes and failures in di-

agnosing DAMs, we first examined the accuracy of correct di-

agnoses for genes having different functions (as reflected in the

gene ontology). We classified each gene into one or more of 13

major categories (plus a group of unannotated genes). The accu-

racy of predicting DAMs in these categories varied in a relatively

narrow range, even though DAMs in some of the gene function

categories were significantly easier to predict than others (e.g.,

translation) (see Supplemental Fig. S3).

In contrast to functional categories, the long-term evolu-

tionary rates at DAM positions correlate strongly with the success

in diagnosing DAMs in both PolyPhen (Fig. 1C) and SIFT (data not

shown). DAMs in completely conserved positions (lowest evolu-

tionary rate) were 1.5 times more likely to be correctly classified

than those at positions harboring any interspecies variation (67%

vs. 44%; P < 0.01), while more than 70% of DAMs in the fastest-

evolving positions were misdiagnosed (benign). The accuracy of

DAM prediction also varies tremendously and unexpectedly

among the 20 amino acids, with accuracy ranging from 22%–96%

in the proteome-wide analysis (Fig. 1D).

We examined the question of whether the observed re-

lationship between the evolutionary rate and the accuracy of

prediction is reproduced for DAMs of specific proteins, because

PolyPhen scores the relative likelihood of a mutation to affect

function in its protein context. Analysis of the cystic fibrosis

transmembrane conductance regulator (CFTR) protein, which

contributed the largest number of DAMs in our data set (444),

produced patterns similar to those seen in the proteome-wide

analysis for rates (Pearson’s r = 0.95) as well as for original amino

acids (r = 0.97) (Fig. 1E). Similar results were observed for other

DAM-rich proteins (data not shown). Therefore, the dependence of

correct inference of DAMs on evolutionary rate and amino acids is

a fundamental attribute of positions, rather than an artifact of

proteome-wide summarization of mutations in proteins evolving

with vastly different conservation profiles and amino acid con-

tents. Major differences among evolutionary rates and amino acids

and were also observed in the SIFT analysis, and these differences

were correlated with those observed for PolyPhen (r = 0.95 and

0.59, respectively; P << 0.01). Because different amino acids are

known to evolve at intrinsically different rates, we also examined

the relationship of evolutionary conservation on the DAM pre-

diction accuracy for specific amino acids. In the easiest to diagnose

amino acids (e.g., arginine), DAMs occurring at completely con-

served positions were significantly harder to predict than those at

positions with any site variability (P << 0.01) (Fig. 1F). A similar

pattern is seen for amino acids whose mutations are difficult to

diagnose (e.g., alanine) (P << 0.01) (Fig. 1F).

Next, we analyzed >12,000 nSNPs in order to examine the de-

pendence of rate of evolution and the original amino acid for

mutations not associated with any disease. The fraction of nSNPs

identified as benign also depends strongly on evolutionary rates (Fig.

2B) and the original amino acids (Fig. 2C). However, DAMs and

nSNPs show opposite patterns in terms of accuracy, assuming that

a vast majority of nSNPs represent nondisease variations. For in-

stance, alanine nSNPs are diagnosed as benign most often, and nSNPs

at fast-evolving positions are also easily diagnosed to be benign.

In order to investigate why DAMs and nSNPs show comple-

mentary patterns, we further analyzed results from PolyPhen, which

uses a single score metric (position-specific independent counts

[PSIC] score) in its decision making. Distributions of PSIC scores

overlap extensively for DAMs and nSNPs proteome-wide (Fig. 3A)

and for individual amino acids (Supplemental Fig. S4). Generally,

DAMs exhibit a wider range of values and carry larger PSIC scores

as compared with nSNPs. Underlying the wide PSIC distributions

for DAMs and nSNPs are the relationships of PSIC scores with the
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evolutionary rates and amino acids involved. The lowest average

PSIC scores are seen for the evolutionary rates and amino acids for

which PolyPhen exhibited the worst performance for DAMs

(Fig. 3B). In fact, nSNPs with these rates and incident amino acids

show the lowest average PSIC scores, as

well (P << 0.01) (Fig. 3C). This comparison

of the PSIC scores for DAMs and nSNPs

explains the inverse relationship between

the accuracy in diagnosing nSNPs (to be

benign) and DAMs (to be probably-dam-

aging), because PolyPhen designates all

mutants with PSIC # 1.5 to be benign and

with PSIC > 2.0 to be probably-damaging;

PSIC scores between 1.5 and 2.0 yield the

possibly-damaging diagnosis.

