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Abstract
Attention has been found to have a wide variety of effects on the responses of neurons in visual
cortex. We describe a model of attention that exhibits each of these different forms of attentional
modulation, depending on the stimulus conditions and the spread (or selectivity) of the attention field
in the model. The model helps reconcile proposals that have been taken to represent alternative
theories of attention. We argue that the variety and complexity of the results reported in the literature
emerge from the variety of empirical protocols that were used, such that the results observed in any
one experiment depended on the stimulus conditions and the subject’s attentional strategy, a notion
that we define precisely in terms of the attention field in the model, but that has not typically been
completely under experimental control.

Introduction
Attention has been known to play a central role in perception since the drawn of experimental
psychology (James, 1890). Over the past 30 years, the neurophysiological basis of visual
attention has become an active area of research, yielding an explosion of findings.
Neuroscientists have utilized a variety of techniques (single-unit electrophysiology, electrical
microstimulation, functional imaging, and visual-evoked potentials) to map the network of
brain areas that mediate the allocation of attention (Corbetta and Shulman, 2002; Yantis and
Serences, 2003) and to examine how attention modulates neuronal activity in visual cortex
(Desimone and Duncan, 1995; Kastner and Ungerleider, 2000; Reynolds and Chelazzi,
2004). During the same period of time, the field of visual psychophysics has developed rigorous
methods for measuring and characterizing the effects of attention on visual performance
(Braun, 1998; Carrasco, 2006; Cavanagh and Alvarez, 2005; Sperling and Melchner, 1978;
Verghese, 2001; Lu and Dosher, 2008).

We review the single-unit electrophysiology literature documenting the effects of attention on
the responses of neurons in visual cortex, and we propose a computational model to unify the
seemingly disparate variety of such effects. Some results are consistent with the appealingly
simple proposal that attention increases neuronal responses multiplicatively by applying a fixed
response gain factor (McAdams and Maunsell, 1999; Treue and Martinez-Trujillo, 1999),
while others are more in keeping with a change in contrast gain (Li and Basso, 2008, Martinez-
Trujillo and Treue, 2002; Reynolds et at., 2000) or with effects that are intermediate between
response gain and contrast gain changes (Williford and Maunsell, 2006). Other studies have
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shown attention-dependent sharpening of neuronal tuning at the level of the individual neuron
(Spitzer et al., 1988) or the neural population (Martinez-Trujillo and Treue, 2004). Still others
have shown reductions in firing rate when attention was directed to a nonpreferred stimulus
that was paired with a preferred stimulus also inside the receptive field (Moran and Desimone,
1985; Recanzone and Wurtz, 2000; Reynolds et al., 1999; Reynolds and Desimone, 2003).
These different effects of attentional modulation have not previously been explained within
the framework of a single computational model. We demonstrate here that a model of attention
that incorporates divisive normalization (Heeger, 1992b) exhibits each of these different forms
of attentional modulation, depending on the stimulus conditions and the spread (or selectivity)
of the attentional feedback in the model.

In addition to unifying a range of experimental data within a common computational
framework, the proposed model helps reconcile alternative theories of attention. Moran and
Desimone (1985) proposed that attention operates by shrinking neuronal receptive fields
around the attended stimulus. Desimone and Duncan (1995) proposed an alternative model, in
which neurons representing different stimulus components compete and attention operates by
biasing the competition in favor of neurons that encode the attended stimulus. It was later
suggested that attention instead operates simply by scaling neuronal responses by a fixed gain
factor (McAdams and Maunsell, 1999; Treue and Martinez-Trujillo, 1999). Treue and
colleagues advanced the “feature-similarity gain principle,” that the gain factor depends on the
match between a neuron’s stimulus selectivity and the features or locations being attended
(Treue and Martinez-Trujillo, 1999; Martinez-Trujillo and Treue, 2004). Spitzer et al., 1988
proposed that attention sharpens neuronal tuning curves, and Martinez-Trujillo and Treue
(2004) explained that sharpening is predicted by their “feature-similarity gain principle.”
Finally, Reynolds et al., 2000 proposed that attention increases contrast gain. Indeed, the initial
motivation for the model proposed here derived from the reported similarities between the
effects of attention and contrast elevation on neuronal responses (Reynolds and Chelazzi,
2004; Reynolds et al., 1999,2000; Reynolds and Desimone, 2003).

The proposed normalization model of attention combines aspects of each of these proposals
and exhibits all of these forms of attentional modulation. Thus, the various models outlined
above are not mutually exclusive. Rather, they can all be expressed by a single, unifying
computational principle. We propose that this computational principle endows the brain with
the capacity to increase sensitivity to faint stimuli presented alone and to reduce the impact of
task irrelevant distracters when multiple stimuli are presented. We argue that the ostensible
variety and complexity of the results reported in the literature emerge from the variety of
empirical protocols that were used, with the results observed in any one experiment depending
on the stimulus conditions and the subject’s attentional strategy. Finally, we suggest that
evolution may have co-opted previously existing normalization circuits in visual cortex,
enabling attentional selection and its concomitant impact on behavioral performance.

The Normalization Model of Attention
The three basic components of the model are: the stimulation field, the suppressive field, and
the attention field (a set of Matlab routines that constitute the model can be downloaded from
the authors’ websites:
http://www.snl-r.salk.edu/~reynolds/Normalization_Model_of_Attention/and
http://www.cns.nyu.edu/heegerlab/). These components are described in detail below but we
begin by providing an intuition for them. The responses of a population of neurons to a visual
stimulus can be depicted as a “neural image” (Robson, 1980) in which the brightness at each
image location corresponds to the response of one neuron. Figure 1 depicts such neural images
representing each of the components of the model. In this simulation, two oriented grating
stimuli were presented in the two halves of the visual field (i.e., in opposite hemifields), both
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with the same orientation. Neurons in visual cortex are highly selective for the spatial position
of a visual stimulus, and for a particular combination of visual features (here, we use orientation
as an example feature but other features or combinations of features could be used instead).
The “stimulation field” of a neuron in the model characterizes its selectivity, both in terms of
spatial position and orientation. The stimulation field is a theoretical concept that would be
equivalent to a neuron’s receptive field only if there were neither suppression nor attention.
Likewise, we use the term “stimulus drive” to represent what a neuron’s response would be
due to the stimulation field alone, in the absence of suppression and attention. The response of
a visual neuron to a preferred stimulus can be suppressed by the simultaneous presentation of
nonpreferred stimuli. The “suppressive field” characterizes the spatial positions and features
that contribute to this suppression. The suppressive field pools over a broader range of spatial
locations and features (e.g., orientations) than the stimulation field. The suppression is divisive
such that the stimulus drive from a preferred stimulus is normalized with respect to (divided
by) the activity in other neurons that respond to the surrounding context. We use the term
“suppressive drive” to represent the amount of suppression contributing to a neuron’s response
for a particular stimulus and attentional state. The effect of attention is simulated in our model
by taking the stimulus drive for the entire population of simulated neurons and multiplying it
by an “attention field.” The attention field is specified in terms of its gain for each neuron in
the population, i.e., in terms of its spatial and featural extents. The attention field is multiplied
by the stimulus drive before normalization, so it affects both the stimulus drive and suppressive
drive in determining the output firing rate of each simulated neuron.

The resulting simulated neural responses depend on the size of the stimulus (relative to the
sizes of the stimulation field and suppressive field), the combination of features that make up
the stimulus, the spatial extent of attention field, and the featural extent of the attention field.
The core idea is that the attention field reshapes the distribution of activity across the population
of neurons, shifting the balance between excitation and suppression. For example, consider the
case (discussed in further detail below. Figure 4E) in which two stimuli are presented within
a neuron’s receptive field, one moving in the model neuron’s preferred direction and the other
in the nonpreferred (i.e., opposite) direction. Only the preferred direction contributes to the
stimulus drive but both contribute to the suppressive drive such that the response of the neuron
to the pair is less than it would be to the preferred direction on its own. Consider what happens
when attending to the preferred direction. This multiplies the stimulus drive from the preferred
direction stimulus in a manner that is equivalent to increasing its contrast. The suppression
from the nonpreferred direction is now less effective because attention has shifted the balance
of excitation and suppression in favor of the preferred direction, leading to a larger output firing
rate. On the other hand, attending to the nonpreferred motion shifts the balance in favor of the
nonpreferred stimulus, increasing its suppressive effect and leading to a smaller output firing
rate.

