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Population stratification has long been recognized as a confounding factor in genetic association studies. Estimated
ancestries, derived from multi-locus genotype data, can be used to perform a statistical correction for population
stratification. One popular technique for estimation of ancestry is the model-based approach embodied by the widely
applied program structure. Another approach, implemented in the program EIGENSTRAT, relies on Principal Component
Analysis rather than model-based estimation and does not directly deliver admixture fractions. EIGENSTRAT has gained
in popularity in part owing to its remarkable speed in comparison to structure. We present a new algorithm and a program,
ADMIXTURE, for model-based estimation of ancestry in unrelated individuals. ADMIXTURE adopts the likelihood model
embedded in structure. However, ADMIXTURE runs considerably faster, solving problems in minutes that take structure
hours. In many of our experiments, we have found that ADMIXTURE is almost as fast as EIGENSTRAT. The runtime
improvements of ADMIXTURE rely on a fast block relaxation scheme using sequential quadratic programming for block
updates, coupled with a novel quasi-Newton acceleration of convergence. Our algorithm also runs faster and with greater
accuracy than the implementation of an Expectation-Maximization (EM) algorithm incorporated in the program FRAPPE.
Our simulations show that ADMIXTURE’s maximum likelihood estimates of the underlying admixture coefficients and
ancestral allele frequencies are as accurate as structure’s Bayesian estimates. On real-world data sets, ADMIXTURE’s esti-
mates are directly comparable to those from structure and EIGENSTRAT. Taken together, our results show that
ADMIXTURE’s computational speed opens up the possibility of using a much larger set of markers in model-based an-
cestry estimation and that its estimates are suitable for use in correcting for population stratification in association studies.

[Supplemental material is available online at http://www.genome.org. The ADMIXTURE program is freely available
at http://www.genetics.ucla.edu/software.]

Population stratification has long been recognized as a confound-

ing factor in genetic association studies (Li 1972; Knowler et al.

1988; Marchini et al. 2004). To correct for the effects of population

stratification, association studies may take account of individuals’

ancestries in their analyses, an approach known as ‘‘structured

association’’ (Pritchard and Donnelly 2001). One simple technique

is to incorporate ancestry as an additional covariate in an appro-

priate regression model (Price et al. 2006). Self-reported ancestries

can be used for this purpose, but these are often vague or in-

accurate. An alternative is to estimate ancestries from the geno-

types actually collected in a study.

We offer the following taxonomy of ancestry estimation

tools. At the highest level, we make a distinction between esti-

mating ‘‘global ancestry’’ and ‘‘local ancestry.’’ In the local an-

cestry paradigm (Falush et al. 2003; Patterson et al. 2004; Tang

et al. 2006; Sankararaman et al. 2008a,b), we imagine that each

person’s genome is divided into chromosome segments of def-

inite ancestral origin. The goal then is to find the segment

boundaries and assign each segment’s origin. In the global ancestry

paradigm (Pritchard et al. 2000; Tang et al. 2005), we are con-

cerned only with estimating the proportion of ancestry from each

contributing population, considered as an average over the indi-

vidual’s entire genome. Here we tackle estimation of global

ancestry.

Under the broad heading of ‘‘global ancestry estimation,’’

there are two approaches: ‘‘model-based ancestry estimation’’ and

‘‘algorithmic ancestry estimation.’’ Model-based approaches, ex-

emplified by structure (Pritchard et al. 2000), FRAPPE (Tang et al.

2005), and our program ADMIXTURE, estimate ancestry coeffi-

cients as the parameters of a statistical model. Algorithmic ap-

proaches use techniques from multivariate analysis, chiefly cluster

analysis and principal component analysis (PCA), to discover

structure within the data in a less parametric way. Cluster analy-

sis directly seeks the ancestral clusters in the data, while princi-

pal component analysis constructs low-dimensional projections

of the data that explain the gross variation in marker geno-

types, which, in practice, is the variation between populations.

EIGENSTRAT (Patterson et al. 2006; Price et al. 2006) is a popular

implementation of PCA for ancestry inference.

Our approach is similar to structure’s. Both programs model the

probability of the observed genotypes using ancestry proportions

and population allele frequencies. Like structure, ADMIXTURE

simultaneously estimates population allele frequencies along with

ancestry proportions.

structure takes a Bayesian approach and relies on a Markov chain

Monte Carlo (MCMC) algorithm to sample the posterior distribu-

tion. We use the same likelihood model but focus on maximiz-

ing the likelihood rather than on sampling the posterior. Since high-

dimensional optimization is much faster than high-dimensional
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MCMC, our maximum likelihood approach can accommodate

many more markers. Of course, there is no single optimi-

zation algorithm suited to all occasions. The parameters of the

ADMIXTURE model must satisfy linear constraints and bounds,

and this requirement plus the large number of model parameters

complicates matters. After considerable experimentation, we have

settled on a block relaxation algorithm (de Leeuw 1994) that

alternates between updating the ancestry coefficient matrix Q and

the population allele frequency matrix F. Each update of Q itself

involves sequential quadratic programming, a generalization of

Newton’s method suitable for constrained optimization. Finally,

we accelerate convergence of block relaxation by a novel quasi-

Newton method. Once point estimates are found, standard errors

can be estimated, at the user’s option, using the moving block

bootstrap (Kunsch 1989).

