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Second-generation sequencing technologies deliver DNA sequence data at unprecedented high throughput. Common to
most biological applications is a mapping of the reads to an almost identical or highly similar reference genome. Due to the
large amounts of data, efficient algorithms and implementations are crucial for this task. We present an efficient read
mapping tool called RazerS. It allows the user to align sequencing reads of arbitrary length using either the Hamming
distance or the edit distance. Our tool can work either lossless or with a user-defined loss rate at higher speeds. Given the
loss rate, we present an approach that guarantees not to lose more reads than specified. This enables the user to adapt to
the problem at hand and provides a seamless tradeoff between sensitivity and running time.

[RazerS is freely available at http://www.seqan.de/projects/razers.html.]

Second-generation sequencing technologies are revolutionizing

the field of DNA sequence analysis, as large amounts of sequencing

data can be obtained at increasing rates and dramatically decreas-

ing costs. Biological applications are manifold, including whole-

genome resequencing for the detection of genomic variation, e.g.,

single nucleotide polymorphisms (SNPs) (Bentley et al. 2008; Hillier

et al. 2008; Ley et al. 2008; Wang et al. 2008) or large structural

variations (Chen et al. 2008), RNA sequencing for small noncoding

RNA discovery or expression profiling (Morin et al. 2008), meta-

genomics applications (Huson et al. 2007), and sequencing of

chromatin-immunoprecipitated DNA, e.g., for the identification

of DNA binding sites and histone modification patterns (Barski

et al. 2007).

Fundamental to all these applications is the problem of

mapping all sequenced reads against a reference genome, denoted

as the read mapping problem. It can be formalized as follows: given

a set of read sequences R, a reference sequence G, and a distance

k 2N, find all substrings g of G that are within distance k to a read

r 2 R. The occurrences of g in G are called matches. Common dis-

tance measures are Hamming distance or edit distance; the former

forbidding insertions and deletions (i.e., indels) in the alignment,

the latter allowing for mismatches and indels alike.

As the new sequencing technologies are able to produce

millions of reads per run, efficient algorithms for read mapping are

necessary. Reads are typically quite short compared to the tradi-

tional Sanger reads and have specific error distributions depending

on the technology used.

A variety of tools have been designed and developed spe-

cifically for the purpose of mapping short reads. A compilation of

some popular tools is shown in Table 1 together with some key

features of the algorithms.

Most of the existing read mapping approaches use a two-step

strategy. First, a filtration algorithm is applied in order to identify

candidate regions that possibly contain a match. This includes

building an index data structure, either on the set of reads or on the

reference sequence. Second, candidate regions are examined for true

matches in a more time-consuming verification step. In current

implementations one has to carefully distinguish whether both

steps, the filtration step and the verification step, are adequate

for the distance chosen (Hamming or edit distance). Some imple-

mentations, for instance, verify matches using base-call qualities,

but filter the candidate regions using a fixed Hamming or edit dis-

tance (H Li et al. 2008). Filtration methods in use are based on single

(Kent 2002; Ma et al. 2002) or multiple seeds (Li et al. 2003; Lin et al.

2008), the pigeonhole principle (Navarro and Raffinot 2002; H Li

et al. 2008; R Li et al. 2008; AJ Cox, ELAND: Efficient local align-

ment of nucleotide data, unpubl.), or based on counting lemmas

using (gapped) q-gram (Burkhardt et al. 1999; Rasmussen et al.

2006; Rumble and Brudno 2008). Verification methods encom-

pass semiglobal alignment algorithms for Hamming or edit dis-

tance (Levenshtein 1966) or local-alignment algorithms (Smith and

Waterman 1981).

BLAT (Kent 2002), as an example of a single seed filter,

searches exact occurrences of short fixed sized substrings shared by

two sequences. PatternHunter (Ma et al. 2002) was the first to

generalize this strategy to gapped seeds (common discontiguous

subsequences), thereby increasing sensitivity while maintaining

specificity. Further sensitivity is achieved by using multiple gapped

seeds; an approach implemented in the read mapping tool Zoom

(Lin et al. 2008), which uses a restricted version of edit distance

with at most one gap. After the initial submission of this paper

a method using whole reads as seeds was published, which toler-

ates a small number of mismatches by backtracking all possible

replacements of low-quality bases (Langmead et al. 2009). It uses

Burrows-Wheeler transformed genomes and is an efficient ap-

proach to short read mapping.

Given two sequences within distance k, the pigeonhole

lemma states that of any partition of the first sequence into k + 1

parts, at least one part must be found without errors in the other

sequence. The shorter this seed, the more likely it is to encounter

random matches, and therefore the lower the specificity of the

filter. This strategy is thus rather limited and quickly grows im-

practical with an increasing number of errors. In an extension of

this strategy the first sequence is divided into k + 2 parts. Now at

least two of such parts will occur in the other sequence. These two

parts retain their relative positions as long as no indels occur in

between. ELAND (AJ Cox, unpubl.), MAQ (H Li et al. 2008), and
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SOAP (R Li et al. 2008) make use of this observation but are there-

fore limited to Hamming distance. Furthermore, ELAND and SOAP

always use a four-segment partition and MAQ at most a five-

segment partition and can therefore not guarantee full sensitivity for

k > 2 or k > 3, respectively. SeqMap ( Jiang and Wong 2008) extends

the two-seed pigeonhole strategy to edit distance and searches the

two parts varying the gap length by �k,. . ., k nucleotides.