The estimation of PSIC scores also

involves the use of an amino acid in-

terchangeability matrix (evolutionary sub-

stitution matrix for each pair of amino

acids), which is frequently inferred from

multiple sequence alignments for a large

number of proteins (e.g., BLOSUM log-

odds substitution matrix). Amino acid in-

terchangeability varies extensively, and

we expect to see concordant differences

in prediction accuracies. Indeed, the ex-

tensive heterogeneity in the accuracy of

prediction for different original–mutant

pairs is seen for DAMs and nSNPs, and it

correlates with the BLOSUM62 amino

acid interchangeability (Fig. 3D). The

original–mutant pairs that occur with

the highest frequency in nature are the

hardest to diagnose when the mutant is

disease-associated (Fig. 3D). In contrast,

these pairs are the easiest to diagnose

for nSNPs. Thus, nSNPs and DAMs show

opposite relationships that are explained

by the evolutionary properties of posi-

tions as well as the assumptions on amino

acid interchangeability derived from long-

term evolutionary patterns.

In addition to evolutionary rates, com-

parative genomics yields a set of amino

acids observed among species in every

position. Under the simplifying assump-

tion that the function of a position has

not changed significantly, these amino

acids are evolutionarily permissible alleles

(EPAs) at that position. Since EPAs are

neutral alternatives at a position, they are

not expected to be disease-associated. We

inferred EPAs for each DAM and nSNP

position by using multiple sequence align-

ments of 44 diverse vertebrate species (see

Methods). A small fraction of DAMs are

EPAs (;9%), a finding that is similar to

those reported elsewhere (e.g., Kondrashov

2003; Subramanian and Kumar 2006a).

These DAMs occur preferentially at faster-

evolving positions.

As expected, EPAs comprise a vast

majority of nSNPs (59%). Still, many thousands of nSNPs are not

EPAs. This result may not be attributed to a disproportionate

number of alignment gaps and missing data at positions where

nSNPs are not EPAs, because the fraction of species with alignment

Figure 1. Accuracy of PolyPhen diagnosis of 9460 DAMs. (A) Fraction of DAMs classified into benign,
possibly-damaging, and probably-damaging categories. (B) Evolutionary timetree of 44 species used for
estimating evolutionary rates. Relationship of evolutionary rates (C ) and incident amino acids (D) with
the correct diagnosis of DAMs (probably-damaging). Error bars, 95% confidence interval (two times the
SE). (E ) Correlation between the accuracy of DAM prediction from proteome-wide analysis, and one
DAM-rich protein (cystic fibrosis transmembrane conductance regulator [CFTR]). Solid and open circles
show data points for incident amino acids (r = 0.97; P << 0.01) and evolutionary rates (r = 0.95; P <<
0.01), respectively. (F ) Two examples showing the dependence of the accuracy of DAM diagnosis
for constant and variables sites for arginine (an easy-to-diagnose amino acid; red bars) and alanine (a
difficult-to-diagnose amino acid; gray bars). Error bars, 95% confidence interval based on the binomial
variance of the fraction of sites in the plotted categories.
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gaps and missing data were almost identical for EPA and non-EPA

nSNP sites (32% and 33%, respectively). We expect the fraction of

non-EPA nSNPs to increase in the future as more individual

genomes are sequenced and rarer alleles are discovered. This in-

crease will be counteracted by discovery of more nSNPs in EPA

because the use of more species in the multiple sequence align-

ments would expand the list of EPAs at each position. Overall, the

number of non-EPA nSNPs is likely to decline slowly, if at all. This

conclusion is based on the observation that more than 80% of EPA

nSNPs could be identified using only 33 nonhuman mammals,

and a 30% increase in the number of species (nine additional

species) led to the discovery of only a small fraction of nSNPs in

expanded EPA lists for each site.

