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Abstract
Purpose of review—Orofacial clefts are common birth defects with a known genetic component
to their etiology. Most orofacial clefts are nonsyndromic, isolated defects, which can be separated
into two different phenotypes: (1) cleft lip with or without cleft palate and (2) cleft palate only. Both
are genetically complex traits, which has limited the ability to identify disease loci or genes. The
purpose of this review is to summarize recent progress of human genetic studies in identifying causal
genes for isolated or nonsyndromic cleft lip with or without cleft palate.

Recent findings—The results of multiple genome scans and a subsequent meta-analysis have
significantly advanced our knowledge by revealing novel loci. Furthermore, candidate gene
approaches have identified important roles for IRF6 and MSX1. To date, causal mutations with a
known functional effect have not yet been described.

Summary—With the implementation of genome-wide association studies and inexpensive
sequencing, future studies will identify disease genes and characterize both gene–environment and
gene–gene interactions to provide knowledge for risk counseling and the development of preventive
therapies.
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Introduction
It is generally accepted that cleft lip with or without cleft palate (CL/P) and cleft palate only
(CPO) are genetically distinct phenotypes in terms of their inheritance patterns. CPO is less
common, with a prevalence of approximately 1/1500–2000 births in Caucasians, whereas CL/
P is more common, 1–2/1000 births. The prevalence of CPO does not vary in different racial
backgrounds, whereas the prevalence of CL/P varies considerably, with Asian and American
Indians having the highest rate and Africans the lowest [1]. Orofacial clefts can be further
classified as non-syndromic (isolated) or syndromic based on the presence of other congenital
anomalies. Approximately 20–50% of all orofacial clefts are associated with one of more than
400 described syndromes [2]. These syndromes often have simple Mendelian inheritance
patterns and are thus amenable to gene identification.
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Genetics of human orofacial clefting
Studies of orofacial clefting have shown that CL/P has complex inheritance patterns as
evidenced by a positive family history for clefting in 33% of the patients, no clearly
recognizable mode of inheritance, and reduced penetrance [3]. The relative risk for siblings
(λs), defined as the prevalence in siblings of an affected individual divided by the population
prevalence, is 40; there is a 2–5% increased risk for offspring of affected individuals and a
greater concordance in monozygotic than dizygotic twins, all providing evidence that genetic
factors play an etiologic role. Yet, segregation analyses have not conclusively defined the mode
of inheritance [3]. Studies have estimated that 3–14 genes interacting multiplicatively may be
involved, indicating that CL/P is a heterogeneous disorder [4]. Relative risks for a given gene
are estimated to be in the range of 2–12, which are sufficiently large enough for identification
by positional mapping approaches [5,6]. Human studies have used both association and linkage
analyses to evaluate the role of candidate genes in the etiology of CL/P. Association mapping
is the identification of nonrandom correlations (associations) between alleles at two loci in a
population. The assumption is that affected individuals have a shared ancestor on whose
chromosomes the original mutation arose. This would result in shared alleles for markers near
the mutation among affected individuals, whereas recombination, which has occurred
throughout the entire history of the population, would result in random segregation of the
regions outside of the disease locus. Linkage mapping looks for the cosegregation of alleles
for genetic markers with a disease phenotype in a family. Association approaches have more
study power; however, the use of a combination of both linkage and association can also be
successful for complex traits [7].

Candidate genes
Initial efforts to identify genes for nonsyndromic CL/P relied on candidate gene approaches
[8,9]. Loci at 1q32 (IRF6), 2p13 (TGFA), 4p16 (MSX1), 6p23-25, 14q24 (TGFB3), 17q21
(RARA), and 19q13 (BCL3, TGFB1) have the most supporting data (Table 1).