Another approach is the q-gram counting strategy which was

first used in QUASAR (Burkhardt et al. 1999). It uses the q-gram

lemma (Owolabi and McGregor 1988; Jokinen and Ukkonen

1991), which states that two sequences of length n with Hamming

distance k share at least t = n + 1 � (k + 1)q common substrings of

length q, so-called q-grams. This lemma can also be applied to edit

distance if n is the length of the larger sequence. A generalization

for gapped q-grams was given by Burkhardt and Kärkkäinen (2002).

SHRiMP (Rumble and Brudno 2008) employs a q-gram counting

strategy with a default configuration that does not guarantee to

be lossless.

In this work we present an implementation of a versatile read

mapper RazerS based on q-gram counting, which distinguishes

itself in several respects from existing algorithms. First, it can map

reads using edit or Hamming distance in the filtering phase and

in the verification phase without any restrictions. Second, given

a user-defined loss rate (possibly 0 making the mapper exact), we

developed an algorithm to select parameters such that the chosen

loss rate is not exceeded in expectation. The algorithm depends on

an error model derived from base-call quality values. Finally, our

implementation can map reads of any length with an arbitrary

number of errors and is currently the fastest in reporting all hits for

typical read lengths and loss rates.

Methods

Definitions and notation

We consider strings over the finite ordered alphabet S. S* is the set

of all possible strings over S and e denotes the empty string. A

string s is a sequence of letters s[1]. . .s[n], where each s[i] 2 S; st is

the concatenation of two strings s and t; |s| denotes the length of

the string s; and s[i..j ] is a substring of s from position i to j. If t 2 S*

is a substring of s, we write t 6 s, and t a s if t 6¼ s holds in addition.

A(n) (edit) transcript is a string over the alphabet D = {M, R, D, I}

that describes a transformation from one string to another, see

Figure 1. For two strings r,g 2 S*, a transcript from r to g is read and

applied from left to right to single characters of r to produce g,

whereby M, R, D, and I correspond to a match (no change), a re-

placement, a deletion, and an insertion of a single character in r,

respectively. There is a one-to-one relation between alignments

and transcripts. For any transcript T we define ||T||E = |{i|T[i] 2 {R,

D, I}}|, the number of errors in T. The edit distance of two strings

is the minimum number of errors in all transcripts between these

strings. A special case is the Hamming transcript with D = {M, R}.

It is defined uniquely for two strings of equal length and the

Hamming distance is the number of errors in it.

In the following we consider transcripts from reads r 2 R to

substrings g of a genome G. We say that the pair (r,g) is a true match

if d(r,g) # k, for d being either edit or Hamming distance. A sub-

string Mq of a transcript T is called a q-match. If a transcript from

r to g contains t q-matches, then r and g have at least t common

q-grams. A (q,t)-filter is an algorithm that detects any pair (r,g) for

which a transcript T from r to g with $t q-matches exists.

Sensitivity calculation

In this section we devise a method to determine the sensitivity

of (q,t) filters. The sensitivity of a filter is the probability that

a randomly chosen true match (r,g) is classified by the filter as

potential match. Existing sensitivity estimation approaches are

limited to multiple seed filters (Li et al. 2003) or assume tran-

scripts to be generated by a Markov process (Herms and Rahmann

2008). Our method estimates the filtration sensitivity under any

Table 1. Short read mapping tools with their characteristics

ELAND MAQ SOAP SeqMap Zoom SHRiMP RazerS

Filtering technique Two-seed
pigeonhole

Two-seed
pigeonhole

Two-seed
pigeonhole

Two-seed
pigeonhole

Multiple
gapped seeds

q-gram
counting

q-gram
counting

Distance measure
in filtering step

Hamming Hamming Hamming Both Hamming Both Both

Distance measure
in mapping step

Hamming Hamming
(Smith-Waterman
for second mate)

Hamming
(optionally
with one gap)

Hamming or
edit with at
most five errors

Hamming or edit
with at most
one gap

Smith-Waterman Either edit
or Hamming

Supported
read length

#32 #127 #60 Arbitrary #63 Arbitrary Arbitrary

Sensitivity Full sensitivity
only for up
to two errors

Full sensitivity Depends on
setting, no
switch to
guarantee full
sensitivity

Full sensitivity Switch to
guarantee
full sensitivity

No help for
parameter choice,
default will be
lossy for most
settings

Arbitrarily
adjustable

Can output all
(suboptimal)
hits

No No No Yes Yes Yes Yes

Figure 1. A transcript from a read to a part of the genome. The tran-
script contains seven three-matches, hence r and g share at least seven
3-gram. Actually, they also share an eighth 3-gram CAG that does not
correspond to a three-match of the transcript.
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position-dependent error distribution, e.g., as observed in Sanger

or Illumina DNA sequencing technologies (Dohm et al. 2008).

Hamming distance sensitivity

We first consider the read mapping problem for Hamming distance

and a given maximum distance k. In the following, all reads are

considered to be of equal length n.

To determine a lower bound for the sensitivity of a (q,t)-filter

we could enumerate all Hamming transcripts with up to k replace-

ments and sum up the occurrence probabilities of those tran-

scripts having at least t substrings Mq. As there are +k
i= 0ðn

i
Þmany

different transcripts, a full enumeration takes V[(n/k)k] time and

is not feasible for large reads or high error rates, e.g., of length

n = 200 with k = 20 errors. We have developed a dynamic

programming approach that is significantly faster by using a re-

currence similar to the threshold calculation in Burkhardt and

Kärkkäinen (2002).