The model is presented as a mathematical abstraction, without specifying the underlying
biophysical mechanisms or neural circuitry. Although we list some possible mechanisms (see
Discussion), detailing the biophysical mechanisms was very specifically not our goal. Indeed,
we would argue that it is premature to follow a reductionist path toward characterizing the
underlying mechanisms (especially without first demonstrating and testing the
phenomenological validity of the model), and doing so could obscure the emergent simplicity
of the phenomena (Laughlin, 2005). We use simulations to illustrate the qualitative properties
of the model and its ability to account for patterns observed in experimental data. These are
supplemented with mathematical derivations of limiting cases that clarify the reasons why the
model exhibits these properties.

Reynolds and Heeger Page 3

Neuron. Author manuscript; available in PMC 2010 January 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Stimulation Fields and Stimulus Drive
The stimulation field of a simulated neuron in our model is the range of spatial positions and
orientations that can evoke an excitatory response. Consider a population of orientation-
selective visual neurons (e.g., in visual cortical area V4), whose receptive fields cover the visual
field. Each neuron can be characterized by its receptive field center and its orientation
preference. We assume, for simplicity, that the response properties of these neurons are
otherwise identical, that they ail have the same receptive field size and shape (i.e., ignoring
cortical magnification) and identical orientation tuning curve bandwidths. Also for simplicity,
we treat only one dimension of spatial position (e ., assuming that the neurons’ receptive fields
are all centered along an arc of equal eccentricity). These simplifying assumptions are not
strictly necessary but make it easier to describe the model. Figure 1 (middle panel) depicts an
example of the stimulus drive for this simulated population of V4 neurons.

Suppressive Fields and Normalization
The suppressive field of a neuron in our model is the range of spatial positions and orientations
that can suppress the response. Whereas the stimulus drive is assumed to be selective for feature
and location, suppression is assumed to be largely nonspecific. As a result, a given stimulus
can exert a suppressive effect on neurons tuned for other features or positions. This is consistent
with data in V1, for example, where the responses to an optimally oriented stimulus are
diminished by superimposing an orthogonal stimulus, that is ineffective in driving the cell
when presented alone (Bauman and Bonds, 1991; Bonds, 1989; Carandini et al., 1997; Morrone
et al., 1982). V1 neurons are likewise suppressed by stimuli at surrounding locations, extending
beyond the stimulation field (Allman et al., 1985; Bair et al., 2003; Blakemore and Tobin,
1972; Cavanaugh et al., 2002a, 2002b; DeAngelis et al., 1994; Levitt and Lund, 1997; Nelson
and Frost, 1985). Suppression can also be observed when a preferred and a nonpreferred
stimulus are presented at separate locations within a neuron’s stimulation field (Reynolds and
Desimone, 2003; Snowden et al., 1991). There is an extensive literature on such suppressive
phenomena in V1 (for a review of the early literature, see Heeger, 1992b), in ventral stream
areas V4 and IT (Miller et al., 1993; Missal et al., 1997; Reynolds et al., 1999; Richmond et
al., 1983; Rolls and Tovee, 1995; Sato, 1989; Zoccolan et al., 2005), and in dorsal stream visual
cortical areas MT and MST (Britten and Heuer, 1999; Recanzone et al., 1997; Treue et al.,
2000).

The normalization model of visual cortical responses was introduced in the early 1990s to
explain a variety of such suppressive phenomena evident in the response properties of V1
neurons (Albrecht and Geisler, 1991; Carandini and Heeger, 1994; Carandini et al., 1997;
Heeger, 1991, 1992a, 1992b, 1993; Nestares and Heeger, 1997; Robson, 1988; Tolhurst and
Heeger, 1997a, 1997b) and later extended to explain suppression in other visual cortical areas
(Heeger et al., 1996; Simoncelli and Heeger, 1998). The normalization model posits that the
stimulus drive is suppressed, effectively normalizing (dividing) the response of each neuron
by the sum total stimulus drive across a population of neurons.

Normalization is computed by taking the stimulus drive (E) of each simulated neuron and
dividing it by a constant (σ) plus the suppressive drive (S). The constant σ determines the
contrast gain of the neuron’s response. The normalized responses are then subjected to a
threshold (T), simulating the effect of spiking threshold, and the firing rate of the simulated
neuron is taken to be proportional to the amount of response exceeding the threshold. This
threshold model of spike generation, although oversimplified, is a reasonable approximation
for the relationship between membrane potential fluctuation and firing rate (Anderson et al.,
2000; Carandini, 2004a; Carandini and Ferster, 2000; Finn et al., 2007; Granit et al., 1963).
The resulting firing rates (R) of the population of simulated neurons can be expressed as a
function of the stimulus drive and suppressive drive:
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(1)

where x and θ represent the receptive field centers and orientation preferences, respectively,
of each neuron in the population, |·|T indicates rectification with respect to the threshold T, and
where S and σ are nonnegative. The suppression is pooled over spatial positions and
orientations such that it can itself be expressed in terms of the stimulus drive. Specifically, for
the simulations reported here, we computed the suppression from the stimulus drive (ignoring
the effect of attention for the time being but see below), as an average over a range of receptive
field centers and orientation preferences:

(2)

where s(x, θ) is the suppressive field (i.e., the extent of pooling over space and orientation) and
* is convolution. Figure 1 (bottom panel) shows an example of the suppressive drive. We have
assumed for our simulations that the spatial pooling in the suppressive field is independent of
orientation and vice versa (i.e., separable convolution), although that need not be the case. We
have also assumed that the integral of s(x, θ) equals 1. The final normalized responses (i.e.,
the output firing rates) are also shown in Figure 1 (right panel).

The resulting normalized responses can be expressed in terms of stimulus contrast:

(3)

where c is stimulus contrast and E(x, θ; c) is the stimulus drive of the population of neurons
evoked by contrast c. For the case considered here in which the stimulus drive is a linear
summation of the visual stimulus contrast, E(x, θ; c) is proportional to c. The contrast-response
function, r(c) = R(c; x, θ), is the output firing rate as a function of contrast for a single neuron
in the population with x and θ representing, respectively, its receptive field center and
orientation preference, and with the stimulus centered in its receptive field. We use the
simplified notation, r(c), instead of R(c; x, θ), because each neuron in the population exhibits
a similar dependence on contrast, and to draw a distinction between the collected responses of
a population of neurons represented by capital R and the responses of a single neuron
represented by lower case r. The response gain, α, determines the maximum attainable
response. Factors that affect α include the stimulus orientation and location relative to the
preferred orientation and receptive field center of the simulated neuron. The contrast gain, σ,
determines the contrast at which the response achieves half the maximum. The resulting neural
responses saturate (level off) at high stimulus contrasts, due to normalization, regardless of
whether the high contrast stimulus is preferred or nonpreferred (Heeger, 1991; Heeger,
1992b), in agreement with experimental results (Albrecht and Hamilton, 1982). That is, when
the contrast is high (c ≫ σ), the responses are approximated by r(c) ≈ α. Depending on the
choice of threshold, the rectification can approximate a power law such that c in the above
equation gets replaced with cn (Anderson et al., 2000; Finn et al., 2007). This yields a contrast-
response function with a steeper slope at the rising part of the curve and more complete
saturation at high contrasts. For the purposes of this paper, the simulations were performed
with an exponent of 1 but higher exponents would be needed to fit electrophysiological
measurements.

The balance between stimulus drive and suppressive drive in the normalization model depends
on stimulus size. A large stimulus (e.g., an oriented grating pattern covering the entire visual
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field) fills both the stimulation and suppressive fields and hence evokes equal excitation and
suppression (because the integral of s(x, θ) equals 1, as noted above). A small stimulus, on the
other hand, can evoke a strong stimulus drive but a relatively weak suppressive drive. This can
be expressed as a modification of Equation 3:

(4)

where c is the contrast of a center stimulus, cs is the contrast of a surround stimulus, and β is
a scale factor (between 0 and 1) on the suppression from the surround stimulus. Making a
stimulus smaller is equivalent to setting the surround contrast to zero which decreases the
suppressive drive. Increasing the size of the stimulus by making cs nonzero increases the
suppression which decreases the output firing rate. As an aside, we note that this model predicts
an interaction between contrast and stimulus size (Cavanaugh et al., 2002a), thereby explaining
the observation that neurons prefer smaller stimuli at higher contrasts (Kapadia et al., 1999;
Sceniak et al., 1999). We rely on an analogous shift in the balance between excitation and
suppression to explain how attention can yield a change in either contrast gain or response gain
depending on the stimulus size and the spatial extent of the attention field (see below).