Tang et al. (2005) take a similar approach in their program

FRAPPE. They adopt the same model and estimate parameters by

maximum likelihood using an EM algorithm. We show that

FRAPPE’s estimates are slightly inaccurate. These inaccuracies ap-

pear to be a result of FRAPPE’s relaxed convergence criterion. Im-

posing a strict convergence criterion renders the EM algorithm

computationally burdensome. In contrast, our algorithm is fast

even with very strict convergence criteria.

In the Methods section, we present the underlying statistical

model and describe the optimization techniques used to maximize

the likelihood. We then sketch how we accelerate convergence.

Finally, we review the block bootstrap and describe its use in esti-

mating parameter standard errors. In the Results section, we

compare ADMIXTURE’s statistical performance to that of structure

and FRAPPE on simulated and real data. We then briefly examine

the numerical behavior of the EM and block relaxation algorithms

and explore the effect the convergence criterion has on the accu-

racy of the estimates. We also examine the impact of a certain

tuning parameter in quasi-Newton acceleration. We then compare

the runtimes of structure and ADMIXTURE on the various data sets.

The Results section ends with a simulated association study that

shows that ADMIXTURE performs as well as EIGENSTRAT at sta-

tistically correcting for population structure. In the Discussion,

we summarize our conclusions and suggest further directions for

research.

Methods

A statistical model

The typical data set consists of genotypes at a large number J of

single nucleotide polymorphisms (SNPs) from a large number I

of unrelated individuals. These individuals are drawn from an

admixed population with contributions from K postulated ances-

tral populations. Population k contributes a fraction qik of in-

dividual i’s genome. Allele 1 at SNP j has frequency fkj in population

k. As a matter of convention, one can choose allele 1 to be the

minor allele and the alternative allele 2 to be the major allele. In

our framework, both the qik and the fkj are unknown. We are pri-

marily interested in estimating the qik to control for ancestry in an

association study, but our approach also yields estimates of the fkj.

Among other things, this allows us to estimate the degree of di-

vergence between the estimated ancestral populations using the

FST statistic.

In the likelihood model adopted by structure, individuals are

formed by the random union of gametes. This produces the bi-

nomial proportions

Prð1=1 for i at SNP jÞ = +
k

qikf kj

" #2

;

Prð1=2 for i at SNP jÞ = 2 +
k

qikf kj

" #
+
k

qikð1� f kjÞ
" #

;

Prð2=2 for i at SNP jÞ = +
k

qikð1� f kjÞ
" #2

:

ð1Þ

Our model makes the further assumption of linkage equilibrium

among the markers. Dense marker sets should be pruned to miti-

gate background linkage disequilibrium (LD). This can be done

informally, by thinning the marker set according to a minimum

separation criterion or by pruning markers observed to be in

linkage disequilibrium on the basis of common LD summary sta-

tistics such as D9 or r2. Neither pruning approach is a perfect

remedy for linkage disequilibrium. Nonetheless, we consider the

assumption of linkage equilibrium to be a useful approximation,

one that is commonly used in model-based global ancestry esti-

mation methods.

It is convenient to record the data as counts. Let gij represent

the observed number of copies of allele 1 at marker j of person i.

Thus, gij equals 2, 1, or 0 accordingly, as i has genotype 1/1, 1/2, or

2/2 at marker j. Since individuals are considered independent, the

log-likelihood of the entire sample is

LðQ; FÞ= +
i

+
j

gijln +
k

qikf kj

" #
+ ð2� gijÞln +

k

qikð1� f kjÞ
" #( )

ð2Þ

up to an additive constant that does not enter into the maximi-

zation problem. The parameter matrices Q = {qik} and F = {fkj} have

dimensions I 3 K and K 3 J, for a total of K(I + J) parameters. For

the realistic choices I = 1000, J = 10,000, K = 3, there are 33,000

parameters to estimate. The sheer number of parameters makes

Newton’s method infeasible. The storage space required for the

Hessian matrix is prohibitively large, and the required matrix in-

version is intractable.

Note that the log-likelihood (Equation 2) is invariant under

permutations of the labels of the ancestral populations. Thus, the

log-likelihood has at least K! equivalent global maxima. In practice,

this is a minor nuisance and does not affect the convergence of

well-behaved algorithms. The constraints 0 # fkj # 1, qik $ 0, and

+kqik = 1 are more significant hindrances to contriving a good

optimization algorithm.

Point estimation algorithms

A wide variety of optimization methods exist. We have already

ruled out Newton’s method, so we now turn to algorithms that

avoid manipulation and inversion of large matrices. Among the

prime candidates is the EM algorithm (Dempster et al. 1977) as

implemented in FRAPPE. We have already mentioned that the

slow convergence of the EM algorithm makes it a poor candidate

for a fast and highly accurate estimation procedure. A block re-

laxation algorithm turns out to be better suited to our purposes. It

converges faster, and faster still under acceleration. We retain the

EM algorithm to get us quickly to the vicinity of the maximum and

then shift to accelerated block relaxation.
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FRAPPE’s EM algorithm

The EM algorithm of FRAPPE updates the parameters via

f n +1
kj =

+igija
n
ijk

+igija
n
ijk + +ið2� gijÞbn

ijk

; ð3Þ

qn +1
ik =

1

2J
+
j

gija
n
ijk + ð2� gijÞbn

ijk

h i
; ð4Þ

where for convenience we define

an
ijk =

qn
ikf n

kj

+mqn
imf n

mj

; bn
ijk =

qn
ikð1� f n

kjÞ
+mqn

imð1� f n
mjÞ

:

FRAPPE’s EM algorithm converges slowly, as do many EM algo-

rithms. FRAPPE compensates by using a fairly loose criterion for

convergence. This approach permits fast termination of the algo-

rithm, but at a cost of less precise parameter estimates. A simple

convergence diagnostic strategy is to declare convergence once

successive log-likelihoods satisfy

LðQn +1; Fn +1Þ � LðQn; FnÞ< 2 : ð5Þ

FRAPPE uses a convergence criterion that is effectively equivalent

to Equation 5 with 2 = 1. We found that FRAPPE’s stopping crite-

rion consistently results in slightly inaccurate estimates. Conse-

quently, we choose 2 = 10�4 as the default stopping criterion in

ADMIXTURE. Such a strict convergence criterion entails thou-

sands of additional EM iterates, in practice, often taking many

more hours of computation on our test problems. This motivates

consideration of non-EM-based algorithms.

Block relaxation algorithm

To achieve the goals of fast convergence and highly accurate pa-

rameter estimates, we turned to a block relaxation algorithm. Our

block relaxation algorithm alternates updates of the Q and q

parameters. It exploits the fact that the log-likelihood L(Q, F )

(Equation 2) is concave in Q for F fixed and in F for Q fixed.

Concavity makes block iteration amenable to convex optimization

techniques. The block updates themselves are found iteratively by

repeatedly maximizing the second-order Taylor’s expansion of

L(Q, F ) around the current parameter vector. This technique is

commonly referred to as ‘‘sequential quadratic programming’’

(Nocedal and Wright 2000); it coincides with Newton’s method in

the absence of constraints. For a general function f(x), each step of

sequential quadratic programming finds the increment D = x � xn

optimizing the quadratic approximation

f ðxÞ » f ðxnÞ + df ðxnÞD +
1

2
Dt d2f ðxnÞD

subject to the constraints, and sets xn+1 = xn + D. Here df(x) and

d2f(x) denote the first and second differentials (transposed gradi-

ent and Hessian) of f(x). A linear constraint +iaixi = b translates

into the linear constraint +iaiDi = 0, and the bounds ci # xi # di

translate into the bounds ci � xn
i # Di # di � xn

i. There are many

quadratic programming methods (Nocedal and Wright 2000). We

use the simple pivoting strategy of Jennrich and Sampson (1978).

In the current application of block relaxation, the keys to

success are the separation of parameters and the simple functional

forms for the first and second differentials of L(Q, F). In the Q

updates for F fixed, the admixture proportions for each individual

i are optimized separately. In the F updates for Q fixed, the allele

frequencies for each SNP are optimized separately. The entries of

the first differentials are

@L

@qik

= +
j

gijf kj

+mqimf mj

+
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and for mixed partials involving a Q and an F parameter. Fortu-

nately, the mixed partials do not enter into block relaxation.

The computational complexity for each iteration of this al-

gorithm is O(IJK2), assuming the denominators in the formulas

for the differentials are tabulated. The total runtime, however,

depends on the number of iterations required for convergence,

which cannot be formulated in terms of I, J, and K. In the data sets

we explore in this paper, we usually found on the order of tens of

iterations necessary, and never more than 200. The EM algorithm,

in contrast, required thousands of iterations to converge according

to our criterion.

Tang et al. (2005) also proposed a block relaxation algorithm

similar to ours, which they found to perform poorly for large

marker sets. We believe this is because (1) they did not take ad-

vantage of the block structure of the Hessian matrices within each

block relaxation subproblem, and (2) they handle the parameter

bounds differently. In contrast, our block relaxation scheme vastly

outperforms the EM algorithm in all of our experiments.

Convergence acceleration

EM algorithms are known for their slow rates of convergence.

Our block relaxation scheme is faster but still converges fairly

slowly. Therefore, we turn to convergence acceleration. Consider-

able thought has been exercised on accelerating EM algorithms

(Jamshidian and Jennrich 1993; Lange 1995; Varadhan and Roland

2008). Here we describe a more generic method.

Suppose an algorithm is defined by an iteration map xn+1 =

M(xn). Since the optimal point is a fixed point of the iteration map,

one can attempt to find the optimal point by applying Newton’s

method to the equation x�M(x) = 0. Because the differential dM(x)

is usually unknown or cumbersome to compute, quasi-Newton

methods seek to approximate it by secant conditions involving

previous iterates. Our recent quasi-Newton method (H Zhou, DH

Alexander, and K Lange, in prep.) is motivated by this strategy. It

has the further advantages of avoiding the storage and inversion of

large matrices and preserving parameter linear equality con-

straints. To keep computational complexity in check, we limit the

number q of secant conditions carried along during acceleration.

The ascent property of the EM algorithm and block relaxation are

helpful in monitoring acceleration. Any accelerated step that leads

downhill is rejected in favor of an ordinary step. Accelerated steps

do not necessarily respect boundary constraints, so parameter

updates falling outside their feasible regions need to be replaced by

nearby feasible values. This is implemented by projecting an illegal

update to the closest point in the feasible region, which for F and

Fast ancestry estimation
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Q updates are the unit interval and the unit simplex, respectively.