The frequency of nSNP occurrence in EPA shows a marked

relationship with the evolutionary rate. The nonsynonymous poly-

morphisms in the fastest-evolving positions are EPAs significantly

more frequently than those in the slowest-evolving positions (81%

vs. 53%; P << 0.01) (Fig. 4A). Likely, this is because the strong puri-

fying selection in the highly conserved sites would allow only re-

cently emerged mutations to be found at those positions, and these

nSNPs would occur with low frequencies. Furthermore, positions

that evolve more slowly will have a smaller number of EPAs, which

would result in a greater proportion of non-EPA nSNPs. This phe-

nomenon is evident in the observation that non-EPA nSNPs occur

with one-third the allele frequency of EPA nSNPs overall consis-

tently across positions evolving with different rates (Fig. 4B).

A stratification of PolyPhen results based on the EPA status of

the analyzed mutations shows the importance of EPAs (Table 1). At

variable positions, DAMs are diagnosed to be probably-damaging

twice as often as benign when they do not overlap EPAs. This ac-

curacy declines to 31% when DAMs are EPAs, and DAMs are di-

agnosed to be probably-damaging much less frequently than

benign. Therefore, DAM accuracy prediction depends strongly on

their overlap with EPAs. There is also a great influence of EPAs

on the prediction of functional classification of nSNPs. nSNPs are

much easier to categorize as benign if they appear as EPAs. In fact,

nSNPs are designated to be probably-damaging only 5% of the time

if they are EPAs; from this rarity and from the above-mentioned

results, we can infer that the observed EPAs at a position are im-

portant indicators of the accuracy with which functional impact of

novel mutations can be predicted.

Discussion
In proteome-wide analyses, we have shown that evolutionary rate

and positional amino acid composition correlates extensively with

the computational assessment of a mutation’s functional effects.

A large number of DAMs are found in positions that vary among

species, and a majority of DAMs in these positions are misdi-

agnosed. Similarly, a large number of nSNPs occur in positions

that are highly conserved, which, in many cases, are predicted by

computational tools to carry functional consequences. Correlation

between classification accuracies and PSIC scores suggests that we

could improve prediction by tailoring PSIC classification thresh-

olds to individual classes of variants (e.g., by amino acid type and

by rate class). However, such efforts would likely suffer the hand-

icap of the classical trade-off between the false-negative and false-

positive prediction rates. That is, while changes in PSIC diagnostic

thresholds for individual amino acids and/or rate classes might

reduce false-negatives for DAMs, they might simultaneously in-

crease false-positives for nSNPs. In such cases, it is prudent to as-

sociate a reliability indicator with inferences produced using

computational methods (e.g., Bromberg and Rost 2007).

We suggest that a reliability of inference (RoI) measure be

included with functional predictions to reflect their uncertainty.

The RoI measure is the average of probability of true-positives (PTP)

and the probability of true-negatives (PTN). The former is calculated

by applying the given computational method on all available

DAMs, while the latter is calculated by using all available strictly

‘‘neutral’’ nSNP data. By design, the RoI does not depend on the

inference made. Rather, it captures how difficult it will be to make

a correct prediction for a given type of change in its evolutionary

context. The RoI may only be improved by improving true-positive

and true-negative rates (such efforts are already underway for

PolyPhen) (S Sunyaev, pers. comm.). Of course, PTP and PTN may be

weighted unequally in calculating the RoI when analyzing non-

synonymous mutations from the genomes of ‘‘healthy’’ individ-

uals, because they are expected to carry a large number of neutral

Figure 2. PolyPhen classification of 12,421 nSNPs into benign, possibly-
damaging, and probably-damaging categories. (A) Fraction of nSNPs
classified into the three categories. The fraction of nSNPs designated to be
benign at positions with different evolutionary rates (B) and original amino
acids (C ). Panel B also contains the accuracy of DAM inference from Figure
1B (filled squares). Error bars, 95% confidence interval based on the bi-
nomial variance of the fraction of sites.
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mutations. In this case, RoI = (PTN + vPTP)/(1 + v), where v is the