Attention Fields and Attentional Gain
The effect of attention is simulated in our model by taking the stimulus drive across the
population of neurons and multiplying it point-by-point by an attention field (Figure 1). In its
simplest form, the attention field is 1 everywhere except for a small range of spatial positions
and feature values where the attentional gain is greater than 1 (Figure 1, top panel). Its effect
in our model is to multiply the stimulus drive, which is then inherited by the suppressive drive:

(5)

(6)

where A(x, θ) is the attention field. Applying the attention field in the model can yield either
a change in response gain, a change in contrast gain, or a combination of the two, depending
on the stimulus size and the extent of the attention field relative to the sizes of the stimulation
and suppressive fields.

First, consider a case in which the stimulus is small and the attention field is large (Figure 2A).
The responses of a model neuron can be approximated as:

(7)

where γ > 1 is the peak gain of the attention field, and the other symbols are defined above.
The attention field A(x, θ) can be approximated by the constant γ in Equation 7 because the
attention field is assumed to be large; this approximation would be exact if the attention field
was constant for all x and θ. Under these conditions, the effect of attention is simply to multiply
the stimulus drive by a constant, which predicts a pure change in contrast gain by a factor of
γ. This appears as a leftward shift of the contrast-response function, plotting responses versus
the logarithm of contrast (Figure 2A). In other words, the attentional modulation (percentage
change in response when the stimulus is attended) is larger for contrasts corresponding to the
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rising portion of the neuron’s contrast-response function than for saturating contrasts (Figure
2A, dashed gray curve).

Next, consider the case in which the stimulus is large (e.g., filling both the stimulation and
suppressive fields) and the attention field is small relative to the suppressive field (Figure 2B).
In this case, the attention field not only multiplies the stimulus drive but also changes the
effective spatial spread of the stimulus drive akin to making the stimulus smaller. The responses
of a model neuron, with the stimulus and the attention field centered on its receptive field, can
be approximated as:

(8)

where γ > 1 is the peak gain of the attention field, 0 < β < 1 is a scale factor on the suppressive
drive from the region surrounding the stimulation field (see Equation 4), and the surround
contrast (cs in Equation 4) equals the center contrast (cs = c). The attentional gain, γ, is
multiplied only by the center contrast because the attention field is small; this approximation
would be exact if A(x, θ) = γ only for the neuron being recorded and 1 for all other receptive
field centers and orientation preferences. For low contrasts (c ≪ σ), Equation 8 is approximated
by r(c) ≈ α γ c/σ, such that increasing γ simply scales the predicted responses. For high contrasts
(c ≫ σ), Equation 8 is approximated by r(c) ≈ α γ′, where γ′ = γ/(γ + β), which is independent
of c because the responses saturate at high contrasts. But again, increasing γ predicts larger
responses. Figure 2B shows a simulation result that approaches the limit of a pure response
gain, using a relatively large stimulus and a small attention field. The contrast-response
function is shifted upward (not leftward), and the attentional modulation is large across the full
range of contrasts (Figure 2B, dashed gray curve). For the simulations in Figures 2A and 2B,
only the stimulus size and the attention field size differed; all other model parameters were the
same (Table 1).

A combination of response gain and contrast gain can also be realized by an appropriate choice
of stimulus size and attention field size (see below, Figure 3F). Feature-based attention can
give rise to analogous effects, depending on the number of different feature values (e.g.,
orientations) in the stimulus, and the featural extent of the attention field (i.e., the range of
orientations attended) relative to that of the stimulation and suppressive fields (see below,
Figure 4).

In principle, the attention field can have any number of possible distributions over space and
feature dimensions, each corresponding to a different behavioral “strategy.” Both the spatial
extent and the featural extent (range of orientations) of the attention field can vary depending
on the stimulus and task. The attention field could also, in principle, be less than 1 for some
spatial locations and orientations leading to suppression at unattended locations (although this
is not necessary to account for attentional suppression, which is mediated naturally through
the suppressive field). The attention field need not be unimodal; multiple peaks would simulate
attending to multiple locations simultaneously (Cavanagh and Alvarez, 2005; McMains and
Somers, 2004; Mitchell et al., 2007). The attention field can be narrow in space and broad in
orientation (spatial attention), or it can instead be narrow in orientation and broad in space
(feature-based attention). The spatial extent of the attention field is related to the spatial bias
in the biased competition model of attention (Desimone and Duncan, 1995). It is also related
to the “spotlight” (Posner et al., 1980) or “zoom lens” in descriptive models of attention
(Eriksen and St. James, 1986; Eriksen and Yeh, 1985). The featural extent of the attention field
is related to the feature bias in the biased competition model and to the “feature-similarity gain
principle” that has been proposed as a model for the effects of feature-based attention (Boynton,
2005; Martinez-Trujillo and Treue, 2004; Treue and Martinez-Trujillo, 1999). However, the
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attention field differs from the feature-similarity gain principle, in that the effect of attention
in our model does not directly alter firing rate by a scaling factor, being instead mediated
through the normalization computation.

A Unified Account of Attentionai Modulation of the Contrast-Response Function
We begin by considering three studies that have measured the effect of attention as a function
of contrast. Two of these were conducted in macaque area V4 with a single stimulus inside the
receptive field (Reynolds et al., 2000; Williford and Maunsell, 2006). The third study
(Martinez-Trujllio and Treue, 2002), which was conducted in macaque area MT with two
stimuli in the receptive field, is discussed below, in the first of these studies (Reynolds et al.,
2000), the monkey was cued to attend either to a sequence of grating stimuli within the receptive
field, or on separate trials, to a location in the opposite hemifield (Figure 3A). The animal’s
task was to detect a differently oriented target at the cued location. Figure 3B shows the average
responses of 39 neurons that were modulated by attention, plotted as a function of contrast.
Contrasts were selected for each neuron such that the lowest nonzero contrast was below the
neuron’s contrast threshold, when attention was directed away from the receptive field
stimulus, and the highest contrast tested was at or above saturating contrast. Consistent with
the idea that attention changes contrast gain, this study found that there was a reduction in
contrast threshold, only modest attention effects at high contrast, and large attention-dependent
increases in firing rates at intermediate contrasts (Figure 3B, dashed gray curve).

Williford and Maunsell (2006) used a similar stimulus and task (Figure 3D) but found more
substantial increases in firing rates at high contrasts (Figure 3E), A key subset of the data,
shown in the figure, corresponded to those neurons with responses that saturated at high
contrasts, because those neurons had the potential to distinguish between changes in contrast
gain (for which the largest attention effects would be evident at intermediate contrasts) and
response gain (for which the largest effects would be evident at the highest contrasts). Attention
did not simply modulate contrast gain; there were substantial increases in firing rates at the
highest contrasts. Nor were the data consistent with a pure response gain change, as attention
did not have a fixed muitiplicative effect on firing rates across contrasts. Rather, the effect of
attention was a monotonieally decreasing function of contrast, from ~80% at low contrasts to
~20% at high contrasts (Figure 3E, dashed gray curve).

How can these data, which differ from each other, be reconciled, and what are their implications
for models of attention? Contrast gain and response gain are both properties of the
normalization model of attention (Figures 2A and 2B, respectively). The model can also yield
effects that are intermediate between contrast gain and response gain. The particular result
obtained with the model depends on several factors, including the size of the stimulus and the
size of the attention field, both relative to the sizes of the stimulation and suppressive fields.
With a small stimulus and a large attention field, the model predicts results (Figure 3C) like
those reported by Reynolds et al, (2000). By changing the size of the stimulus and the size of
the attention field (such that both are roughly equal in size to the stimulation field), the model
predictions (Figures 3F) are similar to the observations of Williford and Maunsell (2006).
Therefore, the normalization model of attention is, in principle, consistent with the results from
both of these experiments.

Although no attempt was made to fit the data, the model parameters were adjusted to produce
simulation results in Figures 3C and 3F that resembled the experimental results. In particular,
baseline activity was added to the model simulations. A small baseline was added to the
stimulus drive, for both Figures 3C and 3F, assuming that attention modulates spontaneous
activity from afferent neurons just as it is assumed to modulate stimulus-evoked activity. This
resulted in an attention-dependent elevation in the baseline firing rates of the simulated neurons,
as has been reported both in single-unit electrophysiology and fMRI studies (Chawla et al.,
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1999; Haenny et al., 1988; Kastner et al., 1999; Luck et al., 1997; Offert et al., 2008; Ress et
al., 2000; Reynolds et al., 2000; Silver et al., 2007). For Figure 3C, an additional baseline
response was added after normaiization, yielding a component of spontaneous activity that was
not modulated by attention. Both of these components of baseline activity were small, but they
were needed so that the simulations exhibited attentional modulation as a function of contrast
(Figures 3C and 3F, dashed gray curves) like that observed in the experimental results (Figures
3B and 3E, dashed gray curves). Other than the stimulus size, attention field size, and the
unmodulated component of the baseline activity, the rest of the simulation parameters were
identical (Table 1).