We also experimented with the squared extrapolation techniques

of Varadhan and Roland (2008). These show good performance

across a variety of high-dimensional problems. In ancestry esti-

mation, the quasi-Newton acceleration performs about equally

well as their best-performing SqS3 acceleration.

Standard errors

Standard errors for our parameter estimates are calculated using

the moving block bootstrap (Kunsch 1989). As noted by Tang

et al. (2005), bootstrap resampling assuming independence be-

tween observations, when they are, in fact, correlated, leads

to overconfident (downward-biased) standard errors. The block

bootstrap presents a natural way to account for the serial correla-

tion between SNPs. Rather than resampling individual SNPs, one

resamples blocks of SNPs. Under the block resampling scheme,

blocks containing h consecutive SNP columns from the genotype

matrix G are sampled with replacement. A total of dJ/he such blocks

are assembled columnwise, and the first J columns of the assembly

are taken as the resampled genotype matrix G*. The choice of h is

tuned to capture the extent of correlation. Our default setting for h

captures an average of 10 cM of genetic distance. This represents

the typical span of admixture LD in a population with an admix-

ture event 10 generations in the past (see Patterson et al. 2004). Our

choice of h can be overridden by the user.

For each bootstrap resample G*, we re-estimate the parame-

ters, using Q̂ and F̂ as starting values. Convergence is usually rapid

under acceleration. The sample standard errors of the resulting

estimates fðQ̂�b; F̂
�
bÞg

B
b=1 supply estimates of the parameter standard

errors.

The computational time required for calculating these boot-

strap standard errors is dominated by the parameter estimation for

the bootstrap resamples. As a partial remedy, we have found that

the estimation procedure for ðQ̂�b; F̂
�
bÞ can be stopped after a few

iterations with little loss of accuracy in computed standard errors.

Early stopping promotes computational efficiency. There is a the-

oretical basis for a related ‘‘one-step bootstrap’’ procedure (Shao

and Tu 1995) based on Newton’s method. Here we offer empirical

results to suggest that our comparable procedure is sound. Supple-

mental Figure S2 summarizes how the estimates of standard errors

perform when re-estimation is terminated after one, two, or three

steps, as compared to standard errors when re-estimation uses our

strict convergence criterion. Termination after three steps yields

reliable standard error estimates and is the default in ADMIXTURE.

Results

Simulations

To ascertain how accurately ADMIXTURE recovers admixture

coefficients, we performed a simulation study. As our ancestral

populations, we chose the HapMap CHB, CEU, and YRI samples

(The International HapMap Consortium 2005). We considered

13,262 arbitrary SNPs spaced at least 200 kb apart and having no

more than 5% missing genotypes. The allele frequencies seen in

the unrelated individuals of the three populations were used as the

true values for the F matrix. The true values for the matrix Q of

admixture coefficients were constructed by sampling from several

different probability distributions on the unit simplex

S2 = fqi : qi1 + qi2 + qi3 = 1g:

In this manner, we generated admixture coefficients for 1000

simulated individuals in each experiment. The simulated genotype

vector G was then constructed according to the binomial model

(Equation 2). For each experimental realization of Q , we measured

the accuracy of the estimates Q̂ and F̂ by the estimated root mean

squared error

bRMSEðF̂Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

JK
+
j

+
k

ðf̂ jk � f jkÞ
2

s
;

bRMSEðQ̂Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

IK
+
i

+
k

ðq̂ik � qikÞ
2

s

criteria. For the first set of experiments, we generated the qi in-

dependently from various symmetric Dirichlet distributions,

Dir(a, a, a). Here the parameter a reflects the degree of admixture.

When a < 1, most individuals show little admixture, while when

a > 1, the opposite is true. structure uses these restricted Dirichlet

distributions as priors on the admixture coefficients. Our analysis

results, summarized in Table 1, indicate that both ADMIXTURE

and structure provide fairly good estimates of Q and F, with the

largest RMSEs being on the order of 0.025 for the case of a = 1.

FRAPPE’s estimates were slightly worse in all cases, most noticeably

for the Q parameters. In the second set of experiments, we gener-

ated the qi independently from asymmetric Dirichlet distributions,

Dir(a, b, g). Again, the results indicate that both ADMIXTURE

and structure provide good estimates of Q and F, while FRAPPE’s

Table 1. Summary of simulation experiments using symmetric
(Simulations 1–3) and asymmetric (4–6) Dirichlet distributions

Data gij were simulated from the binomial model (Equation 1) using known
(Q, F ). F was taken as the ancestral allele frequencies corresponding to the
HapMap CHB, CEU, and YRI samples; the qi were sampled i.i.d. (independent
and identically distributed) according to the Dirichlet distributions indicated.
The figure indicates the points (qi1, qi2). Both ADMIXTURE and structure
closely recovered the true (Q, F ). FRAPPE’S estimates were less accurate.
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estimates are slightly worse. The greater inaccuracies of FRAPPE’S

estimates appear to stem from its convergence criterion. We will

revisit this point further shortly.

Real data sets

HapMap Phase 3

Phase 3 of the HapMap Project (The International HapMap Con-

sortium 2005) contains genotypes for individuals from additional

populations. Of particular interest here, individuals with Mexican

ancestry were sampled in Los Angeles (MEX), and individuals with

African ancestry were sampled in the American Southwest (ASW).