expected ratio of DAMs to nSNPs and will generally be less than

one. Furthermore, single and multidimensional RoI matrices may

be constructed, with amino acid pair and rate classes as additional

dimensions, because the accuracy of diagnosis differs among

classes for the same amino acid. We anticipate that sufficient data

will become available in the future from the profiling of an ex-

panded number of diseases, individuals, and populations to build

such matrices.

For now, we used the estimates of PTP and PTN based on the

DAM and nSNP data analyzed (see 20 3 20 matrices in the Supple-

mental Figs. S5, S6), respectively, to estimate the RoI for 682 muta-

tions found in the disease-associated genes of one individual (Levy

et al. 2007). The average RoI for these mutations is 57.5% when PTP

and PTN are equally weighted. It rises to 71% when PTN is given

a weight 10 times that to PTP (i.e., v = 0.1). This ad hoc ratio may be

justifiable, because ;10% of nonsynonymous mutations are found

to be fixed among species in comparative genomic analysis in-

volving humans and chimpanzees (e.g., Subramanian and Kumar

2006b). While a 71% success rate may appear reasonably good for

some academic research, it is presently too low to be useful in real-

world applications (especially in making health decisions).

In addition to helping us understand the factors that modulate

the accuracy of computational methods, evolutionary rates and

frequencies of EPAs at positions involved in DAMs and nSNPs sup-

ply null expectations for interpreting the observed population fre-

quencies of alleles. For example, computational methods have been

used to predict the functional effects of nSNPs (benign, possibly-

damaging, and probably-damaging) found in genome-scale popu-

lation surveys and the distributions of frequencies of alleles in the

three functional categories compared (Lohmueller et al. 2008).

Lohmueller et al. (2008) noted that the mean derived allele fre-

quency (MAF) for the benign alleles is significantly higher than that

for the damaging alleles. The direction and magnitude of this dif-

ference is predictable based on the average evolutionary rates of

positions in the three functional categories, because the long-term

evolutionary rates at any given position will modulate allele fre-

quencies within populations under the principles of the neutral

theory (Kimura 1983; Subramanian and Kumar 2006a). Indeed, rates

of evolution and the MAF are highly correlated over all nSNPs and

when considering EPA and non-EPA nSNPs separately (r = 0.88; P <

0.05). The evolutionary rate ratio for probably-damaging and benign

positions is quite similar to that reported for the MAF (0.49 and 0.40,

respectively), but a second-degree polynomial fits the relationship

Figure 3. (A) Frequency distributions of DAM (red) and nSNPs (blue) PSIC scores. Vertical lines show the PolyPhen PSIC cut-offs for classification of
variants in the absence of structural or other information; nSNPs and DAMs are from Subramanian and Kumar (2006a). (B) Mean PSIC values for DAMs in
different evolutionary rate categories. The correlation (r) between mean PSIC values and mean evolutionary rate is�0.96 (P << 0.01). The 95% confidence
intervals derived from the SEMs are shown. (C ) Relation between mean PSIC scores for DAMs and mean PSIC scores for nSNPs, by amino acid types (solid
circles) and evolutionary rates (open circles). (D) Inverse relationship of the accuracy of DAMs (probably-damaging) and nSNPs (benign) with the evo-
lutionary interchangeability of amino acid pairs (original/variant pairs) as captured in the BLOSUM62 matrix. Each data point represents the average of all
pairs for a given BLOSUM score, with the error bars displaying the 95% confidence intervals derived from binomial variance of the proportions. BLOSUM
scores are log-odds substitution occurrences. Negative BLOSUM scores show amino acid pairs that are found to have a low probability of substitution,
whereas a positive score indicates frequently observed amino acid pairs. Complete 20 3 20 matrices of DAM and nSNP accuracies (and their SEs) are given
in the Supplemental material.
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between rate and the MAF better than a linear regression (r2 = 0.86