These model simulations suggest that the experimental results might have differed in these two
studies primarily because of differences in the stimulus and attention field sizes. In support of
this suggestion, the stimulus sizes were different from one another in the two studies. Reynolds
et al. (2000) used small (0.4° × 1.5°–2°) stimuli such that most of the contrast energy was
concentrated with a small region of visual space and recorded from neurons with relatively
large receptive fields (centered in peripheral regions of the visual field). Williford and Maunsell
(2006) instead matched the stimulus sizes to the receptive fields, filling the classical receptive
fields with grating patches. Therefore, their stimuli were larger, with respect to the receptive
fields, than those used in the earlier study. We speculate that the attentional strategy may also
have been different. In the Reynolds et al. study, monkeys maintained fixation throughout the
trial and released a manual lever upon appearance of the target. The monkeys in Williford and
Maunsell’s task were required to maintain fixation while planning an accurate saccade to the
target. Given the evidence that the oculomotor system provides attentional feedback signals
(Cavanaugh and Wurtz, 2004; Ekstrom et al., 2008; Moore and Armstrong, 2003; Moore and
Fallah, 2001; Muller et al., 2005; Winkowski and Knudsen, 2008), the requirement to saccade
accurately to the target in the Williford and Maunsell study might plausibly have caused the
attention fields to be more narrowly focused in their study than in the Reynolds et al, study.
Additional experiments will be needed to determine if these factors account for the observed
differences, specifically designed to control the animal’s attentional strategy (i.e., the spatial
extent of the attention field).

Attentional Modulation of the Contrast-Response Function with Two Stimuli in the Receptive
Field

Martinez-Trujillo and Treue (2002) measured contrast-response functions in macaque area MT
with two stimuli in the receptive field (Figure 4A). One stimulus moved in the preferred
direction and the other moved in the nonpreferred (opposite) direction. The contrast of the
preferred direction stimulus within the receptive field was systematically varied across trials,
whereas the contrast of the nonpreferred stimulus was held fixed. There were also two stimuli
placed at a symmetrical location in the opposite hemifield, with the same two directions of
motion. The monkey’s task was to detect a change in speed or direction of one of the stimuli.
The monkey was cued on half the trials to attend to the nonpreferred stimulus within the
receptive field, while ignoring the other three stimuli. On other half, the monkey was cued to
attend to the stimulus in the opposite hemifield moving in the same direction of motion as the
nonpreferred stimulus. In other words, the contrast-response function of the preferred stimulus
was measured under two attentional states, both of which involved attending to the
nonpreferred direction of motion, either at a location within the receptive field or at a distant
(opposite hemifield) location. Martinez-Trujillo and Treue (2002) reported predominantly a
change in contrast gain (Figure 4B).

Similar results can be achieved with the normalization model of attention (Figure 4C). The
reason for this is that attending to the nonpreferred stimulus increases only the suppressive
drive. Because the contrast of the nonpreferred stimulus was fixed, this increase in suppressive
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drive is the same for all stimulus conditions. This is equivalent to adding a constant to the
denominator, i.e., changing the contrast gain (see Supplemental Material available online for
derivation).

The model exhibits a very different pattern of behavior if we slightly alter the stimuli and task
as illustrated in Figure 4D. In this simulation, attention was directed to one of the two stimuli
within the receptive field, either the preferred stimulus or the non-preferred stimulus. The
contrasts of the preferred and nonpreferred stimuli covaried from trial to trial, so they were
always identical to one another. Figure 4E shows the result of simulating this experiment; the
contrast-response function when attending to the preferred stimulus (Figure 4E, green curve)
was approximately a scaled copy of that observed when attention was instead directed to the
nonpreferred stimulus (Figure 4E, red curve). The model predicts predominantly a response
gain change under these conditions (see Supplemental Material for derivation) because
attending to the preferred versus nonpreferred stimulus shifts the balance of excitation and
suppression in a manner that is directly analogous to the effect of spatial attention with a large
stimulus and small attention field (Figure 2B and Equation 8). Here, the stimulus is large in its
featural extent (including opposite motion directions) instead of being large in space, and the
attention field is small in its featural extent (focusing on one of the two motion directions)
instead of being small in space. This prediction of the model could be tested by conducting
both experiments and making within-cell comparisons of the effects of attention on contrast
response functions.

Spatial Attention and Multiplicative Scaling of Neuronal Tuning Curves
One of the most well-studied forms of attentional modulation, which helped motivate the
proposal that attention simply scales firing rates, is attention-dependent scaling of neuronai
tuning. Motter (1993) recorded neuronal responses in macaque areas V1, V2, and V4 to stimuli
that varied in orientation. He found that directing attention to the stimulus in the receptive field
often increased neuronal firing rates and that this increase tended to be largest for stimuli
presented near the peak of the neuron’s orientation tuning curve. In a now classic study,
McAdams and Maunsell (1999) quantified this effect in area V4 using the experimental
protocol illustrated in Figure 5A. On some trials, monkeys attended to a grating in the receptive
field of the recorded neuron, to report whether two successive gratings were identical or
differed in orientation by 90°. On other trials, attention was instead directed to a colored blob
appearing in the opposite hemifield, to report whether successive stimuli differed in color. The
grating orientation was varied from one trial to the next, to measure a full orientation-tuning
curve for trials in which the grating was either attended or ignored. McAdams and Maunsell
(1999) measured the neuron’s orientation tuning curve and examined how it changed with
attention. Consistent with Motter’s earlier report, they found that attention scaled the
orientation tuning curve, without changing its width (Figure 5B). Treue and Martinez-Trujillo
(1999) found a similar result in area MT for direction tuning. This elegant experiment focused
primarily on feature-based attention, as opposed to spatial attention, but they also quantified
the effect of spatial attention after carefully controlling for any effects of feature-based
attention, and found that spatial attention scaled neuronal tuning curves.

The normalization model of attention accounts for this scaling naturally (Figure 5C). The
normalization component of the model has, in fact, been used to account for an analogous
finding, scaling of tuning curves with increasing contrast (Heeger, 1992b; Reynolds and
Chelazzi, 2004). The attention field in this simulation was broad (unselective) for orientation,
so the attentional gain depended only on spatial position (as in Figure 1, top panel). In addition,
the suppressive field was broad in orientation. Because of this, the responses of the simulated
neurons can be approximated as a product of two functions, one that depends on contrast (the
contrast-response function) and the other that depends on orientation (the orientation tuning
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curve). Attending to stimuli in the receptive field produced a larger contrast gain but with no
effect on the shape of the orientation turning curve, such that the simulated responses were a
multiplicatively scaled copy of the orientation tuning curve (see Supplemental Material for
derivation).

Feature-Based Attention and Nonmultiplicative Scaling of Neuronal Tuning
Spitzer, Desimone, and Moran (Spitzer et al., 1988) proposed that attention can alter the
sharpness of orientation tuning. Monkeys were trained to perform an orientation discrimination
task. Spitzer and colleagues recorded neuronal responses in macaque area V4 as monkeys
performed two versions of the task: an easy version in which the animals had to discriminate
large orientation differences (45°) and a hard version in which the orientation differences were
smaller (22.5°). They found in the more difficult task that neuronal responses were larger, and
that orientation tuning was narrower. McAdams and Maunsell (1999) noted that this finding
was inconsistent with their observation that attention scales orientation tuning curves in V4.