We chose a subset of the 1,440,616 available markers according to

our two previous criteria: (1) to minimize background linkage dis-

equilibrium, adjacent markers must be no closer than 200 kb apart,

and (2) no more than 5% of the genotypes must be missing. Based

on the genotypes for these markers for the unrelated individuals

from the CEU, YRI, MEX, and ASW samples, we constructed a data

set of 13,298 markers typed on 324 individuals. Henceforth we refer

to this data set as HapMap3. To avoid complications stemming from

missing data, we imputed all missing genotypes prior to performing

the statistical analyses discussed below.

Figure 1 summarizes the results of analyzing HapMap3 with

ADMIXTURE, structure, and EIGENSTRAT. ADMIXTURE, like structure

and EIGENSTRAT, resolves the CEU and YRI samples and identi-

fies the ASW sample as an admixture between the YRI and CEU

samples, and the MEX sample as an admixture between the

CEU sample and a third ancestral population. These results are in

line with the current understanding of human population genetics

( Jakobsson et al. 2008; Li et al. 2008). Historically, we would expect

the third population for the MEX sample to represent one or

more of the Native American groups from Mexico, from whom

present-day Mexicans derive their non-European ancestry. It is

interesting that the inferences about the MEX group made by

admixture differ from those of structure. structure places the

MEX sample centrally between the CEU and the third ancestral

population, while ADMIXTURE places the MEX group further to-

ward the third population. As noted by Tang et al. (2005), the

admixture model tends to have difficulty identifying ancestral

populations when the data set contains no individuals of unmixed

ancestry. This problem is common to structure, FRAPPE, and

ADMIXTURE. Inclusion of individuals from appropriate Native

American groups to serve as proxies for the ancestral population

could resolve questions involving the true degree of admixture in

the MEX sample.

Although it may be of scientific interest to know the degree of

admixture, the differences between the estimates found here are of

little consequence in structured association testing. In fact, it

appears that the estimates of qi2 from structure and ADMIXTURE

are equivalent up to a change of scale. They are certainly highly

correlated, with an R2 value of 0.9998.

Inflammatory Bowel Disease data set

The Inflammatory Bowel Disease (IBD) data set consists of 912

European-American controls genotyped as part of an IBD study

conducted by the New York City Health Project (Mitchell et al.

2004). Subjects were genotyped on an Illumina HumanHap300. In

addition to their genotypes, many of these individuals reported

their ancestry. The availability of self-reported ancestry has made

this data set appealing to researchers studying population stratifi-

cation. For instance, Price et al. (2008) analyzed it with EIGENSTRAT

in their study of European ancestry. They concluded that New

Yorkers of European ancestry can be represented as an admixture of

three ancestral populations: a northwestern European population,

a southeastern European population, and an Ashkenazi Jewish

population. Unfortunately, the IBD data set contains very few

individuals of southeastern European ancestry. Inference of the

existence of this third ancestral population group required Price and

colleagues to perform a meta-analysis combining the IBD data set

with other data sets that include substantial numbers of individuals

from Greece and Italy.

Figure 1. Analyses of the HapMap3 data set. K = 3 for ADMIXTURE and
structure. Plotted for each individual i are the point ðq̂i1; q̂i2Þ for ADMIXTURE
(A) and structure (B), and the point (PC1i, PC2i) for EIGENSTRAT (C ). Self-
reported ancestries are indicated: (3) YRI; (s) ASW; (+) CEU; (•) MEX.
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We performed our own analysis of the IBD data set using

ADMIXTURE, structure, and EIGENSTRAT on a subsample of 9378

of the available genotypes selected according to our previously

stated criteria. Results are summarized in Figure 2. The self-reported

ancestries of the sample individuals were classified according to

criteria from Price et al. (2008) as IBD-AJreport (Ashkenazi Jewish),

IBD-NWreport (northwestern European), or IBD-SEreport (south-

eastern European), and these classifications were used to color-

code the figure. ADMIXTURE and structure, run with K = 3, easily

differentiate the northwestern European and Ashkenazi Jewish

individuals, but they do not clearly cluster the few individuals self-

reporting southeastern European ancestry. Nor does EIGENSTRAT

identify the southeastern European individuals as a distinct cluster.

Given the small number (nine) of such sample individuals, this

suggests that all three of these statistical approaches have difficulty

resolving ancestry clusters represented by a very small number of

individuals.

Since it might be argued that K = 3 ancestral populations in-

correctly model the IBD data, we repeated our analysis assuming

K = 2 ancestral populations. For EIGENSTRAT, note that choosing

K = 2 corresponds to using only the first principal component. The

results from this second round of analysis are shown in Figure 3. All

three programs identify the Ashkenazi Jewish and northwestern

European clusters for the self-reported individuals. The estimates

from the programs were strongly correlated; R2 values were 0.988

(ADMIXTURE and structure), 0.999 (ADMIXTURE and EIGENSTRAT),

and 0.987 (structure and EIGENSTRAT). However, R2 values do not

tell the whole story. Pairwise scatterplots between the estimates

(data not shown) reveal that structure’s ancestry estimates are

more skewed toward the boundaries 0 and 1 than ADMIXTURE’s

estimates. This behavior can be attributed to structure’s prior distri-

bution. Despite the small differences in ancestry estimates, the

current analysis supports our claim that ADMIXTURE, structure, and

EIGENSTRAT yield comparable results when applied to simple

cases of admixture.