IRF6 variants are associated with increased risk for cleft lip with or without cleft palate
Mutations in IRF6 at 1q32 cause the Van der Woude syndrome, which includes lower lip pits
in addition to CL/P or CPO [10]. Given the overlapping phenotype with isolated CL/P, IRF6
was screened for a causal role, revealing a highly significant association [11•]. Variation at the
IRF6 locus is responsible for 12% of the genetic contribution to CL/P at the population level
and triples the recurrence risk for a child with a cleft in some families. Similar results have
been reported in additional populations [12–14]. However the specific causal variants have yet
to be functionally identified. These data clearly indicate that IRF6 is significant risk factor for
CL/P and constitutes one of the most exciting discoveries so far, because it provides tangible
evidence that genetic variants involved in nonsyndromic cleft lip and palate can be successfully
mapped. In addition, this finding underscores the importance of studying syndromic forms of
clefting to provide insight about the more complex nonsyndromic forms [15•].

2p13 (TGFA)
Since the first study showing association of TGFA with CL/P [16], many additional studies
have replicated this finding [9]. However, other studies have not been able to replicate this
finding by either linkage or association [9,17,18]. Two meta-analyses, one looking at
association studies [19] and a more recent study combining 13 genome scan studies [20•],
reveal positive results, corroborating the hypothesis that TGFA is a modifier rather than
necessary or sufficient to cause clefting.
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4p16 – MSX1
The occurrence of cleft palate in MSX1 knockout mice aided the identification of a MSX1
mutation cosegregating with tooth agenesis, CL/P, and/or CPO [21]. Recently, mutations in
MSX1 have been identified in 2% of patients with nonsyndromic orofacial clefting [22,23•].
These data support previous associations of MSX1 with orofacial clefting [9,24–28].

6p23-p25 Region
The first significant linkage finding for nonsyndromic CL/P was reported in a Danish study
[29]. Since this report, positive evidence of linkage and association, as well as chromosomal
rearrangements, have been reported. Furthermore, a meta-analysis of genome scans found
significant linkage indicating half of the families have a disease mutation in this region [20•].
One potential candidate gene is TFAP2A since mice chimeric for Ap-2α null alleles have CL/
P, which is a rare occurrence in genetically modified mice [30]. Breakpoints have been mapped
375–930 kb distal of TFAP2A, ruling out a direct effect [31]. Rather a novel gene, OFCC1, of
unknown function but expressed in the palate is transected by one rearrangement.

14q24 – TGFB3
Tgfb3 knockout mice present with cleft palate [32,33], and subsequent human studies have
yielded both positive and negative results [9]. A recent genome scan meta-analysis for CL/P
identified significant linkage to the TGFB3 region [20•]. Nevertheless, only 15% of the families
were linked to this region, which may in part explain previous inconsistencies. Nearby genes
include BMP4 and PAX9, both associated with orofacial clefting when inactivated in mice
[34,35].

17q12-q21 (RARA, Clf1)
Retinoic acid has a well established role during development, and its activity is mediated by
members of the retinoic acid receptor family. Transgenic and knockout mice studies have
shown that these genes are important for facial development [36,37]. Various human studies
have reported both positive and negative results near the RARA gene. One study showed
association to a marker 4 cM from RARA [38], an unexpected result over such a large genetic
distance. Interestingly, this marker is near the syntenic region for the mouse Clf1 locus [39•].
The recent meta-analysis of genome scans revealed significant results for the 17q12-21 region
that also includes the syntenic Clf1 region [20•]. Potential candidate genes in this region include
WNT3 and WNT9B. In humans, a nonsense mutation in WNT3 causes tetra-amelia, a rare
autosomal recessive syndrome that includes cleft lip as part of the phenotype [40].

