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Abstract
Genomic translocations leading to the expression of chimeric transcripts characterize several
hematologic, mesenchymal and epithelial malignancies. While several gene fusions have been linked
to essential molecular events in hematologic malignancies, the identification and characterization of
recurrent chimeric transcripts in epithelial cancers has been limited. However, the recent discovery
of the recurrent gene fusions in prostate cancer has sparked a revitalization of the quest to identify
novel rearrangements in epithelial malignancies. Here, the molecular mechanisms of gene fusions
that drive several epithelial cancers and the recent technological advances that increase the speed
and reliability of recurrent gene fusion discovery are explored.
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Introduction
Throughout history, technological advances are often followed by discoveries that dramatically
alter our perceptions of disease etiology. For example, after the term “chromosome” was
introduced in the mid-1840’s, several German pathologists began using techniques to compare
gross mitotic changes in tissue sections from different human malignancies.[1] Almost half of
a century later, Theodore Boveri published a critical hypothesis that, “mammalian tumors
might be initiated by mitotic abnormalities that resulted in a change in the number of
chromosomes in the cell (aneuploidy),” based on the observation that sea urchin embryos would
frequently engage in uncommon development following mitotic abnormality.[2] As time
passed, breakthroughs arose that dramatically increased the quality and reproducibility of
cytogenetic techniques such as the use of colchicine, which arrests cells in mitosis by inhibiting
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microtubule assembly. As a result of these observations, the general hypotheses regarding the
evolution of human disease became increasingly complex; particular pathological conditions
were associated with specific chromosomal abnormalities, such as Lejeune’s association of
Down syndrome with an extra copy of chromosome 21.[3,4]

Advances in technology once again spurred discovery when, in 1958, Rothfels and Siminovitch
published a new cytogenetic, air-drying technique for flattening chromosomes.[5] The
application of this technology later allowed Hungerford and Nowell to further characterize
their initial observation that two patients with chronic myelogenous leukemia (CML) had a
characteristic small chromosome.[6] Soon after the initial publication, Hungerford and Nowell
were able to report on a series of seven patients, all of which harbored this minute chromosome.
[7] This was coined the “Philadelphia chromosome” after the city in which the abnormal
chromosome was discovered in accord with the Committee for the Standardization of
Chromosomes.[8] The rearrangement leading to the Philadelphia chromosome was eventually
characterized as a translocation between chromosomes 9 and 22 [9], resulting in the fusion of
the breakpoint cluster region (BCR) gene on chromosome 22 with the v-abl Abelson murine
leukemia viral oncogene homolog (ABL1) gene on chromosome 9.[10] Later in 1990, Lugo
et al. demonstrated that the BCR-ABL1 fusion protein is an active tyrosine kinase, through
immunoblotting cell lysates from Rat 1 transfected cells, revealing that cells transfected with
either BCR-ABL1 or v-src, but not v-H-ras or v-myc, had a significant increase in total
phosphotyrosine content.[11] Understanding the molecular mechanism of BCR-ABL1 led to
the development of one of the first molecularly tailored therapies as the small molecule Imatinib
was specifically selected for its ability to inhibit BCR-ABL1 kinase activity.[12,13] The
success of treating chronic myelogenous leukemia with a specific inhibitor of the BCR-ABL1
chimera led to a strong interest in the discovery of novel gene fusions in other cancer subtypes
with the long term goal of designing disease specific therapeutics.

As techniques like the use of chromosome banding for karyotypic analysis were improved, the
impact on discovery of novel gene fusions was immediately evident in leukemias and
lymphomas. In fact, while BCR-ABL1 is perhaps the most famous gene fusion, the first
molecularly characterized chimera was discovered by Zech et. al. through the use of karyotypic
analysis and is actually involved in the pathogenesis of Burkett’s lymphoma and was identified.
While this karyotypic analysis demonstrated absence of the distal region on the long arm of
chromosome 8 and an extra band in the long arm chromosome 14 distal segment [14], the genes
involved in the rearrangement remained elusive until 1982 when it was demonstrated that the
translocation altered the c-MYC oncogene [15] and that the promoter and 5’ region of the
immunoglobulin heavy chain (IGH) gene were rearranged such that the IGH promoter controls
c-MYC expression.[16] Although this fusion does not lead to a chimeric protein, it was
demonstrated that aberrant c-MYC expression through the IGH promoter is a necessary
component of malignant transformation in Burkett’s lymphoma.[17]