We note that for the IBD data set with K = 3, structure’s Markov

chain required roughly 10,000 burnin iterations to converge to its

stationary distribution. In contrast we found 2000 burnin iter-

ations to be roughly sufficient for our other analyses with struc-

ture. Supplemental Figure S1 depicts the trajectory of structure’s

Dirichlet parameter a for the IBD data set with K = 3 versus K = 2

ancestral populations.

Comparison of maximum likelihood point estimation
algorithms

ADMIXTURE offers the user a choice of two point estimation

algorithms: our block relaxation algorithm (the default) and

a reimplementation of FRAPPE’s EM algorithm. Our convergence

acceleration technique is applicable to either algorithm. For both

algorithms we use the convergence diagnostic (Equation 5) with

the strict criterion 2 = 10�4. As documented in Table 2A, the EM

algorithm converges much more slowly than block relaxation.

Even accelerated EM cannot match the speed of unaccelerated

block relaxation. A strict convergence criterion clearly renders the

EM algorithm computationally burdensome.

We also explored the effect of the convergence criterion used

by FRAPPE. Although a loose convergence criterion will allow the

estimation algorithm to terminate faster, it may jeopardize the

accuracy of the resulting estimates and encourage bias. Indeed we

note in Table 2A that the unaccelerated EM algorithm terminated

much faster with the loose criterion than with the strict criterion.

The estimates ~Q and ~F found with the EM algorithm and loose

convergence criterion had a slightly lower log-likelihood than

the maximum likelihood estimates Q̂ and F̂ found with the

block relaxation algorithm and strict convergence criterion

[Lð~Q; ~FÞ=� 9;183;774, versus Lð~Q; ~FÞ = �9;183;720, an absolute

difference of 54]. Estimated parameters also diverged substantially.

Comparing the first components of the estimated ancestry vectors,
~qi1 and q̂i1, we found that the median of j~qi1 � q̂i1j was 0.072. In

other words, for half of the individuals in the IBD data set, the

ancestry fraction attributed by FRAPPE’s EM algorithm to the first

population was off by at least 0.072. Similar results were found for

other data sets.

Figure 2. Analyses of the IBD data set. K = 3 for ADMIXTURE and
structure. In this data set, the evidence for a third population is weak. (A)
ADMIXTURE; (B) structure; (C ) EIGENSTRAT.
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Note that our unaccelerated block relaxation algorithm under

strict convergence runs faster than the EM algorithm under loose

convergence. Our accelerated block relaxation algorithm con-

verges faster still. In short, ADMIXTURE quickly delivers highly

accurate parameter estimates. Our quasi-Newton acceleration

depends on the number q of secant conditions used. Table 2B

suggests that the degree of acceleration is fairly insensitive to the

exact value of this tuning constant. Although ADMIXTURE’s de-

fault value of q = 3 works well in practice, the user can override this

choice.

We note that a forthcoming version of FRAPPE will tighten its

default convergence criterion, allowing for more accurate results.

However, as noted here, the EM algorithm proves impractically

slow when used with a strict convergence criterion on genome-

scale datasets.

Runtime comparison

It is difficult to make a direct comparison of runtimes between

ADMIXTURE and structure. With structure, both the number of

burnin iterations and the number of subsequent sampling iter-

ations following burnin are configurable parameters set by the

user. The proper values for these configuration parameters are es-

sentially problem-dependent, but the structure documentation

(Pritchard et al. 2007) advises that 10,000 to 100,000 burnin iter-

ations are usually adequate for convergence to stationarity. The

documentation also suggests that stationarity can be diagnosed by

manually inspecting the periodic printouts of summary statistics,

such as FST distances between inferred populations, for hints that

the chain has stabilized.

Second, we have made a conscious decision to provide stan-

dard errors rather than interval estimates because most users will

be satisfied with the point estimates, and accurate confidence

intervals require significantly more bootstrap iterations than ac-

curate standard errors. Conventional wisdom in the bootstrap lit-

erature (Efron and Tibshirani 1993) suggests that accurate interval

estimation requires on the order of thousands of bootstrap sam-

ples, while accurate standard error estimation requires on the order

of hundreds.

We are thus hesitant to make a definitive statement regarding

the speed of ADMIXTURE versus structure. Let us simply state that in

the experiments we have run on a 2.8 GHz Intel Xeon computer on

data sets with around 1000 individuals and 10,000 markers, we have

found that point estimation with ADMIXTURE typically took on

Table 2. Comparison of various combinations of the optimization
algorithms for the IBD data set with K = 2 ancestral populations

A. Summary of runtimes of four different algorithms

Algorithm Runtime

EM 21:33
EM (2 = 1) :34
EM (accel) :44
Block :16
Block (accel) :04

B. Summary of runtimes of accelerated block relaxation
as a function of q

q Runtime

0 :16
1 :04
2 :05
3 :04
4 :04
5 :03
6 :04
7 :03

Experiments were performed on an Intel Xeon 2.8 GHz machine. Run-
times are reported as hours:minutes. The strict convergence criterion 2 =
10�4 is used except where indicated otherwise. In A, acceleration is carried
out by our quasi-Newton method with q = 3 secant conditions. In B, the
case q = 0 represents unaccelerated block relaxation.