Assume a given error distribution that associates each nucle-

otide position i in a read with an error probability PR
i , e.g., the

probability of a base miscall during sequencing or a SNP. Then, the

occurrence probability of a Hamming transcript T is the product

of the occurrence probabilities of the single transcript characters

at each position p(T ) =
Q

i=1;...; Tj j p
T i½ �
i , with PM

i = 1� pR
i . We calculate

the sensitivities for matches with e errors for each e # k separately.

Let S(n, e, t) be the sum of occurrence probabilities of transcripts of

length n, having e errors, and at least t q-matches. The sensitivity of

a (q,t)-filter to detect e-error matches is at least

P T contains $ t q�matches j Tk kE = e
� �

=
S n; e; tð Þ
S n; e;0ð Þ :

We will see, how to calculate S(n, e, t) using a DP algorithm. Let

p T; jð Þ =
Q

i=1;...; Tj j p
T i½ �
i+j be the occurrence probability of subtran-

script T to occur after j letters of a read. We define R(i, e, T2) as the

sum of occurrence probabilities of transcripts Ti 2 DI, so that T1 has

e errors and the concatenation T1T2 contains at least t substrings

Mq. By definition of S holds:

S n; e; tð Þ= +
T2Dq ; Tk kE#e

R n� q; e� Tk kE; t;T
� �

p T;n� qð Þ: ð1Þ

The sum goes over all transcript ends T of length q with at most e

errors. The right factor is the probability of Toccurring at the end of

a random transcript of length n. The left factor is the occurrence

probability sum over all transcript beginnings, so that the con-

catenation of beginning and end is a transcript of length n with e

errors, and at least t q-matches. With the following lemma a DP

algorithm can be devised to determine R and therefore the sensi-

tivities S(n, e, t) for all e = 0, . . ., k and t = 1, . . ., tmax in O(nktmax2q).

Lemma 1. Let i, q 2 N; e, t 2 Z; T 2 {M, R}q. R can be calculated

using the following recurrence:

Rð0; e; t;TÞ=
1; if e = 0; t # d Tð Þ

0; else

(
ð2Þ

Rði; e; t;TÞ= pM
i : R i� 1; e ; t � d Tð Þ; shift M;Tð Þð Þ

+ pR
i : R i� 1; e� 1; t � d Tð Þ; shift R;Tð Þð Þ: ð3Þ

with

shift x;Tð Þ = xT 1:: Tj j � 1½ �; d Tð Þ =
1; if T = Mq

0; else

(

Proof. See Appendix.

Extension to gapped shapes

A generalization of contiguous q-grams are gapped q-grams (Burkhardt

and Kärkkäinen 2002), (noncontiguous) subsequences of length

q. A shape Q is defined to be a set of non-negative integers cor-

responding to nongapped positions, where 0 2 Q is the first

nongapped position. For example, the 3-gram of shape ##-# in the

string GTTCA are GTC and TTA and the corresponding shape is

Q = {0, 1, 3}. The span of Q is span(Q ) = max Q + 1 and the weight of

Q is the set cardinality |Q|. For any integer i we define Qi = {i + j| j 2
Q}. Let Qi = {i1, . . ., i|Q|}, where i = i1 < i2 < . . . < i|Q| and s be a string.

For 1 # i # |s| � span(Q ) + 1, s[Qi] is defined to be the string

s[i1]s[i2]. . .s[i|Q|] and called Q-gram at position i. Contiguous q-grams

are Q-grams with the shape Q = {0, 1,. . ., q � 1}.

A Q-gram M|Q| of a Hamming transcript T is called a Q-match,

and a (Q t)-filter is an algorithm that detects any pair (r,g) for which

a transcript T from r to g with $t Q-matches exists. To extend the

sensitivity calculation to gapped shapes Q, the transcript T in Lemma

1 must be resized to cover the whole shape and the matching cri-

terion in d(T) must be adapted. This can be done by replacing q in

Equation 1 by span (Q) and d(T) in Equations 2 and 3 by

d Tð Þ =
1; if T Q1½ � = M

Qj j

0; else
:

(

For two strings of length span(Q ) with the Hamming transcript

T 2 Dspan(Q ), d(T ) returns 1 if and only if they share their sole

Q-gram. A lemma similar to Lemma 1 can be proven analogously.

Edit distance sensitivity

We extended the sensitivity calculation to edit distance. The DP al-

gorithm and the proof of correctness can be found in the Appendix.

The algorithm

In the following, we propose the read mapping algorithm imple-

mented in RazerS. It consists of three parts: a parameter chooser,

a filter, and a verifier.

Filtration

To find potential match regions of reads in the genome we use the

SWIFT algorithm (Rasmussen et al. 2006). It incorporates the fol-

lowing two observations. Consider an edit transcript between two

sequences with at least t q-matches. First, the dot plot of the

sequences contains at least t contiguous diagonal lines of length q,

so called q-hits. Second, if the transcript contains k errors then

there are k + 1 consecutive diagonals covering at least t q-hits. In

case of Hamming transcripts, there is a single diagonal completely

covering all q-hits.

For any read r 2 R each dot plot parallelogram of dimension

|r| 3 (k + 1) with at least t q-hits contains a potential match. Instead

of counting q-hits for each possible parallelogram separately, it

suffices to count them in overlapping |r| 3 w parallelograms with

w > k + 1 and an overlap of k, as every |r| 3 (k + 1) parallelogram is

contained in one |r| 3 w parallelogram, see Figure 2.