As with lymphoma research, karyotypic analysis rapidly led to the identification of recurrent
breakpoints that seemed to characterize subsets of myeloid leukemia. For example, in 1973,
the acute myeloid leukemia 1 (AML1) gene was cloned from the breakpoint region of the first
recurrent translocation described in leukemia, t(8;21).[18] In 1991, the AML1 gene was found
to be fused to the eight-twenty one (ETO) gene on chromosome 21, which is also known as
runt-related transcription factor 1 translocated to 1 (RUNX1T1).[19,20] As the techniques of
molecular biology improved, it became easier and easier to obtain the DNA sequence adjacent
to chromosomal breakpoints. Since the original identification of AML1 in myeloid leukemia,
over 10 genes have been described to participate in rearrangements with AML1.[21] In fact,
advances in sequencing technology led to the realization that several genes are recurrently and
promiscuously fused to multiple partners; the examples of which are ever increasing. In
addition to AML1, the other notable example of a promiscuous fusion gene partner is the mixed
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lineage leukemia (MLL) gene, which is involved in over 40 different rearrangements (reviewed
in [22]). In fact, because of the variety and difficulty of discussing all chromosomal aberrations
in human malignancies, Mitelman et. al. maintain and frequently update an online database of
rearrangements and chromosome aberrations from all malignant neoplasms.[23]

With the rapid development of current technologies like high-throughput sequencing, our
perceptions as to the origins of disease have revealed a critical involvement of chromosomal
aberrations, in particular, the role of translocations and gene fusions in malignant development.
With a better understanding of the role of these chromosomal aberrations, therapies designed
to inhibit the molecular function of chimeric proteins have recently been developed and, like
Imatinib some have demonstrated a window of strong efficacy. Consequently, much hope has
been generated by the potential for targeting existing and novel gene fusions that characterize
specific cancer subtypes with rationally designed molecularly tailored therapies. Here, we
review known genomic rearrangements in epithelial tumors that led to aberrant expression of
chimeric transcripts and the emerging technologies that may lead to the identification of novel
gene fusions.

Gene fusions in epithelial cancers
In order to highlight the number of genomic rearrangements leading to fusion genes that
characterize epithelial cancers, we have surveyed some of the well-studied chimeras from
several solid malignancies and describe the fusions in approximate chronological order. In the
ensuing sections, we will analyze concepts from a global view of epithelial gene fusions with
a few case studies of rearrangements from leukemia and endometrial stromal tumors. Gene
fusions will be categorized into three different types: (1) those which alter the transcriptional
regulation, (2) those which alter mRNA regulation and (3) those which alter protein activity.
This will be followed by a discussion of the potential reasons why gene fusions have not been
in the limelight of solid tumor pathogenesis and the developing technologies that are being
used to find novel recurrent gene fusions in common epithelial tumors.

RET-NTRK1
The initial discovery of an epithelial gene fusion in the mid-1980’s comes directly from a novel
screening technique used to identify transforming oncogenes. In this experimental approach,
immortalized NIH3T3 cells were transfected with fragments of tumor cell genomic DNA,
plated in soft agar. DNA is then isolated from cells and sequenced or sub-cloned to identify
critical fragments. Using this approach, Martin-Zanca et. al. identified the RET-NTRK1
genomic translocation, providing some of the first insights into the possibility that recurrent
genomic rearrangements were not specifically of hematologic phenomena.[24]