However, a pair of studies conducted by Martinez-Trujillo and Treue suggests that this
discrepancy may be attributable to differences in attentional strategy. In one study (Treue and
Martinez-Trujillo, 1999), feature-based attention was matched across conditions and they
found a multiplicative scaling of tuning. A subsequent study (Martinez-Trujillo and Treue,
2004) varied feature-based attention and concluded that attention increased the gain of neurons
tuned for the attended direction of motion while decreasing the gain of neurons for which the
attended direction was nonpreferred. They concluded that this sharpened the pattern of activity
across the population of neurons with receptive fields centered on the stimulus. The
experimental protocol is illustrated in Figure 6A. A pair of stimuli were presented
simultaneously while recording responses of a neuron in visual cortical area MT. One of the
stimuli was in the receptive field of the recorded neuron and the other was in the opposite
hemifield. The two stimuli moved in the same direction on each trial, but this motion direction
varied from trial to trial. Spatial attention was controlled by directing the monkey to attend on
all trials away from the receptive field stimulus, either to the fixation point, or to the stimulus
in the opposite hemifield from the receptive field. With spatial attention under control, the
effect of manipulating feature-based attention was measured. On half the trials, feature-based
attention was directed to a motion direction defined by the stimulus in the opposite hemifield,
which matched the direction of motion inside the receptive field. On the other half, monkeys
were cued to attend the fixation point, i.e., to ignore the direction of motion. Consistent with
earlier reports of feature-based attention (Chelazzi et al., 1993, 1998; Haenny et al., 1988;
Haenny and Schiller, 1988; Maunsell et al., 1991; Motter, 1994a, 1994b; Treue and Martinez-
Trujillo, 1999), responses were elevated when feature-based attention was directed to a
stimulus moving in the neuron’s preferred direction of motion and reduced when attention was
directed to the opposite (nonpreferred) direction (Figure 6B).

The model can exhibit a comparable increase in responses when attending the neuron’s
preferred stimulus, and a reduction in responses when attending the opposite (nonpreferred)
stimulus. This is illustrated in Figure 6C, which shows the pattern of activity across the
population of neurons with receptive fields centered on the stimulus in the right hemifield but
tuned to all different motion directions, or equivalently the tuning curve of one neuron in
response to all different motion directions. To simulate attention to the fixation point, the
attention field was selective for the location of the fixation point, but was unselective for motion
direction. To simulate attention to the moving stimulus, feature-based attention was assumed
to be spatially invariant, and spatial attention was assumed to be invariant to motion direction.
This corresponded to a cross-shaped attention field, with a peak at the attended location
extending over all motion directions and a superimposed peak at the attended motion direction
that extended over all positions. With feature-based attention restricted to a direction of motion
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that matched that of the stimulus in the receptive field, tuning was narrower because the
stimulus drive was multiplied by the attention field which was itself selective for motion
direction (see Supplemental material for derivation).

The model thus offers a way to reconcile different conclusions that have been reached about
whether attention simply scales firing rates or sharpens tuning curves. The predictions of the
model depend on the attentional strategy that is used to perform a given task. A purely spatial
attention strategy, in the model, corresponds to an attention field that is constant (flat) across
feature dimensions (orientation, direction of motion, etc.) but selective for spatial position.
This causes a simple scaling of tuning curves (Figure 5). A purely feature-based attention
strategy corresponds to an attention field that is selective for a feature but not selective for
spatial position. This causes a sharpening of tuning (Figure 6). These different attention
strategies yield different results, underlining the importance of controlling task strategy, as was
done in the two Treue and Martinez-Trujillo studies.

Attentional Modulation of Tuning Curves with Two Stimuli in the Receptive Field
If two stimuli appear simultaneously within a neuron’s receptive field the response to the pair
is substantially stronger when attention is directed to the more preferred of the two stimuli, as
compared to when the nonpreferred stimulus is attended. Moran and Desimone (1985) first
reported this when recording in areas V1, V2, V4, and TEO. This finding was subsequently
replicated in area MT (Treue and Martinez-Trujillo, 1999; Treue and Maunsell, 1996) and in
V2 and V4 (Ghose and Maunsell, 2008; Luck et al., 1997; Reynolds et al., 1999).

Reynolds, Chelazzi and Desimone (Reynolds et al., 1999) proposed an early version of the
normalization model of attention to account for their observations and conducted experiments
to test a key prediction of the model. Consistent with the model, they found that when a
preferred stimulus was paired with a non-preferred stimulus, the nonpreferred stimulus
typically suppressed responses to the preferred stimulus. Critically, when attention was directed
to the nonpreferred stimulus, this increased the suppression in a manner that was similar to that
resulting from elevating the contrast of the nonpreferred stimulus. Reynolds and Desimone
(2003) took this a step further by showing, also consistent with the predictions of normalization,
that the magnitude of suppression increased with the contrast of the nonpreferred stimulus.
Ghose and Maunsell (2008) carried out similar experiments that replicated and extended the
core findings of Reynolds, Chelazzi, and Desimone (Reynolds et al., 1999), and proposed a
similar normalization model to account for their findings.

Treue and Martinez-Trujillo conducted an elegant experiment that examined attentional
modulation with two stimuli in the receptive field (Figure 7). One stimulus was a nonpreferred
stimulus for the MT neuron that was being recorded. The other stimulus varied across the full
range of motion directions and was thus typically the more preferred stimulus of the two.
Attention was directed either to the fixation point or to one of the two stimuli in the receptive
field (Figure 7A). Responses were smaller when attending the nonpreferred stimulus (Figure
7B, blue curve) relative to the neutral (attending fixation) condition (Figure 7B, yellow curve).
Responses were larger when attention was directed to the stimulus that varied in its motion
direction with the largest responses when the stimulus moved in the preferred direction (Figure
7B, red curve).

The normalization model of attention exhibits a similar behavior (Figure 7C), under conditions
designed to simulate those of the Treue and Martinez-Trujillo (1999) experiment. The
responses of a model neuron can be approximated by assuming that the suppressive field was
constant across all motion directions. Under this approximation, the model makes three
predictions (see Supplemental Data for derivation). First, attending the nonpreferred stimulus
should reduce the neuronal responses, as was observed experimentally. Second, attending the
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variable motion should increase the responses, also as observed. Third, the model predicts a
sharpening of tuning when attending the variable motion direction. Such sharpening was
observed in a later study (Martinez-Trujillo and Treue, 2004)—see Figure 6 above—but it was
not reported by Treue and Martinez-Trujillo (1999). The model offers a possible way of
reconciling the ostensible conflict in these results, because the degree of sharpening in the
model depends on the width of the attention field. It was assumed to be relatively broad in the
simulation appearing in Figure 7C, resulting in a modest sharpening of the tuning curve. This
proposal could be tested by repeating both experiments together, making within-cell
comparisons of the attentional effects when attending to a broad versus narrow range of
features, with and without a suppressive stimulus in the receptive field, yielding sharpening of
tuning only when the attention field is narrow.

Discussion
Attention has been reported to have a variety of effects on the responses of neurons in the
macaque visual cortex. To account for these various effects, we have shown that a
computational model, the normalization model of attention, exhibits each of these different
forms of attentional modulation, depending on sensory conditions and task strategy
(specifically, the size of the stimulus and the spread of the attention field, relative to the size
of the receptive field and the width of the orientation/direction tuning curve). The proposed
model combines Heeger’s normalization model of visual responses, with two hitherto distinct
ideas: Treue’s “feature-similarity gain principle” that attentional gain depends on the match
between a neuron’s selectivity and the attended spatial location and features (the multiplication
in the numerator in the present model) and Reynolds’ suggestion that attention modulates the
mechanisms that mediate contrast gain control (the multiplication in the denominator in the
present model).

Relation to Other Models
The normalization model of attention is an extension of a model (Reynolds et al., 1999) that
was initially suggested as a way of implementing biased competition (Desimone and Duncan,
1995) and predicted that attention would yield a shift in the contrast response function
(Reynolds et al., 2000). Ghose and Maunsell (2008) introduced a similar model; their
implementation of normalization, following Britten and Heuer (1999), included a parameter
that enables it to behave like a winner-take-all operation, though Ghose and Maunsell
concluded that the winner-take-all operation did not account well for their data. The present
model differs from the models suggested by Reynolds et al. (1999) and Ghose and Maunsell
(2008) in that we have incorporated a relatively narrow stimulation field and a broader
suppressive field (Cavanaugh et al., 2002a, 2002b). Also, the present model incorporates
feature-specific attentional modulation. The incorporation of feature-based attentional
modulation in our model is similar to feature-selective biases assumed in the biased competition
model (Duncan and Desimone) and the feature-similarity gain principle (Treue and Martinez-
Trujillo, 1999), according to which neuronal responses are increased or decreased by a gain
factor that depends on the match between the attended feature and the neuron’s preferred
feature. A previous model combined the feature-similarity gain principle with normalization
(Boynton, 2005), but there was a critical difference between that model and our current model.
Boynton (2005) suggested that the neural responses were multiplied by the feature-similarity
gain only after normalization whereas attention has its effect in our model before normalization.
Incorporating the attentional gain before divisive suppression is what enabled the model to
exhibit many of the variety of behaviors that we have demonstrated, including the transition
from contrast gain to response gain with changes in stimulus size and attention field size. This
also enabled the current model to exhibit attention-dependent response decreases under some
circumstances, even though the gain of the attention field was always greater than or equal to

Reynolds and Heeger Page 13

Neuron. Author manuscript; available in PMC 2010 January 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



one. An example is the sharpening of tuning curves demonstrated in Figure 6. Previous models
(e.g., Boynton, 2005) resorted to using an attentional gain greater than one for the preferred
feature value and less than one for feature values well away from the preferred. In our model,
the suppression for flanking feature values arose naturally as a byproduct of normalization.