Figure 3. Analysis of the IBD data set using K = 2 for structure and
ADMIXTURE and the first principal component from EIGENSTRAT. The
plots shown are histograms of the first estimated ancestry parameter
(q̂1; or PC1) for the individuals, conditioned on self-reported ancestry.
Only individuals self-reporting as Ashkenazi Jewish or northwestern
European are shown. (A) ADMIXTURE; (B) structure; (C ) EIGENSTRAT.
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the order of minutes, while point estimation with structure took on

the order of hours. This is true even with a relatively small number

of MCMC iterations, considerably fewer than advised by structure’s

documentation. Our runtime results are summarized in Table 3.

The choice of K affects the runtimes of both structure and

ADMIXTURE. The time it takes for either program to run is the

product of the mean time per iteration and the number of iter-

ations. The time per iteration scales as O(K2) for ADMIXTURE and

as O(K) for structure (Falush et al. 2003) when I and J are held fixed.

The number of iterations to convergence also tends to increase

when K is increased. For example, Supplemental Figure S1 shows

that convergence to stationarity for structure takes roughly 10,000

MCMC burnin iterations for K = 3 in the IBD data set, compared to

2000 for K = 2. Likewise, ADMIXTURE requires 153 iterations to

converge for K = 3 compared to 23 for K = 2. Generally, we have

observed that the number of iterations to convergence increases

sharply when a value for K is chosen that is poorly supported by

the data. This is precisely the situation with the IBD data set,

where there seems to be strong support for only two ancestral

populations.

The runtimes of ADMIXTURE and EIGENSTRAT are on the

same order of magnitude. Indeed, on most of the data sets we have

considered, ADMIXTURE’s runtime was less than twice that of

EIGENSTRAT, although we note that EIGENSTRAT can be made to

run faster by disabling outlier detection.

Simulated association studies

Following Price et al. (2006), we simulated association studies to

illustrate how the ancestry estimates from ADMIXTURE can be

used to correct for population structure. Our simulation methods

exactly parallel those described in their Table 1, so for the sake of

brevity we omit simulation specifics and mention only highlights.

An overview of our four experiments with two ancestral pop-

ulations appear in the caption of Table 4. We performed ‘‘naive’’

association tests ignoring ancestry, as well as association tests in-

corporating either an estimate of ancestry (ADMIXTURE and

EIGENSTRAT columns) or the true ancestry value (Ideal column).

Ancestry estimates were based on 100,000 markers that were not

tested for association. The significance level used was 0.0001.

Price et al. (2006) corrected for population structure by

replacing both phenotypes and genotypes with the residuals

formed by linear regression on the ancestry estimates. They then

performed a modified Armitage trend x2 test for association. We

took the alternative approach of including ancestry as an addi-

tional predictor within a logistic regression model, where the first

predictor for individual i is the minor allele count gi at the locus in

question. For ADMIXTURE, K� 1 of the K entries of the individual

ancestry estimate vector q̂i should be used as predictors. With

EIGENSTRAT there is in principle no restriction on the number of

principal components that can be used. Here we used a single entry

from ADMIXTURE’s estimate and the top principal component

from EIGENSTRAT. Use of additional principal components did

not improve the results noticeably.

Each of our four experiments was conducted 10 times, with the

average proportions of SNPs declared significant shown in Table 4.

These results suggest that in simple cases of population structure,

corrections using EIGENSTRAT and ADMIXTURE perform equally

well, in terms of both observed Type I error and power. Corrections

using EIGENSTRAT and ADMIXTURE both restored the observed

Type I error rate to roughly the nominal level, while achieving es-

sentially the same level of power attained by the Ideal analysis based

on the true ancestry. The agreement between ADMIXTURE and

EIGENSTRAT is a natural consequence of the high concordance we

found between their ancestry estimates. The squared correlation

coefficients between the estimates from the two programs were

>0.9999 in all of the experiment runs we performed. A more de-

tailed discussion of these results can be found in the Supple-

mental material.

Table 3. Runtimes for plain point estimation, as well as point
estimation with interval or standard error estimates

Point Point and interval

Data set ADMIXTURE structure ADMIXTURE structure

Simulation 1 :07 7:34 4:07 13:20
Simulation 2 :08 7:43 4:14 15:39
Simulation 3 :05 8:16 4:45 10:22
Simulation 4 :08 9:34 4:18 13:26
Simulation 5 :08 9:22 4:28 11:18
Simulation 6 :06 7:24 4:29 10:23
HapMap3 :04 1:13 2:07 1:57
IBD (K = 2) :05 5:03 2:04 5:39
IBD (K = 3) :42 20:06 2:59 23:39

structure was run using the ADMIXTURE model, while EIGENSTRAT and
ADMIXTURE were run under their default settings. structure was allowed
2000 burnin iterations; thereafter, 200 iterations were used for point
estimates, or 1000 iterations if credible intervals were required in addition.
The one exception is IBD (K = 3), for which 10,000 burnin iterations were
required as described earlier. ADMIXTURE’S standard error estimation
used 200 bootstrap replicates. Experiments were performed on an Intel
Xeon 2.8 GHz machine. Runtimes are given as hours:minutes.