19q13.1 (BCL3, CLPTM1, PVRL2, TGFB1)
Evidence for a cleft susceptibility locus in the 19q13.1 region has been found from linkage and
association studies [9,41,42], as well as a translocation cosegregating with CL/P [43]. A variety
of genes have been studied, including BCL3, PVRL2, CLPTM1, and TGFB1. BCL3 is a proto-
oncogene that is involved in cell proliferation, differentiation, and apoptosis. The CLPTM1
gene encodes a transmembrane protein that is expressed in embryonic tissues. PVRL2 is a
transmembrane glycoprotein that belongs to the poliovirus receptor family. Mutations in a
related protein, PVRL1, are known to cause the autosomal recessive Margarita Island clefting
syndrome [44], and heterozygotes for the PVRL1 W185X mutation are thought to have
increased risk for nonsyndromic CL/P [45]. TGFB1 mutations in humans have been found to
cause the Camurati–Engelmann-syndrome [46], which is a progressive diaphyseal dysplasia
that does not include an orofacial clefting phenotype, even though TGFB1 is expressed in the
palate [47].
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Genome scans identify novel loci
Recent developments in high-throughput genotyping technologies and powerful statistical
approaches have accelerated the discovery of loci conferring susceptibility for complex
diseases through the use of genome scans [48]. The first CL/P scan was performed on 92 British
sibpairs and identified a total of nine regions with suggestive results [49]. This has been
followed by five additional scans of varying size (Table 2) [20,24,49–54]. In general, the results
have been modest with the exception of a log odds ratio (LOD) score of 3.0 at 17p13.1 in a
scan of two large Syrian families [50]. The most consistent loci are 2p13 (TGFA), 2q35-q37,
3p21-p24, 4q32-q33, 6p23-p25, 9q22-q33, 14q12-q31, and 18q11-q12, with the remaining 23
loci being unique to the population studied. These results reflect genetic heterogeneity both
within and between populations, limited study power, and a likely high false-positive rate for
loci with low levels of significance.

To address these limitations and increase the information yield from these expensive studies,
a meta-analysis was performed in which data from six published and seven ongoing genome
scans were combined (Table 2) [20•]. Significant results were obtained for regions 1q32, 2q32-
q35, 3p25, 6q23-q25, 8p21, 8q23, 12p11, 14q21-q24, 17q21, 18q21, and 20q13. In addition
to the meta-analysis, multipoint parametric heterogeneity LOD score (HLODs) results were
summed among seven of the 13 populations that were genotyped with the same markers.
Significant results (HLODS>3.5) were observed for chromosomal regions 1p12-p13, 6p23,
6q23-q25, 9q22-q33, 14q21-q24, and 15q15. Most remarkable was the highly significant result
for 9q22-q33 (HLOD = 6.6), which is the most significant result ever reported for CL/P and
also represents a new locus for clefting (Fig. 1).

Genes in environmental pathways
‘One of the most important benefits of identifying the genetic factors in disease susceptibility
may not be the potential for gene therapy, as exciting a prospect as that is, but rather the
opportunity for treatment and prevention of clinical disease by manipulating the environment
of individuals identified to be genetically at risk’ [55 pp.411].

The low monozygotic concordance rate (25–50%) for CL/P suggests that environmental factors
also are involved. It is well recognized that alcohol [56] and smoking [57] increase the risk for
CL/P, and there is evidence that folate supplementation decreases the risk [58]. Clearly it is
likely that the environment interacts with both the maternal and fetal gene products, supporting
the hypothesis that genetic variation in involved pathways modulates CL/P risk.

Initial studies took a convenience approach and looked for the interaction of candidate genes
and either smoking or alcohol. Studies of gene–environment interaction in orofacial clefting
have evaluated candidate genes such as TGFA, TGFB3, MSX1, BCL3, and RARA and
environmental behaviors including smoking, alcohol use, and vitamin intake [59]. Results from
these studies have shown modest association and, at times, inconsistent results. One of the
more consistent findings is the interaction of smoking and TGFA variants, specifically for CP
as determined by a recent meta-analysis [60].