RET (rearranged during transfection) encodes a tyrosine kinase [25,26] that was originally
identified through transfection of DNA from a human T-cell lymphoma into NIH3T3 cells.
[27] NTRK1 is a membrane-bound tyrosine kinase receptor that regulates neuronal cell growth,
differentiation, and programmed cell death pathways.[28] Fusion of these two genes results in
loss of the NTRK1 signal sequence giving rise to cytoplasmic localization and constitutive
activation of the fusion protein.[29] Interestingly, although NTRK1 was the first identified
RET fusion partner, RET has several other N-terminal fusion partners including H4 [30,31],
R1α [32], RFG5 [33] and ELE1.[34,35] One possible explanation for the diversity of genomic
rearrangements observed in PTC is that the underling pathology is simply dependent on
deregulation of either the RET or NTRK1 tyrosine kinase domain. (reviewed in [36])
Consequently, the important determining event in PTC carcinogenesis may be constitutive
activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which can be
caused by rearrangement of either the RET and/or NTRK1 gene. One reason for this hypothesis
is that while the RET-NTRK1 rearrangement appears to be the predominant gene fusion
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responsible for childhood PTC, in adult-onset populations activating point mutations in the
BRAF gene or, controversially, the RAS gene [37-43], also lead to constitutive activation of
the MAPK pathway without RET and/or NTRK1 genomic rearrangement.[44]

In addition to differences in the age-related molecular onset of PTC, the proportion of cases
with either a RET or NTRK1 rearrangement also appears to be based on the geographic area of
origin, [45-47] possibly because thyroid cancer is established to be associated with exposure
to ionizing radiation.[37,48] Indeed, studies of patient populations exposed to either the
Chernobyl nuclear power plant accident [49,50] or the atomic bombings [51] have
demonstrated that genomic rearrangements occur at a higher frequency than mutations
following extreme exposure to radiation [37,48], suggesting that under certain biological
conditions exposure to high dose radiation may actually trigger specific DNA breaks leading
to intentional genomic rearrangement. In fact, the fusion proteins that characterize PTC contain
a number of different N-terminal partners fused the C-terminal tyrosine kinase domain of either
RET or NTRK1 [52] that may depend on the environmental cues leading to genomic
rearrangement.

CTNNB1-PLAG1
Within a year of publication of the RET-NTRK1 genomic rearrangement in PTC, another
epithelial translocation was reported in pleomorphic adenoma (PA) [53], a slow-growing
epithelial tumor that is responsible for more than 50% of salivary gland tumors [54], but less
than 10% of tumors from the head and neck.[55] In contrast to RET-NTRK1 which was
discovered by a screening technique, rearrangements in PA were first identified by karyotypic
analysis of primary tumors. In fact, before any of the breakpoint genes were identified, PAs
were already divided into four cytogenetic groups. (reviewed in [56]) Rearrangements of 8q12
account for about 40% of PAs with t(3;8)(p21;q12) comprising about half of rearrangements
at this locus. Translocations of 12q14-15 account for about 8% of PAs with t(9;12)
(p12-22;q13-15) or an ins(9;12)(p12-22;q13-15) responsible for these abnormalities.[57,58]
Tumors with non-recurrent clonal changes comprise about 20% of PAs, and tumors with
apparently normal karyotypes account for the remaining cases.[56]

Almost 20 years after the initial karyotyping studies, Kas et. al. used a comprehensive
breakpoint mapping approach, southern blot analysis and 5’ rapid amplification of cDNA ends
(5’ RACE) to identify the genes involved in the most prevalent PA translocation, t(3;8)
(p21;q12) as β-Catenin (CTNNB1) and PLAG1 (pleomorphic adenoma gene 1).[59]
Specifically, the t(3;8)(p21;q12) rearrangement fuses the β-Catenin (CTNNB1) promoter and
exon 1 to PLAG1 exon 2, resulting in a marked increase in PLAG1 expression (Figure 2). As
such, because the gene fusion results in altered DNA level regulation of PLAG1 transcript, this
gene fusion is characterized as type 1. Interestingly, the reciprocal translocation links the
PLAG1 promoter and exon 1 to β-Catenin exon 2, reducing β-Catenin expression. As β-Catenin
signals through several well characterized oncogenic pathways, (reviewed in [60]) the
reduction in β-Catenin is curious. PLAG1, however, belongs to the PLAG family of proteins
and encodes a zinc finger protein with two putative nuclear localization signals and can bind
to either DNA or RNA. Forced expression of PLAG1 in NIH3T3 cells has demonstrated that
this protein can induce the standard characteristics of neoplastic transformation including loss
cell-cell contact inhibition, anchorage independent growth, and tumor formation in nude mice
xenografts.[61] This suggests that the constitutive activity of the CTNNB1 promoter leads to
sufficient PLAG1 expression for malignant transformation in PA.