Table 4. Results from our simulated association study

Average proportion of SNPs found significant

Naive Ideal EIGENSTRAT ADMIXTURE

Discrete populations
Experiment I

Random SNPs 0.0008 0.0001 0.0001 0.0001
Differentiated SNPs 0.8522 0.0001 0.0001 0.0001
Causal SNPs 0.5120 0.4935 0.4935 0.4935

Experiment II
Random SNPs 0.3630 0.0001 0.0001 0.0001
Differentiated SNPs 1.0000 0.0001 0.0001 0.0001
Causal SNPs 0.5081 0.2660 0.2688 0.2688

Admixed population
Experiment III

Random SNPs 0.0003 0.0001 0.0001 0.0001
Differentiated SNPs 0.2811 0.0001 0.0001 0.0001
Causal SNPs 0.5186 0.4862 0.4863 0.4863

Experiment IV
Random SNPs 0.0009 0.0001 0.0001 0.0001
Differentiated SNPs 0.9100 0.0001 0.0001 0.0001
Causal SNPs 0.5167 0.4367 0.4368 0.4368

The values tabulated are the average proportion of SNP markers of each
class found to be significant at a level of 0.0001. Each class of SNPs within
each experiment contained 1 million markers; each experiment was re-
peated 10 times, and averages were taken. Tests were conducted on
a logistic regression model using a score test for the significance of each
SNP marker. For Naive analyses, no additional predictors were included.
For Ideal analyses, the true ancestries were included. For EIGENSTRAT and
ADMIXTURE analyses, ancestry estimates were included. Experiment I,
moderate case/control ancestry mismatching; Experiment II, more ex-
treme mismatching; Experiment III, admixed population with ancestry
risk r = 2; Experiment IV, r = 3.
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Discussion
Our studies on simulated and real data sets show that ADMIXTURE

performs as well as structure in ancestry estimation and runs con-

siderably faster. ADMIXTURE’s large speed advantage over structure

opens up the possibility of using large sets of arbitrarily selected

markers for ancestry determination, rather than focusing on a

small number of ancestry-informative markers (AIMs) known a

priori to have different allele frequencies in different populations.

Since many populations, human and otherwise, have not been

genotyped, AIMs are often unknown. Fortunately, the ancestral

allele frequency estimates output by ADMIXTURE allow AIMs to

be readily identified.

ADMIXTURE’s speed in generating point estimates stems

from the use of a relatively fast block relaxation strategy, coupled

with quasi-Newton convergence acceleration. Interval and stan-

dard error estimation is costly for both ADMIXTURE and struc-

ture. We perform bootstrapping, while structure performs MCMC

sampling. Both are computationally intensive. Our speed advan-

tage with standard error estimation activated is due to a com-

bination of (1) good starting values, (2) a judicious stopping rule

in parameter estimation for each bootstrap resample, and (3) our

decision to compute standard error estimates rather than confi-

dence intervals.

Choice of an appropriate value for K is a notoriously difficult

statistical problem. It seems to us that this choice should be guided

by knowledge of a population’s history. Because experimentation

with different values of K is advisable, ADMIXTURE prints values

of the familiar AIC (Akaike information criterion) and BIC (Bayesian

information criterion) statistics, widely applied in model selection.

ADMIXTURE’s model does not explicitly account for linkage

disequilibrium (LD) between markers. The original version of

structure also lacked support for markers in LD, as does FRAPPE, but

structure 2.0 includes a linkage model capturing ADMIXTURE LD

but not background LD. Falush et al. (2003) break LD down into

three components: mixture LD, attributable to the variation in

ancestry between individuals; admixture LD, attributable to recent

admixture events; and background LD, attributable to population

history. While thinning marker sets is beneficial in dealing with

background LD, it is relatively helpless in ameliorating admixture

LD, which can extend orders of magnitude further than back-

ground LD in recently admixed populations. In data sets where

admixture LD is a significant factor, our likelihood can be con-

sidered a useful and tractable approximation. While the resulting

estimates may be subject to some bias, we believe the biases stem-

ming from unmodeled LD pose greater problems in local ancestry

estimation than here. Another concern is the underestimation of

standard errors using simple bootstrap tactics. Here the block

bootstrap is a major corrective.

The speed of ADMIXTURE is on par with EIGENSTRAT’s

implementation of PCA, so geneticists can now choose a method

for summarizing population structure based on considerations of

statistical appropriateness alone. The model-based and PCA-based

approaches are complementary; each offers its own advantages.

PCA has the advantage of robustness. It does not specify an exact

model and so may be more suitable in situations where the simple

admixture model does not hold, for instance, when a population

shows continuous spatial structure (Novembre and Stephens 2008;

Novembre et al. 2008). Model-based estimates are more directly

interpretable than PC coordinates and come with attached pre-

cisions. The model-based approach also directly provides allele

frequency estimates for the ancestral populations.

Despite these differences, our analyses of real and simulated

data show a high degree of concordance between the estimates

from ADMIXTURE and EIGENSTRAT. In particular, we have ob-

served a strikingly high degree of linear correlation between an-

cestry estimates from the two programs. Thus, while the two

approaches are complementary, in simple settings, the resulting

estimates are equally useful for statistical correction in association

studies. More complicated population structure may reveal dif-

ferences between the two programs’ estimates.

In summary, we have presented a fast new algorithm and

software suitable for inferring ancestry of individuals from strati-

fied populations based on genotypes at a large number of arbitrary

SNP markers. Our program ADMIXTURE is available as a stand-

alone program and will soon also be available within the Mendel

package. A free download is available at http://www.genetics.

ucla.edu/software.
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