If for i,j 2 N holds r[i..i + q � 1] = G[ j..j + q � 1], the corre-

sponding q-hit is covered by the diagonal j � i. For an overlap of k

and w = d + k the |r| 3 w parallelograms begin at diagonals 0, d,

2d,. . . . If d is a power of 2, the parallelograms containing a q-hit can

efficiently be determined by bit-shifting j � i.
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q-Hits are determined by searching overlapping q-grams

G[ j..j + q � 1], j = 1,. . . , |G| � q + 1 in a q-gram index of all over-

lapping q-grams of sequences in R. Only a small number of

counters are needed per read, when sliding the q-gram over G.

As every |r| + w parallelogram spans at most |r| + w � 1 letters of G,

a parallelogram counter can be re-used after |r|�w� q sliding steps.

Before re-using a counter, the associated parallelogram is verified

if the counter has reached threshold t.

The SWIFT approach can also be used with gapped shapes Q

using a Q-gram index and replacing each q in the formulas above

by span(Q ).

Verification

To verify a parallelogram possibly containing a true match with

edit distance less or equal k, we use Myers (1999) bit-vector algo-

rithm. It exploits hardware parallelism of bit-operations. A 64-bit

CPU can calculate 64 cells of the edit matrix at once in a constant

number of 14 arithmetic operations.

If r 2R and g a G are the strings covered by a parallelogram of

the previous step, it calculates for each j = 1,. . ., |g| the minimal edit

distance between r and all substrings of g ending at position j. If

for a position j the minimal edit distance is less or equal to k,

a true match is found ending at j. With a slight modification of

the algorithm, g[1..j] can be searched for a beginning position i of

the true match. Finally, (r,g[i..j]) is recorded as a true match.

If only Hamming matches are considered, a parallelogram

is verified by scanning each diagonal character by character until

more than k mismatches occur. A diagonal d corresponding to r2R
and G[d + 1..d + |r|] with less or equal k mismatches covers the true

match (r,G[d + 1..d + |r|]).

Choosing filtration parameters

We now want to automatically choose filtering parameters, a shape

Q, and a threshold t, such that (1) we achieve a certain sensitivity level

and (2) the running time of the mapping procedure is minimized.

For all read lengths from 24 to 100 and error rates up to 10%,

we have therefore precomputed the sensitivities using a number of

different shapes and thresholds. As an error distribution we assume

a typical Illumina error profile (Dohm et al. 2008). Additionally, all

parameter combinations were used to run RazerS on simulated

data, yielding a rough estimate for the corresponding filtration

efficiency. Parameters for reads longer than 100 base pair (bp) are

extrapolated from parameters of precomputed shorter reads with

the same error rate. Given a user-defined minimum sensitivity,

suitable filtration parameters are chosen from the precomputed

tables, such that the anticipated running time is minimized.

If preferred, the parameter tables can be precomputed based

on a machine-specific error distribution and user-defined shapes.

This error distribution can be obtained in two ways. (1) Quality-

based probabilities: Transform the average base-call quality value for

each position into a probability value. (2) A posteriori probabilities:

Map a small subset of reads and determine the position-dependent

error frequency. Given an error distribution the parameters for

reads of length 50 can, for instance, be calculated within 10 min.

Results and Discussion
In this section, we empirically verify the above-described calcula-

tion of the expected mapping sensitivity and compare the per-

formance of our tool to that of other read mappers. We use

simulated as well as real data. The real data sets were all down-

loaded from the NCBI Short Read Archive (http://www.ncbi.nlm.

nih.gov/Traces/sra/):

• The first set (run accession SRR001815) comprises 10,760,364

Drosophila melanogaster reads of length 36 bp.

• The second set (run accession SRR006387) contains 2 3

7,894,743 76 bp paired-end reads obtained from whole genome

shotgun sequencing of a human HapMap individual, which we

trimmed to the first 63 bp (the maximal read length of Zoom at

the time of writing).

In both sets, the Illumina technology was used. As references

we used the RepeatMasker (http://www.repeatmasker.org) versions

of the D. melanogaster genome from FlyBase (http://www.flybase.

org/), Release 5.9, and the human genome from NCBI (http://www.

ncbi.nlm.nih.gov/), Build 36.3.

Verification of expected sensitivity

We verify the correctness of our sensitivity estimation by assessing

the discrepancy between estimated and empirical sensitivity for the

following two scenarios, where the first one serves as a sanity check:

(1) Simulated data. We simulate DNA sequence reads using position-

dependent error probabilities and group them according to the

number of implanted errors. After mapping the reads to the

reference sequence, we define the empirical sensitivity for each

group as the proportion of reads that could be mapped back

to their genomic origin. Using the same error distribution as

for simulation, we compute the estimated sensitivity as de-

scribed above.

(2) Real data. We map the set of reads once with 100% sensitivity

and keep as reference matches only those reads that map

uniquely. Again, we group them according to the number of

errors and determine the empirical sensitivity as for simulated

data. The expected sensitivity is computed using the a poste-

riori probabilities (see previous section).

Using these two protocols, we examined mapping sensitivity for

simulated 36 bp reads and for a subset of the 36 bp reads in

SRR001815. We inspected both Hamming as well as edit distance

sensitivity and did the mapping for all ungapped shapes of weight

q where 8 # q # 14 and all thresholds t where 1 # t # 20.