A number of investigators have concentrated on the folate pathway, buoyed by the significant
evidence for neural tube prevention and a similar trend for CL/P prevention by folate
supplementation. Most studies have focused on two MTHFR polymorphisms (C677T or
A298C), both of which cause reduced enzymatic activity. Results of several association studies
have been contradictory, which may be due to different analytic strategies, specifically whether
the analysis focused on the proband or maternal genotype [58]. Alternately, assuming that
MTHFR is not sufficient but necessary to cause CL/P, analytical strategies that consider the
simultaneous effects of different loci or that take into account environmental covariates may
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be more powerful for detecting the relation between MTHFR and CL/P [61]. For example,
functional RFC1 and MTHFR variants in probands revealed no association with CL/P in a
South American population [62]. However, a log-linear–based method revealed a gene–
environment interaction between CP infants carrying either CT or TT genotypes at MTHFR
and maternal folic acid consumption [63] and another study found similar findings for CL/P
[64]. Also, an increased risk has been observed for maternal MTHFR variants [65,66]. This
has been extended to another gene in the homocysteine pathway, CBS, in which maternal
transmission resulted in a 19-fold increased risk [67]. Inactivation of the folate-binding protein,
Folbp1, results in CL/P in mice [68]. However, minimal evidence of linkage (NPL P = 0.056)
and no mutations were observed in an Italian study [69].

More recently, investigators have taken a more biologic approach to evaluate genes involved
in absorption, detoxification, and response to environmental teratogens. Among these
molecules are the aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT),
which are affected by exposure to dioxins that are commonly found in food [70], cigarette
smoke, incinerators, automobile exhaust, and industrial chlorine bleaching [71]. ARNT is a
basic helix-loop-helix protein that is a cofactor for AHR in the mediation of dioxin effects to
modulate downstream genes such as TGFA, TGFB, EGF, and EGFR [72], some of the same
genes shown previously to be associated with CL/P. Interestingly, ARNT is located on mouse
chromosome 7 within a 300 kb deletion associated with cleft palate [73]. Association studies
in the Japanese population have shown significant over transmission of alleles within the
ARNT gene; however, joint gene–environmental effects were not explored in this study [74].

Studies of the biotransformation enzymes P450 (CYP1A1) and glutathione S-transferase theta
1-1 (GSTT1) have revealed a higher, although not significant, risk for smoking mothers
carrying the GSTT1-null genotype compared with nonsmokers carrying the wild-type
genotype, whereas no interactions were seen for P450 (CYP1A1) genotypes and cigarette
exposure [64]. Finally, infants homozygous for NAT1 polymorphisms, a gene involved in
detoxification of cigarette smoke, had a twofold or fourfold increased risk for CL/P if their
mothers did not use multivitamins or smoked, respectively [75,76].

Interestingly, a decreased risk for CL/P was detected for the functional Ser326Cys variant in
the human 8-oxoguanine DNA glycosylase (hOGG) base excision repair gene, whereas the
same variant resulted in increased risk for neural tube defects [77]. It will be interesting to
determine whether any environmental factors modulate this risk.

Genetic interactions
For complex traits it is likely that gene–gene interactions contribute to disease risk. For CL/P,
evidence for this exists in the A/WySn mouse strain in which the Clf1 and Clf2 loci epistatically
interact [78]. The utility of gene–gene analyses to either narrow a critical region [79] or to
identify additional loci [80] has been demonstrated for other diseases.

Interaction between two loci has been observed for CL/P in which Italian families initially
linked to 6p23 showed significant linkage to 2p13 [81]. Another interesting genetic interaction
is between MTHFR and CBS, suggesting that variations in multiple genes in the folate pathway
may need to be evaluated to identify an increased risk [67].