The model is also related to a number of more detailed models that have been proposed as
biophysicaily plausible implementations of biased competition or the feature-similarity gain
principle (Ardid et al., 2007; Deco and Rolls, 2005; Hamker and Zirnsak, 2006; Spratling and
Johnson, 2004; Tiesinga et al., 2004). These more detailed models represent interesting
alternative possible ways that the computations that define our model may be implemented in
the brain (see below).

Predictions
The primary prediction of the model is that the effect of attention should systematically shift
from response gain to contrast gain by appropriate manipulations of the stimulus size and
attention field size. Testing this prediction will involve developing robust psychophysical
procedures for controlling attention field size.

A second prediction of the model is that there be interactions between attention and surround
suppression. Divisive normalization with a narrow stimulation field and a broader suppressive
field has been used to account for contrast-dependent surround-suppression in macaque area
V1 (Cavanaugh et al., 2002a, 2002b). Consequently, directing attention to a center stimulus
should cause the neuronal responses to be driven more strongly by the center stimulus, thereby
reducing the suppressive influence of “distractor” stimuli in the receptive field surround.
Similarly, directing attention to a target in the suppressive region of the surround should
magnify suppression, resulting in a diminished response to the distracter in the classical
receptive field (Reynolds and Chelazzi, 2004).

A third model prediction is illustrated in Figure 4E. In that simulation, a preferred stimulus
and a nonpreferred stimulus were presented simultaneously within the classical receptive field
of the model neuron, and the contrasts of the two stimuli covaried to measure a contrast-
response function for the pair of stimuli. The model predicts that the contrast-response function
will be approximately multiplicatively scaled when directing attention to the preferred stimulus
versus the nonpreferred stimulus. Thus, the attention effects are predicted to be strongest for
the highest contrasts.

Depending on how normalization is implemented, the model predicts that attention may affect
response latencies. Some versions of the normalization model have accounted for the reduction
in latency that is observed with elevations in contrast (Carandini and Heeger, 1994; Carandini
et al., 1997; Victor, 1987). In these implementations of normalization, contrast elevation
reduces the time constant of the neural membrane (via shunting inhibition). If we were to
incorporate such an implementation of normalization in the attention model, then this would
lead to the prediction that attention should cause a measurable reduction in response latency.
One previous study did not find evidence for this (Reynolds et al., 2000). However, a more
recent study reported a trend in this direction (Lee et al., 2007).

Computational Benefits of Normalization
The present model adds attentionai selection to the wide variety of computational functions
posited for normalization. Theoreticians have offered several (not mutually exclusive)
rationales for normalization, including the proposal that it serves to limit the dynamic range of
neural firing rates without changing the relative responses of different neurons in the population
(Heeger, 1992b), to make the responses of a population of neurons normally distributed and

Reynolds and Heeger Page 14

Neuron. Author manuscript; available in PMC 2010 January 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



statistically independent thereby making for a more efficient neural code (Schwartz and
Simoncelli, 2001; Simoncelli and Olshausen, 2001; Wainwright et al., 2002; Wainwright and
Simoncelli, 2000), to normalize the population response akin to normalizing a probability
distribution thereby simplifying the decoding or “readout” of the neural population (Heeger
and Simoncelli, 1993; Simoncelli, 2003; Simoncelli and Heeger, 1998) and for making neural
representations invariant with respect to one or more stimulus dimensions (Heeger et al.,
1996; Kouh and Poggio, 2008; Simoncelli and Heeger, 1998), Normalization of visual cortical
responses is analogous to earlier models of retinal light adaptation (Sperling and Sondhi,
1968) and to models of contrast gain control in the retina and LGN (Baccus and Meister,
2002; Bonin et al., 2005; Kaplan et al., 1987; Mante et al., 2005; Shapley and Victor, 1978;
Shapley and Victor, 1981). Normalization, therefore, has been proposed as a “canonical”
cortical computation (Grossberg, 1973; Heeger et al., 1996; Kouh and Poggio, 2008).

Model Limitations
The model proposed here is a simplification of the computations actually carried out by cortical
circuits. While it does offer a relatively simple way to account for a variety of
neurophysiological data, it is also the case that model parameters not varied here could affect
the qualitative behavior of the model. For example, we have for simplicity assumed that that
the stimulation field, suppressive field, and attention field are smooth and concentric. Under
this assumption, the behavior of the model shifts from contrast to response gain, depending
only on the size of the stimulus and the attention field. But this simplifying ideal is an
approximation to the more complex scenario that may hold for any given actual neuron. Other
distributions could be envisioned, such as “bumpy” stimulation and suppressive fields, for
which the ratio of excitation to inhibition at high contrasts would change depending on the
shape of the stimulus and the (possibly multi-modal) shape of the attention field.

Attentional modulation has been shown to have temporal dynamics—attention has different
effects on firing rates at different times—that are beyond the reach of the current model. For
example, Reynolds, Pasternak and Desimone (Reynolds et al., 2000) found a complete lack of
attentional modulation during the early transient part of the response evoked by the onset of a
high contrast stimulus. In the interest of simplicity, we have focused on a feedforward
implementation of normalization. However, normalization can be implemented through
feedforward or feedback connections or a combination of the two. Implementations that rely
on intracortical feedback (e.g., Heeger, 1993) produce transient responses at stimulus onset.
Thus, while the feedforward model proposed here is attractive for its simplicity and explanatory
power, a feedback implementation of normalization is likely needed to account for the temporal
evolution of attentional modulation (note that the attention field is always assumed to be
mediated by feedback from higher cortical areas; the issue here is whether the divisive
suppression is implemented via feedforward or via recursive lateral and/or feedback
connections). Spratling and Johnson (2004) proposed a model that includes a mechanism that
is analogous to feedback normalization and found that it can account for the observation that
attention has no effect during the onset transient.

Attention causes a marked reduction in the variability of the neuronal response, as indexed by
the Fano factor (Mitchell et al., 2007). Thus, attention does not simply modulate the rate
parameter of a homogeneous Poisson-like spiking process. Rather, in addition to modulating
firing rates, attention also reduces fluctuations in firing rate that may represent a source of
internal noise. These observations are not accounted for by the current model, but attention-
dependent reduction in firing rate variability is a property of a model proposed by Tiesinga et
al. (2004). The mechanism that they proposed for controlling response gain and firing rate
variability involved synchrony of interconnected networks of inhibitory interneurons, which
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might be a possible mechanism for approximating divisive suppression in the normalization
model.

In addition to changes in the firing rates of individual neurons, attention can also modulate the
degree of temporal coherence across the neural population (Bichot et al., 2005; Fries et al.,
2001; Steinmetz et al., 2000). Clues about the mechanisms that give rise to attention-dependent
response synchronization come from studies conducted in anesthetized animals, showing that
narrow spiking interneurons play a privileged role in response synchronization (Hasenstaub et
al., 2005). Narrow spiking interneurons, which are inhibitory, may be responsible for both
normalization and synchronization, as well as reductions in response variability (see preceding
paragraph and also Tiesinga et al., 2004). Experiments distinguishing narrow and broad spiking
neurons in primates as they perform attentionally demanding tasks hold the promise of
elucidating the possible role of narrow spiking neurons in attentional modulation (Mitchell et
al., 2007)

While we have considered spatial and feature-based forms of attentional selection, there is
mounting evidence that attention can operate on more complex properties of stimuli, such as
contours, surfaces, and whole objects (Gilbert and Sigman, 2007; Khoe et al., 2005; Mitchell
et al., 2004; Qui et al, 2007; Schoenfeld et al., 2003; Valdes-Sosa et al., 2000). Attending to
one feature of an object leads to the obligate selection of other features of the same object while
drawing attention away from features of other objects. This type of selection thus depends
critically on the neural mechanisms that mediate perceptual organization, that is, the integration
of visual features into whole objects and the segmentation of visual features into separate
objects. As we gain insight into the mechanisms that mediate perceptual organization, there
may be opportunities for extending the current model, and we speculate that these effects may
be quite naturally explained by the same neural computations cascaded across the hierarchy of
visual cortical areas.