PRCC-TFE3
As cloning and molecular strategies improved in the early 1990’s, another recurrent gene fusion
would soon be described in papillary renal cell carcinoma (PRCC), the second most common
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carcinoma of the renal tubules accounting for 15-20% of all renal cell carcinomas.[62-66]
Karyotypic analysis as early as 1986 (de Jong et. al.) led to the identification of abnormalities
in the Xp11.2 region characterized by a genomic rearrangement, t(X;1)(p11.2;q21.2).[62-66]
Interestingly, before any of the genes surrounding the breakpoint were cloned a gene encoding
TFE3, which was originally identified by their ability to bind to μE3 elements in the
immunoglobin heavy chain intronic enhancer [67], was mapped to the Xp11.22 locus [68], and
later shown to encode a member of the basic helix-loop-helix followed by a leucine zipper
family (bHLHzip) of transcription factors. After the original genomic mapping, TFE3 was soon
identified at the translocation breakpoint by southern blot analysis.[69] Subsequent 5’-RACE
identified PRCC; a ubiquitously expressed gene that encodes a protein with a high proportion
of prolines and glycines – including three P-X-X-P motifs that are known to interact with SH3
domains.[70,71] Interestingly, the fusion event leading to the PRCC-TFE3 rearrangement also
results in a reciprocal TFE3-PRCC gene fusion.[69,72]

To elucidate the properties of these reciprocal gene fusions, Weterman et al. introduced wild
type PRCC, wild type TFE3, PRCC-TFE3 and TFE3-PRCC expression vectors into COS cells
and postulated that only the PRCC-TFE3 gene fusion was responsible for tumor formation
based on its ability to activate a generalized report assay.[73] Thus, the PRCC-TFE3 genomic
rearrangement is type 3 as the fusion protein gained a novel function through rearrangement.
However, fusions of the PSF or NonO pre-mRNA splicing factors are also recurrently fused
to TFE3, albeit at a much lower frequency than PRCC [69,72,74], suggesting that the TFE3
portion of the fusion is responsible for malignant transformation. Subsequent transcriptional
activation assays demonstrated that of the PSF-TFE3, NonO-TFE3 and PRCC-TFE3 chimeras,
only the PRCC-TFE3 fusion protein could activate the plasminogen activator inhibitor-1
(PAI-1) promoter, [75] suggesting that only this gene fusion retains transcriptional activity.
However, recent co-immunoprecipitation experiments demonstrated that antibodies against
the pre-mRNA splicing factors SC35, PRL1, and CDC5 were able to immunoprecipitate wild
type PRCC, and an anti-SM antibody was able to immunoprecipitate the PRCC-TFE3 fusion
protein.[75] This data suggests that the fusion protein functions may partially function through
transcriptional pathways, it may also function by altering pre-mRNA splicing, but more
conclusive experiments need to be conducted to demonstrate this phenotype.