Finally, an interaction between maternal MTHFR and infant BCL3 polymorphisms has been
described [82]. These interactions are important in roads toward a further understanding of the
underlying genetic complexity.
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Syndromic orofacial clefts provide important clues
Considerable success has been achieved in identifying etiologic genes for syndromic forms of
orofacial clefting, with approximately 15–20% cloned to date [83•]. In addition to the IRF6
and PVRL1 examples, efforts are underway to determine whether variants in other cleft
syndrome genes are associated with nonsyndromic clefting. Mutations and deletions in
FGFR1 account for 10% of patients with Kallmann syndrome, which is an autosomal dominant
disorder characterized by orofacial clefting, dental anomalies, hypogonadism, and anosmia
[84]. Suggestive association and linkage to CL/P has been found for markers within the
FGFR1 gene, again underscoring the importance of studying syndromic forms of clefting
[85].

The future looks bright
The future is now for genome association scans involving 200–500K markers [86,87•].
Affordable technology exists to evaluate the thousands of samples necessary for adequate
power. Also on the horizon for CL/P are clever methods using both simple and sophisticated
phenotyping techniques to identify gene carriers [88,89]. This information will significantly
improve the power of each family for linkage studies, aid in determining risk estimates, and
also be used as covariates to identify distinct subgroups. The identification of gene–
environment interactions will be greatly aided by the ongoing National Study of Birth Defects
Prevention [90]. Finally, new analytic strategies are being developed and tested to identify
genetic epistasis and address the known heterogeneity of genetically complex traits [91].

A recent development that deserves notice is the International HapMap project to identify
patterns of association between markers within the human genome [92]. It is well recognized
that association can occur in segments – termed haplotype blocks [93,94], and significant
efforts are ongoing to describe genomic patterns of association in four ethnic groups of African,
Asian, and European ancestry. Knowledge of haplotype block structure will provide an
estimate of the likelihood for detecting association over various genetic distances and vastly
increase the utility of future association-based genome scans. Also, knowledge of haplotype
blocks may also explain contradictory results from candidate gene association studies. For
example the TGFBR1 gene is contained in one large linkage disequilibrium block, indicating
that if a mutation arose within the block, almost any marker in the block would identify it in
an association study (Fig. 2). Alternately, the TP63 gene spans multiple blocks. If a common
disease mutation is in the first block, markers in the other regions would not reveal an
association with this gene (Fig. 3).

Conclusion
In general, the gene identification process for CL/P is still in the early stages because of the
genetic complexity of clefting. Results from the studies presented here support the presence
of heterogeneity among populations and also the presence of multiple genes involved in the
etiology of this trait. The challenge is now to fine map these regions and identify genes in which
variants are more likely to increase the risk for CL/P. Therefore, it is anticipated that there are
additional genes involved in CL/P that have yet to be identified, and the functional effects of
identified mutations have yet to be discerned. Furthermore, the genetic interaction with
environmental factors will become more evident through studies evaluating maternal and fetal
genotypes along with gestational environmental exposures. With the recent publication of
genome-wide linkage scans and similar ongoing studies, the field is rapidly making advances
toward positional cloning of etiologic genes.
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Figure 1. Summed dominant heterogeneity log odds ratio scores from seven different populations
The green arrows indicate the 1 and 2 log odds ratio intervals of linkage. Modified from [20].

Lidral and Moreno Page 13

Curr Opin Pediatr. Author manuscript; available in PMC 2009 September 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Association plot of the TGFBR1 gene
Upper left, HapMap view of TGFBR1 single nucleotide polymorphisms (SNPs). Upper level
shows SNP markers genotyped by the HapMap Project. Lowest level displays gene structure
for TGFBR1. Right, Association plot of the TGFBR1 gene. Association of marker pairs is
indicated by a red-white gradient, with red being highly associated and white being relatively
unassociated. The location of the TGFBR1 gene is defined by the blue arrows. A hypothetical
mutation is indicated by the red arrow and markers by black arrows Lower left, Haplotypes of
TGFBR1 SNP markers showing association between the markers.
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Figure 3. Association plot of the TP63 gene
The location of the TP63 gene is defined by the blue arrows. A hypothetical mutation is
indicated by the red arrow and markers by black arrows.
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