Descriptive, Computational, and Mechanistic Models
The fact that even a very simple computational model can exhibit a variety of different forms
of attentional modulation underscores the limitations that are inherent in previous descriptive
models of attention (contrast gain, response gain, sharpening of tuning curves), which are
convenient shorthands for the different (and ostensibly conflicting) results that have been
reported in the literature. A given profile of results that is consistent with one or another of
these descriptive models does not necessarily rule out an alternative descriptive model, because
the different descriptive models need not be incompatible with one another. We propose instead
that the computational principles embodied in the normalization model of attention offer a
more promising stepping stone for progress.

The normalization model offers a computational, not a mechanistic, characterization of
attentional modulation in visual cortex. With this model in hand, one can proceed to assess the
single-unit electrophysiological phenomena with greater experimental control over the stimuli
(e.g., stimulus size) and attentional strategy (e.g., attention field size). One can also test
predictions of the model at the level of large populations of neurons (e.g., as measured with
optical imaging or functional magnetic resonance imaging) and at the level of behavioral
performance (as measured psychophysically).

We remain agnostic as to the possible biophysical implementation of the attentional
modulation, except to point out that biophysically plausible models of such multiplicative
effects have been proposed (Abbott and Chance, 2005; Ardid et al., 2007; Chance et al.,
2002; Doiron et al., 2001; Hahnloser et al., 2000; Hasenstaub et al., 2007; Marder and
Calabrese, 1996; Mishra et al,, 2006; Mitchell and Silver, 2003; Murphy and Miller, 2003;
Prescott and De Koninck, 2003; Salinas and Abbott, 1996; Salinas and Sejnowski, 2001;
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Sherman and Guillery, 1998; Shu et al., 2003; Spratling and Johnson, 2004; Tiesinga et al.,
2004). In light of our limited ability, at present, to probe the individual elements of the actual
biological circuit in a Hending animal, we view the simplicity of our proposal as a strength.
Mechanistic models will become increasingly important as new approaches in systems
neuroscience make it possible to gain deeper insight into underlying circuitry and cellular
mechanisms.

Nor do we care, for the purposes of this paper, to specify the mechanism underlying the stimulus
drive, that is, the mechanism by which neurons achieve their selectivity for orientation and
spatial location. Selectivity has been characterized with linear summation (Adelson and
Bergen, 1985; Heeger, 1992a, 1992b; Movshon et al., 1978a, 1978b), not unlike the original
description by Hubel and Wiesel (1962) for how simple and complex cell responses in V1
might depend on inputs from the lateral geniculate nucleus. The biophysical mechanism for
the linear summation might depend on a push-pull combination of synaptic excitation and
inhibition (Ferster and Miller, 2000; Hirsch and Martinez, 2006).

Also, normalization itself can be implemented with a variety of biophysical mechanisms (for
review, see Carandini, 2004b). It can be implemented either through feedforward {Carandini
et al., 2002; Priebe and Ferster, 2008) or feedback connections (Carandini et al., 1997; Heeger,
1993) or a combination of the two. The differences between feedforward and feedback
implementations are most evident in the transient activity immediately following stimulus
onset (Bair et al., 2003). Here, however, we focus on steady-state responses. Shunting
inhibition through lateral connections from other neurons in the cortical neighborhood has been
proposed as one possible mechanism for normalization (Carandini and Heeger, 1994;
Carandini et al., 1997; Kouh and Poggio, 2008). Feedforward synaptic depression has been
shown to yield nearly identical behavior (Carandini et al., 2002). Other possible mechanisms
include an increase in the overall synaptic conductance at high contrasts (Chance et al.,
2002) or a decrease in noise at high contrasts which makes the cells less responsive because
their membrane potential is less likely to cross threshold (Finn et al., 2007). Normalization
might not have a single biophysical mechanism. It might instead emerge from a complex
combination of a variety of mechanisms (Priebe and Ferster, 2008). Regardless of the
mechanism(s), normalization appears to operate at multiple (perhaps ail) stages of the visual
system.

To develop a mechanistic understanding the underlying circuitry will require steps to probe
the elements of the circuit itself. It will be important to distinguish between the different types
of neurons that make up visual cortical circuits while recording in attending animals. Such
distinctions between cell types are regularly made in phylogenetically lower species, such as
the rat, rabbit, and ferret (Buzsáki and Eidelberg, 1982; McCormick et al., 1985; Simons,
1978; Swadlow, 2003) and in acute nonhuman primate experiments (Disney et al., 2007; Joshi
and Hawken, 2006; Nassi and Callaway, 2007), but rarely have different types of neurons been
distinguished in behaving nonhuman primates (Constantinidis and Goldman-Rakic, 2002). Of
particular relevance are reports that two classes of visual cortical neurons in macaque, defined
by spike width, exhibited differential effects of attention (Mitchell et al., 2007; Chen et al.,
2008). The two classes may correspond to morphologically and pharmacologically distinct cell
types (the broad spiking class may be largely made up of pyramidal neurons, while the narrow
spiking neurons are likely to be composed largely of GABAergic Parvalbumin-positive
neurons with the morphology of basket cells and chandelier ceils). In addition to neuronal type,
it will be helpful to determine whether attentional modulation differs by laminar position, to
understand whether the effects of attention depend on where neurons project to and from in
the cortical circuit (Callaway, 1998; Mehta et al., 2000). Another key emerging direction is
research devoted to understanding subcellular mechanisms that may play important roles in
attentional modulation. For example, while the glutamatergic inputs from higher cortical areas
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(e.g., frontal eye field, posterior parietal cortex) likely play an important role in attentional
modulation of visual cortex, there is also evidence that cholinergic inputs from the basal
forebrain may also be involved (Disney et al., 2007; Herrero, et al., 2008). Of particular interest
will be to characterize how these various mechanisms relate to the computational principles
that underlie the normalization model of attention.

