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Summary
Calorie restriction (CR) increases lifespan in organisms ranging from budding yeast through
mammals. Mitochondrial adaptation represents a key component of the response to CR. Molecular
mechanisms underlying this adaptation are largely unknown. Here we show that lysine acetylation
of mitochondrial proteins is altered during CR in a tissue-specific fashion. Via large-scale mass
spectrometry screening, we identify 72 candidate proteins involved in a variety of metabolic
pathways with altered acetylation during CR. Mitochondrial acetylation changes may play an
important role in the pro-longevity CR response.
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CR is a robust means of extending lifespan across a wide variety of species (Anderson &
Weindruch 2007). Pharmacomimetics of CR could have far-reaching health benefits in
humans. The molecular basis of the CR response remains incompletely understood.
Metabolic alterations occurring as part of the adaptation to CR likely underlie the beneficial
effects of this intervention (Anderson & Weindruch 2007). These changes implicate
alterations in mitochondrial function in the CR response, since many essential metabolic
processes occur in this organelle. Here we report that lysine acetylation of mitochondrial
proteins is altered during CR in a tissue-specific manner. Since reversible acetylation is a
well-characterized post-translational modification impacting protein biology, this finding
offers one potential mechanism of how mitochondrial function may be regulated during CR.

We assessed protein acetylation in purified liver mitochondria from 8-month-old C57BL/6
mice subjected to stepwise CR - 10% restriction initiated at 14 weeks of age, followed by
25% restriction at 15 weeks, and then 40% restriction at 16 weeks and thereafter - as well as
from age-matched ad lib fed (AL) isogenic controls. This CR regimen provides robust
lifespan extension in C57BL/6 mice (Turturro et al. 1999). CR was associated with dramatic
changes in acetylation in liver mitochondria (Fig. 1A), with the majority of changes
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consisting of increases in acetylation. We then screened mitochondria from a panel of
tissues for acetylation (Fig. 1B). In heart, kidney, and brain, only subtle changes in
mitochondrial protein acetylation occurred during CR. By contrast, in brown adipose tissue
(BAT), CR led to markedly decreased mitochondrial acetylation. Thus, mitochondrial
acetylation is regulated in liver and BAT during CR.

To identify mitochondrial proteins changing in acetylation during CR, a large-scale
proteomics survey was performed. Liver mitochondrial extracts from AL and CR animals
were digested with trypsin and immunopurified with acetyl-lysine affinity matrix.
Acetylated peptides were subsequently analyzed by mass spectrometry and label-free
quantitation (LFQ) (Rush et al. 2005). We identified a total of 287 unique acetylated
proteins, of which at least 165 are mitochondrial (see Methods section for further details)
(Supplemental Table 1). Among this latter group, LFQ predicted 72 candidates as changing
in acetylation during CR by at least 2.5-fold (Supplemental Table 2). We also identified a
number of potentially significant acetylation changes that did not meet these strict criteria;
i.e., acetylation changes from 2.0 up to 2.5-fold (Supplemental Table 3).

To validate the LFQ findings, we performed immunoprecipitation (IP) with acetyl-lysine
affinity matrix followed by immunoblot (IB) using commercially available antibodies
against candidate proteins. We confirmed hyperacetylation of five of these proteins, which
are involved in a variety of biochemical pathways, namely ATP generation (ATP5a1), urea
cycle (CPS1), lipid metabolism (HADHA), glycolysis/Krebs cycle (PDHA1), and Krebs
cycle/electron transport (SDHA) (Fig. 1C). For 21 other proteins tested, we were unable to
obtain immunologic reagents of sufficient quality to definitively assess acetylation.

Of note, in contrast to our findings, a recent study reported that CPS1 acetylation is
decreased in mice during CR (Nakagawa et al. 2009). In support of our LFQ and IP results,
acetyl-lysine IB of CPS1 purified by IP also revealed hyperacetylation of this enzyme in CR
(Fig. S1). The cause of the discrepancy between our findings and those of Nakagawa et al. is
unclear.

Sirtuin family deacetylases are required for increased longevity in response to some CR
regimens in invertebrates (Schwer & Verdin 2008). The three mammalian mitochondrial
sirtuins -- SIRT3, SIRT4, and SIRT5 -- are logical candidates to mediate acetylation changes
we observe in liver mitochondria in response to CR (Schwer & Verdin 2008). We previously
showed that SIRT3 plays an important role in deacetylating many mitochondrial proteins
(Lombard et al. 2007). Expression levels of mitochondrial sirtuins were compared in liver
mitochondria from mice on AL or CR diets (Fig. S1). CR elicited a moderate increase in
SIRT3 protein levels, consistent with mRNA expression profiling results (Han et al. 2000).
SIRT4 protein levels were slightly decreased, whereas SIRT5 protein levels did not change
during CR, in agreement with previous reports (Fig. S1) (Haigis et al. 2006; Nakagawa et al.
2009). It is unlikely that this reduction in SIRT4 levels plays a role in mediating the
acetylation increases we observe during CR, since SIRT4-deficient mice show no gross
alterations in hepatic mitochondrial acetylation (Lombard et al. 2007). Despite increased
SIRT3 expression, SIRT3 activity could be modulated in the context of CR by means other
than changes in protein levels: i.e., mitochondrial NAD+ content, post-translational
modifications, and/or interacting partners. Further studies will be required to identify
enzymes (deacetylases and acetyltransferases), or putative non-enzymatic processes, that
modulate lysine acetylation of mitochondrial proteins during CR.

Here we show that mitochondrial protein acetylation is altered dramatically in a tissue-
specific fashion during CR. These acetylation changes may have important functional
consequences for activity, complex formation, turnover, or other aspects of protein biology.
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Recent work indicates that lysine acetylation is present in E. coli, and is altered in response
to diverse environmental stresses, including starvation (Zhang et al. 2009). In mammals,
acute fasting and chronic ethanol ingestion also alter hepatic mitochondrial protein
acetylation (Kim et al. 2006; Picklo 2008), suggesting that changes in acetylation represents
an ancient, evolutionarily conserved mechanism for adaptation to metabolic/nutritional
stress. Activities of a wide variety of mitochondrial enzymes have been shown to change
during CR (Tillman et al. 1996; Dhahbi et al. 2001; Hagopian et al. 2003; Hagopian et al.
2004; Hagopian et al. 2005). The targets we validated are involved in a wide range of
biological activities. This suggests that lysine acetylation changes may have far-reaching
effects on mitochondrial function.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Calorie restriction alters mitochondrial acetylation. (A) Liver mitochondrial acetylation in
CR. Mitochondrial extracts were generated from either CR or AL mice, fractionated by
SDS-PAGE, and probed with the indicated antibodies. Ac-K, anti-acetyl-lysine.
p=polyclonal, m=monoclonal. (B) Tissue-specific changes in mitochondrial acetylation.
Mitochondria were prepared from indicated tissues of CR and AL mice and probed as in
panel A. (C) Identification of proteins hyperacetylated in CR. Total acetylated proteins were
immunopurified from AL and CR mitochondrial extracts and probed for the indicated
proteins. Each panel represents mitochondrial extracts derived from a single AL/CR pair and
is representative of at least three independent experiments.
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