HMGA2, evading let-7
While most of the gene fusions discovered until this point including PRCC-TFE3 were thought
to define specific epithelial tumor types, a new gene fusion that was associated with several
different tumor types, including pleomorphic adenoma (PA) (see above), lipoma, uterine
leiomyoma and some myeloid malignancies [76], would refute the notion. In fact, the discovery
of translocations involving 12q15 had been established by karyotypic analysis in multiple
tumor types before the rearranged genes were actually identified and one of the genes involved
in the t(9;12)(p12-22;q13-15) PA translocation was first identified in both mesenchymal
tumors [77] and lipomas [78]. This first gene to be described was the 5’ gene fusion partner,
HMGA2 (high mobility group AT-hook 2), belongs to the non-histone chromosomal high
mobility group (HMG) protein family, which are small nuclear proteins (<30kDa) that undergo
extensive post-translational modifications and contain nine amino acid segments that bind AT-
rich DNA stretches in the minor groove (AT-hooks). (reviewed in [79]) Subsequent 3’ RACE
of tumor samples revealed that HMGA2 has two different 3’ partners in PA, FHIT and
NFIB, both of which contribute very little coding sequence to the resulting fusion gene. In fact,
in one class of translocations, HMGA2 exon 3 is fused to FHIT exon 9 or 10, resulting in
retention of the C-terminal 26 amino acids of FHIT [80], and in the other set, HMGA2 exon 3
or 4 fusion to NFIB exon 9 appends five amino acids (SWYLG) to the truncated HMGA2
protein.[81]
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Surprisingly, transgenic mice overexpressing wild type HMGA2 were observed to have similar
phenotypes to mice expressing the truncated protein HMGA2 protein found in the PA gene
fusions.[82-84] To complicate this observation, in hereditary renal cell carcinoma, FHIT was
previously demonstrated to be fused to the patched related gene TRC8 by t(3;8)(p14.2;q24.1)
[85,86] and the (SWYLG) amino acid motif found in the HMGA2-NFIB gene fusion were
shown to be essential for NFIB function [81]. Recent research, however, has shed light onto
the importance of these translocations to neoplastic transformation.

The discovery that small RNAs called microRNAs can negatively regulate gene expression
through direct binding to a gene’s 3’-UTR has led to the hypothesis that certain microRNAs
can function as tumor suppressors in cancer.[87] Bioinformatic analysis of the HMGA2 3’-
UTR demonstrated that the mRNA contains seven conserved sites complementary to the
let-7 microRNA [88]. (Depicted in figure 3) To show that the let-7 microRNA negatively
influences HMGA2 expression, Mayr et. al. built a HMGA2 3’-UTR conjugated luciferase
reporter and demonstrated that let-7 represses its expression.[89] As such, although the
genomic rearrangements between HMGA2 and FHIT or NFIB yield fusion proteins,
replacement of a Let-7 regulated 3’-UTR seems to be the critical event because it leads to
HMGA2 over-expression, which is sufficient for neoplastic transformation. Thus, the
HMGA2 genomic rearrangement represent the first of a novel class of gene fusions, type 2, in
which fusion gene activity is enhanced by loss of mRNA level regulation (Figure 3).

Pax8-PPARγ
In 2000, Kroll et. al. employed fluorescence in situ hybridization (FISH), yeast artificial
chromosome mapping and 3’ RACE to identify genes involved in a genomic rearrangement,
t(2;3)(q13;p25) [90], that was originally identified by karyotype analysis of follicular thyroid
carcinomas, a subset (10-20%) of all thyroid malignancies [91]. This translocation is thought
to be specific to FTC as it has not been reported in other thyroid tumors or hyperplastic nodules
[92] In the resulting gene fusion, the Pax8 (Paired box gene 8) gene is fused to PPARγ
(Peroxisome proliferator-activated receptor-γ), a ubiquitously expressed transcription factor.
[90] The Pax8 protein is involved in thyroid follicular cell development and regulation of
thyroid-specific gene expression.[93] PPARγ plays a major role in a number of different
diseases including obesity, atherosclerosis, diabetes as well as cancer. (reviewed in [94]).
Because Pax8 is a thyroid specific transcription factor and because its DNA binding domain
is fused to the c-terminal domains of PPARγ [90], the resulting protein chimera is thought to
have constitutive re-distribution of PPARγ-directed transcription. In 2005, gene expression
microarray profiling revealed that a distinct signature in follicular thyroid carcinomas
harboring the Pax8-PPARγ gene fusion in which cell growth and chromatin remodeling
pathways were over-represented and protein biosynthesis pathways were under-represented as
compared to follicular thyroid carcinomas without the translocation [95], suggesting that
PPARγ-transcription is indeed redefined by the gene fusion.