Figure 2. The dot plot between a read and a genome is covered by
parallelograms that span w = 12 diagonals and overlap by k = 4 diagonals.
Common 3-gram are counted for each parallelogram. The marked par-
allelogram contains the complete transcript, therefore it counts all 3-gram
that correspond to the seven three-matches in the transcript.
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As a measure of accuracy we use the relative difference be-

tween empirical and estimated loss rate. We observe a very good

agreement for Hamming distance (see Fig. 3). For expected loss

rates between 0 and 10% the mean relative difference for simu-

lated, as well as real data, is below 0.1%. Considering edit distance,

the expected loss rates overestimate the empirical loss. Between

0 and 10% of expected loss the mean relative difference is below

4% for simulated and below 2.8% for real data. For edit distance the

SWIFT parallelograms are broader and produce more random

q-gram hits compared to Hamming distance mapping, where the

parallelograms are single diagonals. This leads to more matches

than expected. The discrepancy for simulated data is slightly more

pronounced. This can be explained by the observation that simu-

lated matches are not necessarily optimal, i.e., reads can be map-

ped with less error than originally implanted (e.g., an insertion

next to a deletion will be aligned as one replacement). Most no-

tably, in all cases the empirical sensitivities are higher than

expected, thereby yielding better mapping results than estimated.

Furthermore we investigated the distribution of the lost reads.

We therefore compared the output of the 99% with the 100%

sensitivity mapping of all Drosophila reads onto the Drosophila

genome and observed a uniform distribution of lost reads over the

whole genome. For example, of all 224,229 nonoverlapping 100

bp bins of chromosome X, 199,029 contained at least one mapped

read. A percentage (1.14%) of these bins lost one or more reads

when mapping with 99% sensitivity. Of all affected bins, only

2.38% lost more than one and 0.22% more than two reads. More

than three reads were never lost. We ob-

served similar values for all the other

chromosomes.

Runtime comparisons

We demonstrate the performance of

RazerS in comparison to five other read

mapping tools: MAQ (H Li et al. 2008),

SeqMap ( Jiang and Wong 2008), SHRiMP

(Rumble and Brudno 2008), SOAP (R Li

et al. 2008), and the closed-source, com-

mercial Zoom (Lin et al. 2008). We do not

consider ELAND (AJ Cox, unpubl.), as we

want to map reads longer than 32 bp and

only have access to a version limited to 32

bp reads.

All tools differ in some aspects mak-

ing the comparison rather difficult. MAQ,

for example, has a different objective,

minimizing the sum of mismatching

quality values instead of minimizing the

number of mismatches. Also the treat-

ment of N (unknown base) or how many

hits per read can be reported is different

from tool to tool. We tried to be as fair as

possible by using comparable program

configurations. In addition, the compar-

isons should be understood as a means to

give the user an impression of the capa-

bilities of RazerS and not as a comprehe-

sive comparison of read mapping tools.

All experiments were conducted on an

AMD Opteron 2.8 GHz machine with 64

GB of RAM.

Short reads

(1) Drosophila, Hamming distance 2. In the first experiment we

mapped the Drosophila read set SRR001815 onto the Drosophila

genome with up to two mismatches and measured runtime

and space consumption of each read mapping tool. RazerS was

run with full sensitivity and with 99% sensitivity. All tools were

configured to tolerate two mismatches and output, at most,

one best match per read. Since SHRiMP uses a Smith-Waterman

verifier, we had to adapt the scoring parameters (mismatch = 0,

match = 1, gap penalties = �1000, score threshold = 32).

(2) Drosophila, edit distance 2. In this experiment the same set of

reads was mapped with up to two errors, allowing mismatches

and also indels. Since SHRiMP computes local alignments, there

is no scoring scheme for semiglobal edit distance alignments.

Nevertheless, we tried to emulate edit distance (mismatch =�1,

match = 1, gap penalties = �1, score threshold = 32).

(3) Human, Hamming distance 5. For the last experiment on real

data we used the first mate set SRR006387 containing 76 bp

reads, which we trimmed to 63 bp to incorporate Zoom in our

tests. All tools were configured to tolerate five mismatches and

output at most one best match per read. Although according to

the manual the longest acceptable read length of SOAP is 60

bp, it was capable to match reads of length 63 bp without

simply trimming the reads. We tried to run Zoom with 100%

sensitivity using the ‘‘-sv r5’’ option, which resulted in an error

message, so we reduced Zoom to be fully sensitive for four error

Figure 3. Comparison of estimated and empirical loss rates (loss rate = 1� sensitivity) varying weight
q = 8,. . ., 14 and threshold t = 1,. . ., 20. The dashed line reflects the mean of relative differences,
1 � (empirical loss rate/estimated loss rate), of all estimated loss rates below a varying level.
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matches (r4). For SHRiMP we again adapted the scoring

parameters as in Experiment 1 with scoring threshold = 58.

The results are summarized in Table 2. Clearly, reducing the sen-

sitivity by 1% has a notable influence on runtime. In Experiment 2

the runtime could be reduced by a factor of 2 and for larger reads in

Experiment 3 even by a factor of 13. RazerS99 outperforms the

other read mapping tools in almost all experiments and has com-

parable memory consumption. The runtimes for mapping with

Hamming distance are up to 16 times less compared to edit dis-

tance. This can be explained by the more efficient Hamming ver-

ification algorithm and the observation that gapped shapes, which

are chosen for Hamming distance, improve the filtration specific-

ity and runtime. For edit distance, gapped shapes are often less sen-

sitive than their corresponding ungapped shape of equal weight

with a smaller span, as indels harm a gapped shape along the

whole span.