and 0.77, respectively). Furthermore, the neutral theory predicts

that EPAs found in a larger number of species would occur with

higher frequencies in the human population. Significant correlation

is found between the nSNP frequency in the human population and

the evolutionary time span (%ETS) when all nSNPs are divided into

25 allele frequency categories (r = 0.90; P << 0.01) (Fig. 4C) and for

raw data (r = 0.41, P << 0.01). With the upcoming sequencing

of a large number of individuals, it will be possible to estimate allele

frequencies in different populations more reliably and to examine

the predictive power of ETS in generating expected allele frequencies

of nSNPs for use in functional genomics.

In addition to frequencies, the biochemical severity of muta-

tions is an important factor to consider, particularly as it relates to

the DAMs found in EPAs and nSNPs absent from EPAs. At variable

sites, DAMs that overlap EPAs are biochemically much less severe

than other DAMs (average Grantham values of 73 vs. 93; P << 0.01)

(Table 1) but are more severe than nSNPs and inter-specific differ-

ences (average Grantham value of 68). Compensatory evolution is

thought to be one of the mechanisms to explain this observation for

DAMs and is discussed elsewhere (e.g., Kondrashov et al. 2002; Gao

and Zhang 2003; Subramanian and Kumar 2006a). On the other

hand, non-EPA nSNPs show a higher biochemical severity than

other SNPs (77 vs. 62; P << 0.01). Furthermore, many non-EPA

nSNPs are observed with relatively high frequencies in the

Lohmueller et al. (2008) data, and these higher frequency alleles

show a greater biochemical severity than EPA nSNPs with similar

frequencies (Fig. 4D). These observations suggest that some non-

EPA nSNPs may be involved in adaptive evolution or persist due to

compensatory changes. We are currently investigating biological

properties of a large number of nSNPs that occur with high fre-

quency in human populations but have significantly smaller than

expected ETS. These mutations are excellent candidates for po-

tential (ancient or modern) lineage-specific adaptations (and

compensations), and they will be discussed elsewhere (S Kumar

and A Filipski, in prep.). In the meantime, it is clear that the

interpretations of rare and common alleles with different func-

tional predictions need to account for evolutionary rates, the

amino acids involved, and the EPA status of mutations and their

resident positions when determining their genome-wide associa-

tions with the phenotypes.

In conclusion, with decreasing costs for sequencing personal

genomes and variants, it is quickly becoming feasible to use in-

dividual genetic novelties for learning about predisposition to

diseases and to better carry out optimally informed treatments

based on personal genomic profiles. In such efforts, computational

methods that predict the propensity of novel mutations to cause

disease will play a critical role, because it is not possible to in-

vestigate the effects of individual rare (or even common) muta-

tions in the laboratory and because each individual carries many

unique mutations. Our findings show that some amino acid

mutations will be easier to diagnose with high accuracy because of

the amino acids involved and because of the evolutionary prop-

erties of the positions they afflict when we apply genome-wide

observations to individual positions. The availability of thousands

of human genomes will reveal nonsynonymous mutations even at

positions where DAMs are known to occur, which will make it

possible to develop position-specific estimators that diagnose

Figure 4. Analysis of EPAs. (A) The relation of the evolutionary rate with
the proportion of nSNPs present in the set of EPAs in the variable sites (r =
0.91, P < 0.02). (B) The average allele frequencies of nSNPs present in EPAs
(closed circles) and absent from the set of EPAs (open squares) in variable
positions evolving with different rates. Mean allele frequencies are sig-
nificantly different between two EPA categories for each rate class (P <<
0.01). (C ) Relationship between nSNPs frequency and the percentage of
evolutionary time span (%ETS) of the corresponding EPA (r = 0.90, P <<
0.01). All non-EPA nSNPs have an ETS of 0. (D) The biochemical severities
of nSNPs present in EPAs (closed circles) and absent from EPAs (open
squares). Error bars, 95% confidence intervals derived from the SEMs.