The computational architecture of visual cortex is very similar from one area to another; the
types, arrangements, and connections of cortical neurons are highly stereotyped (Douglas and
Martin, 2007; Mountcastle, 1997). This suggests that each cortical area conducts calculations
of the same form (e.g., linear summation, attentional modulation, divisive normalization, and
spike threshold) at each stage of visual processing. Models of MT physiology, for example,
posit that the greater selectivity and invariance exhibited by MT neurons in comparison to their
V1 inputs derives from an appropriate linear summation of V1 inputs, coupled with
normalization and spike threshold (Heeger et al., 1996; Simoncelli and Heeger, 1998). Models
of ventral stream processing posit an analogous hierarchy of computations such that neurons
in successive stages of processing exhibit selectivity for increasingly more complex
combinations of certain visual features while also exhibiting increased invariance to other
stimulus attributes (Riesenhuber and Poggio, 1999, 2002). We propose that attention likewise
affects each stage of processing such that the attention fields are cascaded across the hierarchy
of visual cortical areas, and the attentional effects are accumulated across the hierarchy. For
the purposes of this paper, the simulations were performed with a single processing stage, but
we believe that a full simulation with multiple stages of feature integration and attentional
modulation would be needed to quantitatively fit electrophysiological measurements.
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Figure 1. Normalization Model of Attention
The stimulus drive is multiplied by the attention field and divided by the suppressive drive to
yield the output firing rates. Left panel depicts the stimulus. A pair of vertically orientated
gratings were presented as input to the model, identical in contrast, one in each hemifield.
Central black dot, fixation point. Solid circle indicates the receptive field of a model neuron
selective for vertical orientation and centered on the grating stimulus in the right hemifield.
Dashed red circle indicates the attention field, which was centered on the stimulus on the right.
Middle panel depicts the stimulus drive for a collection of neurons with different receptive
field centers and orientation preferences. Neurons are organized according to their receptive
field center (horizontal position) and preferred orientation (vertical position). Brightness at
each location in the image corresponds to the stimulus drive to a single neuron. Top panel
depicts the attention field when attending to the stimulus on the right (i,e., corresponding to
the dashed red circle in She left panel). The attentional field is the strength of the attentional
modulation as a function of receptive field center and orientation preference. Here, attentional
gain varied as a function of stimulus position, without regard to orientation. Midgray indicates
a value of 1 and white indicates a value greater than 1. The attention field is multiplied point-
by-point with the stimulus drive. The suppressive drive (bottom panel) is computed from the
product of the stimulus drive and the attention field, and then pooled over space and orientation.
The panel on the right shows a neural image depicting the output firing rates of the population
of neurons, computed by dividing the stimulus drive by the suppressive drive. The stimulus,
stimulation field, suppressive field, and attention field all had Gaussian profiles in space and
orientation.
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Figure 2. The Normalization Model of Attention Exhibits Qualitatively Different Forms of
Attentional Modulation, Depending on the Stimulus Size and the Size of the Attention Field
Each panel shows contrast-response functions for a simulated neuron, when attending to a
stimulus within the neuron’s receptive field and when attending to a stimulus in the opposite
hemifield.
(A) Contrast gain for small stimulus size and large attention field. Red curve, simulated
responses as a function of contrast when the stimulus in the receptive field was attended. Blue
curve, responses when attending toward the opposite hemifield. Attentional modulation is
indicated by the dashed gray curve, which quantifies the percentage increase in the responses
when the stimulus within the neuron’s receptive field was attended versus not. The stimulus
was 0.6 times the size to the stimulation field and the attention field was six times the size of
the stimulation field (not drawn to scale, see Table 1 for simulation parameters).
(B) Response gain for larger stimulus size and smaller attention field. In comparison to (A),
the stimulus size was 5/3 larger (i.e., equal to the size of the stimulation field) and the attention
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field was 10 times smaller (i.e., about 2/3 the size of the stimulation field). All other model
parameters were identical in both panels (Table 1).
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Figure 3. Attentional Modulation of Neuronal Contrast-Response Functions
(A) Stimulus and task used by Reynolds et al. (2000) while recording neural activity in V4.
Sequences of gratings were presented to the left and right visual fields, ons of which was
positioned within the receptive field of the recorded neuron. Monkeys were cued to attend
either to the stimulus sequence in the receptive field (dashed red circle) or the stimulus sequence
in the opposite hemifield (dashed blue circle), to detect a target that appeared in the sequence.
(B) Attention caused the largest percentage increase in firing rates at low contrast (adapted
from Reynolds et al., 2000). Red curve and data points, responses as a function of contrast,
when attention was directed to stimuli in the receptive field. Blue curve and data points,
responses to the identical stimuli when unattended. Dashed gray curve, percentage increase in
firing rate at each contrast.
(C) Normalization model of attention can exhibit similar results. Stimuli, receptive fields, and
attention fields are not drawn to scale; Simulation parameters are listed in Table 1.
(D) Stimulus and task used in a similar experiment by Williford and Maunsell (2006), also
while recording in V4.
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(E) Attention caused neither a pure contrast gain change nor a pure response gain change
(adapted from Williford and Maunsell, 2006), Rather, the greatest percentage Increase in firing
rates was at low contrasts (dashed gray curve), but with the largest absolute increase in firing
rates at high contrasts {compare red and blue curves).
(F) Normalization model of attention can exhibit similar results. The simulation was identical
to that in (C) except (1) the stimttius was larger and attention field was smaller and (2) additional
baseline activity was added for (C) (see Table 1).
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Figure 4. Attentionat Modulation of Neuronal Contrast-Response Functions with Two Stimuli in
the Receptive Field
(A) Stimulus and task used by Martinez-Trujillo and Treue (2002) while recording in MT. The
contrast of the preferred direction stimulus (indicated by the upward arrow) within the receptive
field was systematically varied across trials, whereas the contrast of the nonpreferred stimulus
(indicated by the downward arrow) was held fixed. The monkey was cued to attend either the
nonpreferred stimulus in the receptive field (dashed red circle) or the stimulus in the opposite
hemifield (dashed blue circle)
(B) Attention caused predominantly a change in contrast gain. Red curve and data points,
responses as a function of contrast, when attention was directed to the nonpreferred stimulus
in the receptive field. Blue curve and data points, responses to the Identical stimuli, when
attending the opposite hemifield. Dashed gray curve, percentage increase in firing rate at each
contrast.
(C)Model simulation exhibiting results similar to those observed experimentally.
(D) Complementary experiment with two stimuli placed within the receptive field, one
preferred and the other nonpreferred. The contrasts of the two stimuli covaried (always identical
to one another).
(E) Simulated neuronal responses were larger when attention was directed to the preferred-
direction stimulus (green curve) than when it was directed to the nonpreferred stimulus (red
curve). The effect of attention was approximated by a response gain change (multiplicative
scaling). Simulation parameters were identical to those in (C) (Table 1).
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Figure 5. Spatial Attention Causes a Multiplicative Scaling of Tuning Curves
(A) Stimulus and task. On some trials, monkeys attended to the grating in the receptive field
of the neuron being recorded (dashed red circle) to report whether two successive gratings were
Identical or differed in orientation by 90°. On other trials, attention was instead directed to a
colored blob appearing in the opposite hemifield (dashed blue circle) to report whether
successive stimuli differed in color.
(B) Orientation tuning curves averaged across a population of V4 neurons, with and without
attention (adapted from McAdams and Maunsell, 1999). These curves were obtained by fitting
each neuron’s tuning curve with a Gaussian, shifting the neuron’s preferred orientation to align
all tuning curves and then averaging the Gaussian fits. Red indicates orientation tuning when
attention was directed to stimuli in she receptive field, to perform the orientation discrimination
task. Blue, orientation tuning when attention was directed away from the receptive field to
perform the color discrimination task. (C) Model simulation yielded similar results;
multiplicative scaling of the tuning curve when spatial attention was directed to a stimulus in
the receptive field. See Table 1 for simulation parameters.
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Figure 6. Feature-Based Attention Can Cause a Sharpening of Tuning Curves
(A) Stimulus and task. A pair of stimuli were presented simultaneously while recording
responses of a neuron in visual cortical area MT. One stimulus was in the receptive field of the
recorded neuron and the other was in the opposite hemifield. The directions of the two stimuli
were yoked. The monkey was cued to attend either to the fixation point (dashed blue circle),
or to the stimulus in the opposite hemifield (dashed red circle) to detect a change in speed or
direction. That is, spatial attention was always directed away from the receptive field, but
feature-based attention was matched to the stimulus in the receptive field on half the trials.
(B) Feature-based attention caused a sharpening of motion direction tuning (adapted from
Martinez-Trujillo and Treue, 2004). Blue, responses when attention was directed to the fixation
point. Red, responses when attention was directed to the stimulus in the opposite hemifield.
(C) Model simulations yielded similar results. Blue, responses of a model neuron when the
attention field was flat (equal) for all motion directions, and spatial attention was directed away
from the model neuron’s receptive field. Red, responses when attention was again directed
away from the simulated neuron’s receptive field but to the same direction of motion as the
stimulus in the receptive field. See Table 1 for simulation parameters.
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Figure 7. Attentional Modulation of Tuning when Two Stimuli Are Present within the Receptive
Field
(A) Stimulus and task. A pair of stimuli was presented simultaneously while recording
responses of a neuron in visual cortical area MT. Both stimuli were presented within the
recorded neuron’s receptive field. One stimulus moved in the nonpreferred direction (indicated
as downward), and the other varied in motion direction. Attention was directed either to the
fixation point (dashed yellow circle) or to one of the two stimuli in the receptive field (dashed
red and blue circles) to detect a change in speed or direction.
(B) Responses were larger when attending the variable direction stimulus (particularly when
it moved in the preferred direction) and smaller when attending the nonpreferred stimulus
(adapted from Treue and Martinez-Trujillo, 1999). Yellow, tuning (response as a function of
the motion direction of the variable stimulus) when attention was directed to fixation. Blue,
tuning when attention was directed to the nonpreferred stimulus. Red, tuning when attention
was directed to the stimulus with variable motion direction.
(C) Responses of a model neuron. Yellow, simulated responses when the attention field was
flat (equal) for all motion directions, and spatial attention was directed to the fixation point
(i.e., away from the model neuron’s receptive field). Blue, simulated responses when the
attention field was selective for the spatial location corresponding to the receptive field of the
model neuron, and selective for the direction of motion opposite to that preferred by the model
neuron. Feature-based attention was thus restricted to a nonpreferred direction of motion. Red,
simulated responses when the attention field matched that of the variable stimulus, i.e., with a
spatial selectivity corresponding to the receptive field and with a direction selectivity that
varied with the stimulus motion direction. See Table 1 for simulation parameters.
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