The numbers of mapped reads are similar across the different

read mapping tools. In all experiments RazerS99 recognizes 99.62%–

99.87% of the matches found by RazerS100. Zoom finds less

matches than RazerS100 in experiments (2) and (3) because it rec-

ognizes matches with at most one contiguous gap and is not fully

sensitive for five errors. SeqMap loses matches partially covering

reference regions consisting of N’s. SHRiMP’s q-gram filter is lossless

only for Experiment 3 and reports additional matches because it

matches N with N, which are discarded by RazerS. SOAP maps all

masked or unknown bases N to A and thus reports more matches.

As MAQ uses a quality-based match verification (minimizing the

sum of mismatch qualities) it finds matches with more errors,

shown in brackets. To make the results comparable, we counted only

matches with at most two or five mismatches. The matches not

found by MAQ are those having more than three mismatches in the

first 28 bp prefix and those that are discarded for a match with more

errors and a lower sum of mismatch quality values.

Paired-end reads

RazerS is also capable of mapping paired-end reads.We therefore

scan the reference genome from left to right in parallel with two

SWIFT filters having the distance of the library size minus a toler-

ated library size deviation. Each filter searches for potential matches

of one of the two ends of all pairs. Additionally, we record in

a queue all matches of the left filter within a distance of the doubled

tolerated library size deviation. Only if the right filter finds a po-

tential match whose mate potential match is stored in the queue

both potential matches are verified. This guarantees that ver-

ifications are only done if both potential matches are within the

correct distance.

To compare the paired-end alignment performance of

RazerS with other paired-end aligners and also to see the behavior

of the tools on unmasked reference sequences, we mapped the

trimmed SRR006387 set of 2 3 63 bp paired-end reads onto the

unmasked human chromosome 21 with up to five mismatches

per mate, a library size of 200 bp, and a tolerated library size error

of 50 bp. Paired-end alignment is supported by MAQ, SOAP, and

Zoom, however, SOAP is limited to two mismatches and therefore

left out of this comparison. All tools were run with the same

options as in Experiment 3 adding the corresponding paired-end

options.

Table 2. Short read results

Experiment RazerS100 RazerS99 Zoom SHRiMP SeqMap SOAPa MAQa

(1) Drosophila, Hamming distance 2
1M

Time (min) 2.13 1.63 1.47 15.3 6.70 9.27 4.10
Space (GB) 1.31 1.30 0.72 0.68 6.56 0.67 0.60
Mapped reads 505,506 503, 595 505,506 505,084 505,059 506,476 503,999(605K)

All
Time (min) 10.6 5.55 7.80 145 12.8 116 9.68
Space (GB) 4.10 3.92 3.77 5.80 11.1 0.67 5.36
Mapped reads 5,353,287 5,335,554 5,353,287 5,349,007 5,348,776 5,414,337 5,338,676(6.5M)

(2) Drosophila, edit distance 2
1M

Time (min) 12.3 5.92 32.7 13.6 15.5 — —
Space (GB) 0.48 0.53 0.72 0.68 8.38 — —
Mapped reads 512,477 511,695 512,139 515,080 512,477 — —

All
Time (min) 163 68.45 267 146 Abort — —
Space (GB) 4.58 4.59 3.77 5.90 — — —
Mapped reads 5,431,142 5,424,088 5,427,589 5,486,467 — — —

(3) Human, Hamming distance 5
1M

Time (h) 3.14 0.40 26.1 10.7 48.8 3.88 2.43
Space (GB) 1.14 1.86 1.27 6.10 8.10 6.20 0.70
Mapped reads 352,725 351,767 352,617 352,742 349,721 354,020 323,893(362K)

All
Time (h) 25.4 1.95 45.3 >3 d Abort 33.8 5.74
Space (GB) 5.60 6.13 2.89 — — 6.2 4.38
Mapped reads 3,102,320 3,095,435 3,091,063 — — 3,133,920 2,817,561(3.0M)

Results for mapping 1,000,000 and 10,760,364 (all) reads of length 36 bp onto the Drosophila genome allowing for two errors considering Hamming (1)
or edit distance (2) and for mapping 1,000,000 and 7,894,743 reads of length 63 bp onto the human genome allowing for five replacement errors (3). The
fastest method is marked in bold.
aSOAP and MAQ do not support edit distance and MAQ also reports matches with more errors (quality based matching).
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Table 3 shows the results. We observe a runtime decrease by

a factor of five between full and 99% sensitivity. Compared to

Experiment 3 this factor is lower due to the library length criteria,

which prevents costly verifications of matches outside the toler-

ated library size independent of the chosen sensitivity. Zoom

is the fastest but also the least sensitive tool. We suspect that

the sensitivity option (‘‘-sv r4’’) is not applicable to paired-end

reads. Of all pairs mapped by MAQ within the tolerated library size

(values shown in parentheses) we counted those having up to five

errors. The smaller number of mapped pairs can be explained

as above.

Large reads

To demonstrate that our approach is also applicable to larger reads,

we simulated 500,000 reads of lengths 125 and 250 bp of the

unmasked human chromosome 21 and implanted up to 10 and

20 errors under a widened Illumina error profile (Dohm et al.

2008). Only RazerS and SHRiMP were able to map both and MAQ

was able to map the first read set back onto the chromosome. Other

read mapping tools are limited to either shorter reads or less errors.

The results are shown in Table 4.