Table 1. Allele frequencies and biochemical severities of nSNPs in
different functional categories in the context of their overlap with
EPAs at variable positions

Computational diagnosis Absent from EPA Present in EPA

DAMs
Benign 25% 55%
Probably damaging 49% 31%
Grantham value 93.0 72.7

nSNP
Benign 59% 84%
Probably damaging 14% 5%
Grantham value 76.9 62.1

All differences in mean Grantham values and percent accuracies are sta-
tistically significant (P << 0.01).

Evolutionary anatomies of nonsynonymous mutations

Genome Research 1567
www.genome.org



novel mutations with a high RoI. With the knowledge of in-

formation on the genotypes of nonsynonymous mutations and

SNPs, the copy number variation of the protein (including para-

logs), and the availability of more protein structures, it will become

possible to build more accurate mutation classifiers to diagnose

disease propensities of novel mutations, select and prioritize var-

iants for experimental research, and develop baseline patterns of

novel allele frequencies within populations.

Methods
We analyzed two large-scale data sets of DAMs and nSNPs (Sub-
ramanian and Kumar 2006a; Lohmueller et al. 2008). The Sub-
ramanian and Kumar (2006a) data set consisted of 10,685 DAMs
and 5308 human nSNPs. This data set was constructed by down-
loading the human proteome from GenBank (build 34.1) with
associated RefSeq identifiers for each gene. Of all available DAMs
in 1307 human genes from HGMD (http://archive.uwcm.ac.uk/
uwcm/mg/hgmd0.html) and all putatively-benign nSNP sites
in 11,753 human genes from various genome projects (see
Subramanian and Kumar 2006a), genes containing no DAMs or
nSNPs were discarded. Complete proteomes of four diverse species
(Homo sapiens, Mus musculus, Gallus gallus, and Takifugu rubripes)
were obtained for the remaining genes from the Ensembl web
server (http://www.ensembl.org/), along with orthologs identified
via a reciprocal BLASTP search with each RefSeq gene (Altschul
et al. 1990; Waterston et al. 2002). Additionally, the BLOSUM
substitution matrix was employed using appropriate threshold
scores (Subramanian and Kumar 2004). If any of the three verte-
brate orthologs could not be determined for any human gene, then
that gene and all DAMs and nSNPs contained within it were ex-
cluded from the data set. Each ortholog was aligned to the ho-
mologous human sequence with CLUSTALWusing default settings
(Thompson et al. 1994), and all sites (and thus associated DAMs
and nSNPs) containing indels or missing data at homologous sites
in any of the three vertebrate species were excluded in order to
represent at least four species.

From the Lohmueller et al. (2008) data, we extracted all nSNPs
by removing all synonymous, noncoding and redundant SNPs.
Then, we used dbSNP rsIDs for each nSNP (http://www.ncbi.nlm.
nih.gov/projects/SNP/) to generate a RefSeq identifier (Pruitt et al.
2007). This information was used to map each nSNP onto
the 44-species protein alignments available in the UCSC Genome
Browser (Kuhn et al. 2009). During this process, a substantial
number of nSNPs was eliminated because either dbSNP records did
not contain a map from rsIDs to RefSeq identifiers, not all human
RefSeq identifiers were present in the UCSC data set, or the wild-
type amino acid in the Lohmueller data set was not the human
representative in the UCSC data set. The outcome was a set of
12,712 nSNPs with allele frequencies as reported by Lohmueller
et al. (2008), and the 44-species alignment for each nSNP position.
The 44-species alignments were also generated by using the RefSeq
identifiers in UCSC for all the DAMs. We discarded all positions
where the amino acid state of any of the species in the original four
sequence alignment disagreed between the Subramanian and
Kumar (2006a) data set and the UCSC alignment. This produced
a total of 8696 DAMs with 44-species alignments.