Interestingly, follicular thyroid carcinomas were originally thought to arise from disruption of
distinct molecular pathways, either through the fusion of Pax8 to PPARγ, or through the
acquisition of point mutations leading to the constitutive activation of the G-protein RAS. In
fact, one study reported that 16/33 (49%) of follicular carcinomas had RAS mutations, 12/33
(36%) had Pax8-PPARγ rearrangement, only 1/33 (3%) had both, and 4/33 (12%) had neither.
[96] However, in 2006, quantitative reverse transcription PCR analysis of follicular carcinoma
clinical samples demonstrated loss of the tumor suppressor NORE1A in samples harboring the
Pax8-PPARγ rearrangement, but not in other samples.[97] Because NORE1A binds to the GTP
bound (activated) RAS protein and suppresses RAS activity, this discovery suggested that
activation of the RAS pathway is a critical event in pathogenesis of thyroid carcinoma that is
altered either directly by activating mutation, or indirectly by the Pax8-PPARγ rearrangement.
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BRD-NUT
Soon after the discovery of the Pax8-PPARγ rearrangement, the translocation t(15;19)
(q13;p13.1) was identified in a rare, highly aggressive carcinoma arising in the midline organs
and upper respiratory tract of young people now termed nuclear protein in testis (NUT) midline
carcinomas (NMC).[98-100] BRD4, which contains the chromosome 19 breakpoint, has two
annotated transcripts encoding either short or long forms of the protein that both contain N-
terminal bromodomains. The longer BRD4 transcript encodes a ubiquitously expressed 200kDa
nuclear protein [101] with a c-terminal lysine rich region that is not found in the shorter
transcript. The translocation resulting in fusion to the NUT gene (identified by southern blot
analysis) only disrupts the longer BRD4 transcript resulting in loss of the lysine rich region in
the fusion oncogene. Several studies of BRD4 in both murine and human cell line models have
demonstrated a critical role in cell cycle progression and cell proliferation.[102,103] In fact,
Brd4 enhances cell growth by interacting with chromatin [104], replication factor C [102] and
cyclinT1 and CDK1 that constitute core positive transcription elongation factor b (P-TEFb).
[105] Likewise, chromatin immunoprecipitation assays demonstrated that Brd4 is required to
recruit P-TEFb to active promoters, and that increased Brd4 leads to increased P-TEFb-
dependent phosphorylation of RNA polymerase and enhanced transcription from promoters
in vivo.[105]

More insight into the role of the BRD4-NUT fusion protein in NMC biology came from a
screen for other NMC gene fusions. Because the BRD4-NUT translocation defines two-thirds
of all NMCs, French et al. used a candidate gene approach to screen other NMC samples and
discovered another recurrent translocation between BRD3 and NUT that defined large portion
of the remaining NMC cases.[106] The BRD3-NUT fusion gene encodes a protein highly
similar to that encoded by the BRD4-NUT transcript. It is composed of two tandem chromatin-
binding bromodomains, an extra-terminal domain, a bipartite nuclear localization sequence,
and a significant portion of NUT coding sequence. As such, the conserved protein structure
gave insight into the mechanism by which the chimeric protein induces neoplastic properties.

Wild type NUT, which is normally only expressed in the testis [99], contains both nuclear
localization and export signal sequences and is shuttled between the nucleus and cytoplasm
via a leptomycin-sensitive pathway.[106] Importantly, however, the Brd3–NUT and Brd4–
NUT proteins are retained in the nucleus, suggesting that interactions between the Brd3 or
Brd4 bromodomains and chromatin are essential to the fusion protein.[106] (Figure 4) Further
evidence for this hypothesis comes from an siRNA experiment in which knockdown of Brd-
NUT fusion transcripts in NMC cell lines resulted in squamous differentiation and cell cycle
arrest.[106] This suggested that the nuclear retention of NUT, not the loss of the Brd C-terminal
domain, is responsible for promoting NMC carcinogenesis.[106] The realization that Brd-NUT
gene fusions define a class of translocations that fuse bromodomains to the NUT protein
suggests that oncogenic translocations will arise from multiple partners when critical domains
are present in more than one gene.