To have a closer look at the performance of SHRiMP compared

to RazerS, we adjusted SHRiMP to run with exactly the same fil-

tration parameters making it more efficient than its default

parameters. As a result, the numbers of mapped reads of SHRiMP

and RazerS are equal in all experiments. RazerS is always six to 40

times faster than SHRiMP due to the more efficient verification and

parallelogram filtration. In this setting the number of mapped reads

of RazerS99 and RazerS100 are nearly identical. This leads to the

conclusion that extrapolating from precomputed parameters of

shorter reads underestimates the actual sensitivity, however, the

performance increase is comparable to the experiments with short

reads. MAQ is only applicable to Hamming distance and reads

shorter than 128 bp. In our simulation we set each quality value to

25 and MAQ’s quality threshold to 250 in order to prevent MAQ

from preferring matches with more than 10 errors. The running

time is comparable to RazerS99, however, it is questionable whether

an approach using only the first 28 bp as a seed is appropriate for

large reads with possible inserts or more than three errors.

Discussion
We presented an efficient read mapping tool that guarantees to

find all reads within a user-defined Hamming or edit distance. In

addition, a fixed error model and a user-defined loss rate can be

used to find the reads at higher speed with controlled sensitivity.

Hence, RazerS allows a perfect sensitivity–time tradeoff. Our tool

can also handle paired-end reads, as well as arbitrary number of

errors and arbitrary read lengths, which make it usable for the new

or improved technologies that will provide longer reads. Both

latter features are unique among the current implementations. In

addition, for typical settings, RazerS outperforms current read

mapper algorithms. We are currently incorporating quality values

similar to MAQ (H Li et al. 2008) as an optional match verifier to

increase the tolerance to sequencing errors. We plan to parallelize

the filtration and verification processes using multicore librar-

ies, e.g., Intel TBB (http://www.threadingbuildingblocks.org/) or

OpenCL (http://www.khronos.org/opencl). With slight modifi-

cations our approach is also applicable to the

dinucleotide based ABI SOLiD sequencing

technology. RazerS is part of SeqAn (Döring

et al. 2008) and is publicly available at http://

www.seqan.de/projects/razers.html.

Appendix

Edit distance sensitivity calculation

We now propose a DP algorithm to calculate

the sensitivity of a q-gram filter to detect

a randomly chosen true match (r,g) with edit

distance d(r,g) # k as a potential match.

Again, we consider all reads r 2 R to be

of equal length n and reduce randomly cho-

sen true matches (r,g) to randomly chosen

edit transcripts from r to g with D = {M, R, D,

I}. We therefore assume a given error distri-

bution that associates each nucleotide po-

sition i in a read with error probabilities

pR
i ; p

D
i ; p

I
i ; pR

i and pD
i are the probabilities that

the nucleotide r[i] is replaced or deleted in

g. pI
i is the probability that a single nucleotide

Table 4. Results for mapping 500,000 simulated 125 and 250 bp reads with up to 10 and
20 errors onto the unmasked human chromosome 21 with full and 99% sensitivity

RazerS100 RazerS99 SHRiMP100 SHRiMP99 MAQ

Hamming
125 bp

Time (min) 8.53 4.15 9.61 h 60.9 4.54
Space (GB) 0.80 1.54 1.93 4.48 0.38
Mapped 500,000 499,991 500,000 499,991 405,377

250 bp
Time (min) 14.7 6.65 32.9 h 160 —
Space (GB) 1.26 2.00 1.46 2.61 —
Mapped 500,000 500,000 500,000 500,000 —

Edit
125 bp

Time (min) 65.0 23.7 9.44 h 61.6 —
Space (GB) 0.74 1.71 0.84 4.50 —
Mapped 500,000 500,000 500,000 500,000 —

250 bp
Time (min) 55.8 39.6 14.7 h 28.5 h —
Space (GB) 1.21 2.18 1.38 5.45 —
Mapped 500,000 499,940 500,000 499,940 —

In each experiment, SHRiMP was manually adjusted to run with the same shape and threshold as
automatically chosen by RazerS. The fastest method is marked in bold.

Table 3. Results for mapping 2 3 1,000,000 and 2 3 7,894,743
paired-end reads of length 63 bp onto the unmasked human
chromosome 21, allowing for five replacement errors per read

Paired-end RazerS100 RazerS99 Zoom MAQ

1M
Time (min) 36.1 6.45 3.38 11.5
Space (GB) 1.28 3.13 2.59 0.85
Mapped pairs 26,923 26,828 14,018 19,025(28.5K)

All
Time (min) 71.4 47.5 22.2 72.9
Space (GB) 10.8 12.5 20.5 4.72
Mapped pairs 241,308 240,385 129,704 167,015(238K)

The fastest method is marked in bold.
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is inserted after the nucleotide r[i] in g. For any transcript T from

read to genome we define ||T ||R = |{i|T[i] 2 {M, R, D}}|, the number of

read characters affected by T. Finally, we assume the following

occurrence probability of an edit transcript T:

pðTÞ =
Y

i=1;...; Tj j
p

T i½ �
T 1::i½ �k kR

;

with pM
i = 1� pR

i � pD
i � pI

i . We define the set D(i) = {T |T 2 D*,

||T ||R = i} of transcripts from reads of length i. In the following we

omit to enumerate transcripts beginning or ending with I, as these

transcripts can always be shortened resulting in a match with

less errors. Similar to Equation 1 the occurrence probability sum

S(n, e, t) of edit transcripts from reads of length n, with e errors,

and at least t substrings Mq can be written as

Sðn; e; tÞ= +
T2DðqÞ; Tk kE#e;

T Tj j½ �6¼I

Rðn� q; e� Tk kE; t;TÞpðT;n� qÞ; ð4Þ

where R(i, e, t, T2) is the occurrence probability sum of transcripts

Ti 2 D(i) with e errors, so that T1[1] 6¼ I and T1T2 contains at least t

substrings Mq. pðT; jÞ =
Q

i=1;...; Tj jpT i½ �
kT½1::i�kR+j

is the occurrence probabil-

ity of subtranscript T to occur after j letters of a read.