We estimated the evolutionary rate for each amino acid site
separately using the amino acids found in the 44-species align-
ment. The number of substitutions at each site was obtained by
using the known phylogeny of the species (Fig. 1B) and applying
the Fitch (1971) algorithm. The total of the substitutions was di-
vided by the total time elapsed on the tree to obtain the evolu-
tionary rate in the units of the number of substitutions per site per

billion years. Species divergence times were obtained from an
advanced version of the TimeTree resource (www.timetree.org,
version 2.0 prerelease) (Hedges et al. 2006). For each position, all
species containing alignment gaps or missing data were pruned
from the tree before calculating the number of substitutions and
the total evolutionary time. We repeated this procedure to calcu-
late the evolutionary rate using only 33 mammalian species. Ver-
tebrate and mammal rates were highly correlated for all sites used
(r = 0.92; P << 0.01), and we employed the latter rates, as mam-
malian genomes are more appropriate models for the human ge-
nome as compared to more distantly related species. Furthermore,
we have previously shown that maximum likelihood estimates of
relative evolutionary rates are very highly correlated with rates
obtained using the Fitch algorithm (Miller and Kumar 2001), as
each site contains data from many closely and distantly related
species. This was confirmed in our analysis of DAM positions for
which rates from four species ML analysis from Subramanian and
Kumar (2006a) and the 44-species analysis in this study showed
significant correlation (r = 0.70; P << 0.01). Because the calculation
of rates by our current method only requires the amino acids in all
other species at a given site, it is more suitable for application in
personalized diagnostics. We quantized evolutionary rates into six
discrete categories such that sites showing no variation across all
species comprise the slowest-evolving group (category 0), and the
cut-off rates for the other five categories (1–5) were such that they
each contained a similar number of sites when applied to the
Lohmueller et al. (2008) nSNPs. The five categories of evolutionary
rate of variable positions had average evolutionary rates of 0.6, 1.5,
2.5, 3.5, and 5.3 with standard deviations of 0.2, 0.3, 0.3, 0.3, and
1.5, respectively.

These UCSC Genome Browser alignments were also used to
generate EPAs at each position, because they cover 44 diverse
vertebrate species, including agnathans, fishes, amphibians, birds,
and mammals (http://genome.ucsc.edu/). Under the principles of
the neutral theory of molecular evolution, a vast majority of EPAs
are expected to represent neutral variants at a site. For each DAM/
nSNP, we estimated the percentage of evolutionary time span
(%ETS) in the 44-species tree, which is the total branch length
(times) in the tree obtained after pruning all nonhuman species
lacking the variant allele divided by the total branch length of the
tree after pruning all species containing an alignment gap or
missing data. For each variant at a site, the ETS varies from 0%–
100%, with constant sites containing a single EPA with an ETS of
100% and non-EPA mutations producing an ETS of 0%. A smaller
ETS is frequently associated with variation that has occurred re-
cently in species closely related to humans.

The PolyPhen web resource was used to classify mutations
into benign, possibly-damaging, and probably-damaging catego-
ries for DAMs and nSNPs (Ramensky et al. 2002). After removing
duplicate entries and sites for which PolyPhen returned ‘‘un-
known’’ or was unable to return any result, the final data set
contained 9460 DAMs and 4020 nSNPs for the Subramanian and
Kumar (2006a) data sets. We noticed that while PolyPhen attempts
to incorporate information from the protein structure (when
available from databases such as Protein Data Bank) and available
functional data from site annotations, the final diagnosis for this
data set was rooted solely in primary sequences for >97% of the
mutations we tested. Inclusion and exclusion of these mutations
produce the same results, so we did not consider nonsequence
attributes in any of our analyses. Because of the slowness of the
web resource (http://sift.cchmc.org/), SIFT analyses are based on
a subset of these DAMs and nSNPs (approximately one-third each,
2375 and 1439, respectively). Supplementary information avail-
able from Lohmueller et al. (2008) provided the PolyPhen di-
agnosis for all the nSNPs.
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