ETV6-NTRK3
The first major example of a recurrent epithelial rearrangement that appeared not only in
multiple tumor types, but had also been reported in a large subset of hematologic malignancies
was detected in several cases of secretory breast carcinoma, a rare subtype of infiltrating ductal
carcinoma affecting both children and adults.[107] Tognon et al. detected the ETV6-NTRK3
fusion by comprehensive FISH analysis in 92% (12 of 13) secretory breast carcinoma cases.
[108] ETV6 (also TEL) is an ETS family member that is involved in a large number of fusions
to either a transcription factor like AML1 [109] or to a protein tyrosine kinase domain like that
of ABL [110,111], JAK2 [112-114], ARG [115,116], PDGFRβ [117] or FGFR3 [118], each of
which define a unique leukemia sub-type (reviewed in [119]) ETV6 contains a pointed
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oligomerization domain (PNT; also known as sterile alpha motif, SAM, or helix-loop-helix,
HLH) and an ETS DNA binding domain, the expression of which is required for developmental
processes such as hematopoeisis and yolk sac angiogenesis.[120] NTRK3 is a transmembrane
neurotrophin-3 surface receptor that contains a c-terminal protein tyrosine kinase domain and
plays a role in growth, development, and cell survival of neural cells in the central nervous
system. (reviewed in [121]) The fusion of the N-terminal ETV6 pointed domain to the C-
terminal tyrosine kinase domain of NTRK3 was first reported in congenital fibrosarcoma (CFS)
[122], but has since been reported in multiple cell lineages including those that give rise to
congenital mesoblastic nephroma (CMN), acute myelogenous leukemia, and secretory breast
carcinoma [108]. (reviewed in [123])

Following the initial discovery, research focused on the transforming ability of the
recombination product. By using retroviral gene delivery methods, the ETV6-NTRK3 fusion
gene was shown to be sufficient to induce the non-tumorigenic murine breast cell lines Eph4
(epithelial) and Scg6 (myoepithelial) as well as NIH-3T3 fibroblasts to form tumors, glandular
structures and to express epithelial antigens.[108] This discovery suggested that the fusion
gene acts as a dominant oncogene in secretory breast cancer. ETV6-NTRK3 was also shown to
inhibit TGF-β tumor suppressor activity in NIH3T3 cells [124], suggesting that it most likely
regulates microRNA biogenesis indirectly, [125] but this has not yet been explored. Although
it is known that adults have a less favorable prognosis than children and distant metastases are
rare [126], local recurrences and nodal metastases have been observed [127] suggesting that
the gene fusion leads to an invasion associated transcriptional program, but this also has not
been explored. Despite this, it is known that constitutive activation of the fusion protein leads
to activation of the Ras-mitogen-activated protein kinase (MAPK) pathway and the
phosphoinositide-3-kinase (PI3K)-AKT pathway, the mechanism leading to activation of these
pathways has remained elusive until recently, when the fusion protein was shown to associate
with c-Src by immunoprecipitation from fusion-positive CFS and CMN human primary
tumors.[128] More recently, however, a mouse knockin model was created by introducing the
human NTRK3 cDNA into exon 6 of the mouse ETV6 locus, which induced a fully penetrant,
multifocal breast cancer.[129] By using microarray analysis of unsorted and sorted tumors
from this model, as well as NIH3T3 cells transduced with the fusion gene, the authors showed
that ETV6-NTRK3 enriches for WNT target genes through activation of the AP1 complex.
[129] The requirement for AP1 activity in ETV6-NTRK3-mediated transformation was
confirmed by showing that the co-expression of a dominant negative component of AP1
complex, c-JUN TAM67, with the gene fusion blocked tumorigenic properties both in vitro
and in vivo.[129] The ETV6-NTRK3 gene fusion represents one of the last gene fusions to be
discovered by traditional biological techniques.