Lemma 2. Let e, i, q 2 N; t 2 Z; T 2 D(q). R can be calculated

using the following recurrence:

Rð0; e; t;TÞ =
1; if e = 0; t # dðTÞ;T½1� 6¼ I

0; else

(
ð5Þ

Rði;�1; t;TÞ= 0

Rði; e; t;TÞ = pM
i Rði� 1 ; e ; t � dðTÞ; shiftðM;TÞÞ

+ pR
i Rði� 1 ; e � 1; t � dðTÞ; shiftðR;TÞÞ

+ pD
i Rði� 1; e � 1; t � dðTÞ; shiftðD;TÞÞ

+ pI
iRði ; e � 1; t ; ITÞ; ð6Þ

with

shiftðx;TÞ = xT 1::max ij1 # i < Tj j ^ T i½ � 6¼ If g½ �

and

dðTÞ =
1; if T contains Mq

0; else
:

(

Proof. See below.

Accordingly, the sensitivities S(n, e, t) for all e = 0, . . . , k and

t = 1, . . . , tmax can be determined in O(nktmax4q+k).

Extension to gapped shapes

Although ‘‘don’t care’’ positions of gapped shapes are not immune

to indels, we extend the edit distance sensitivity calculation to

gapped shapes for the sake of completeness. To calculate R and S for

a gapped shape Q , every q in equation 4 and Lemma 2 must be

replaced by span(Q).

Algorithm 1 can be used to detect whether a common Q-gram

is retained or destroyed by a transcript affecting span(Q) read

characters.

Proofs

Proof of Lemma 1. Let T (i, e, t, T2) � Di, D = {M,R} be the set of

Hamming transcripts with e errors, so that for every T1 2 T (i, e, t,

T2) T1T2 contains at least t substrings Mq. For i < 0, e < 0, or t < 0, we

define T (i, e, t, T2) = Ø.

Randomly choose i, e, t2N, i > 0, T22Dq, and T12T (i, e, t, T2)

and let T1= T 01x; T2= T 02y for appropriate T
0

1 2Di�1;T
0

2 2Dq�1, and

x, y2D. As T1T2 = T 01xT 02y contains at least t substrings Mq it follows

that T 01xT 02 contains at least t � dðT 02yÞ. Additionally, it holds

that e = T1k kE = T 01x
�� ��

E
= T 01
�� ��

E
+ xk kE and thus, T 01

�� ��
E

= e, if x = M,

and T 01
�� ��

E
= e� 1, if x = R. Because shift(x, T2) = xT 02 it follows

T 01 2T ði� 1; e; t � dðT2Þ, shift(M,T2)) or T
0

1 2T ði� 1; e� 1; t�
dðT2Þ, shift(R,T2)) and thus:

T ði; e; t;T2Þ � T ði� 1; e ; t � dðT2Þ; shiftðM;T2ÞÞM
[ T ði� 1; e� 1; t � dðT2Þ; shiftðR;T2ÞÞR: ð7Þ

Now, randomly choose i9, e9, t92N, x2D, T22Dq, and T 01 2T
(i9, e9, t9, shift(x, T2)). It holds T 01x

�� �� = i9 + 1, T 01x
�� ��

E
= e9 + ||x||E, and

if T 01shift(x,T2) = T 01xT2[1..|T2| � 1] contains at least t9 substrings

Mq, then T 01xT2 contains at least t9 + d(T2). Therefore, it follows that

T 01x2T (i9 + 1,e9 + ||x||E,t9 + d(T2), T2) and thus:

T ði; e; t;T2Þ � T ði� 1; e ; t � dðT2Þ; shiftðM;T2ÞÞM
[ T ði� 1; e� 1; t � dðT2Þ; shiftðR;T2ÞÞR: ð8Þ

By the definition of R it holds that R(i, e, t, T2) = +T12T ði;e;t;T2Þ pðT1Þ.
Applied to Equations 7 and 8, Equation 3 follows.

T2 contains exactly d(T2) substrings Mq, therefore T (0, e, t, T2) =

{e} if e = 0 and 0 # t # d(T2), otherwise T (0, e, t, T2) = B. With p(e) =

1, Equation 2 follows.

Proof of Lemma 2. This lemma can be proven analogously

to Lemma 1. Let D = {M, R, D, I} and T (i, e, t, T2) � D(i) be the set of

transcripts with e errors, so that for every T1 2 T (i, e, t, T2), T1T2

contains at least t substrings Mq.

Randomly choose i, e, t2N, i > 0, T22D(q), T2 [|T2|] 6¼ I, and

T12T (i, e, t, T2). Let T1 = T 01x; T2 = T 02y for appropriate

T 01;T
0

2 2 D� and x,y 2 D. It holds that T 01
�� ��

R
= i� xk kR and T 01

�� ��
E

=

e� xk kE. Additionally, T 01xT 02 and thus also T 01 shift ðx;T 02yÞ con-

tain at least t � dðT 02yÞ substrings Mq. This proves the ‘‘�’’ part of

Equation 6. We omit the analog rest of the proof due to space

limitations.
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