TMPRSS2-ETS
In 2005, advances in bioinformatics led to the discovery of rearrangements on chromosome
21 between TMPRSS2 (transmembrane protease, serine 2) and ERG (v-ets erythroblastosis
virus E26 oncogene homolog (avian)) resulting in the TMPRSS2-ERG gene fusion. Thus far,
genomic rearrangements leading to an ERG gene fusion have been reported in approximately
50% of clinically localized prostate cancers published. (reviewed in [130]) TMPRSS2 is a
prostate-specific, androgen-regulated gene [131-133] that has two annotated transcription
variants, both of which are involved in the fusion with ERG; the annotated TMPRSS2 in about
50% of the gene fusions, an alternative TMPRSS2 variant in 10% of gene fusions, and both
variants in slightly more than 40% of analyzed gene fusions.[134] ERG belongs to the ETS
family of transcription factors and has two transcription variants that differ only slightly in the
5’-UTR (deleted in the gene fusion) and in the usage of an in-frame exon, the role of which
remains undefined. The most common TMPRSS2-ERG gene fusion variants involve
TMPRSS2 exon 1 or 2 fused to ERG exon 2, 3, 4, or 5 [134-143] and less frequently
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rearrangements of TMPRSS2 exon 4 or 5 fused to ERG exon 4 or 5.[141] In line with the
combinatorial complexity of TMPRSS2-ERG rearrangements, different fusions have correlated
with slightly different phenotypic outcomes. For example, TMPRSS2 exon 2 fused with
ERG exon 4 is associated with aggressive disease, while others have been associated with
seminal vesicle invasion and poor outcome.[143]

Like TMPRSS2, the TMPRSS2-ERG gene fusion is androgen regulated in an androgen
responsive cell line (VCAP) carrying the rearrangement [135], but not in an androgen
insensitive cell line harboring the fusion (NCI-H660).[144] We have shown that VCaP cells
and benign prostate cells forced to overexpress ERG drive components of the plasminogen
activation pathway to mediate cellular invasion using transwell migration assays.[145] We
have also reported that primary or immortalized benign prostate epithelial cells overexpressing
ERG have a transcriptional program with high levels of several invasion-associated genes, but
did not display phenotypic increases in cellular proliferation or anchorage-independent growth.
[145] Despite this, one group recently identified c-MYC as a downstream target of ERG and
demonstrated that ERG knockdown in TMPRSS2-ERG expressing CaP cells resulted in loss
of cell growth in vitro and loss of tumorgenicity in vivo, with only 22% (2/9) mice developing
detectable tumors at day 42 in siRNA treated cells as compared to 100% (5/5) in the control
group.[146] Interestingly, transgenic mice expressing an androgen-regulated ERG fusion gene
develop mouse prostatic intraepithelial neoplasia (PIN), a precursor lesion of prostate cancer,
not prostate cancer. Taken together with our in vitro data, these results suggest that, without
secondary molecular lesions such as loss of the tumor suppressors PTEN or NKX3-1, the
TMPRSS2-ERG gene fusion may not be sufficient for transformation.[145,147,148]

Although ERG clearly participates in the majority of ETS family gene fusions in prostate
cancer, other ETS family members including ETV1 [135], ETV4 [149,150] and ETV5 [151]
also contribute to gene fusions in prostate cancer, albeit at a much lower frequency. In contrast
to TMPRSS2, which is the only known 5’ partner to ERG, the other ETS family members may
have a variety of 5’ partners including those with androgen-responsive promoters (TMPRSS2,
SLC45A3, KLK2, HERV-K_22q11.23 and CANT1), one with an androgen-insensitive
promoter, but constitutively active promoter (HNRPA2B1), and one with an androgen-
repressed promoter (C15orf21).[135,149,151-153] As in the case of ERG, forced expression
of ETV1 under the control of a CMV promoter did not enhance cell proliferation in benign
prostate epithelial cell lines and did not lead to anchorage-independent colony formation in
soft agar, but did lead to the enrichment of genes associated with invasion.[145] Consequently,
knockdown of ETV1 in LNCAP cells prevented transwell invasion through matrigel.[145,
154]

EML4-ALK
Recently, Soda et. al. reported retroviral-mediated transformation screen, in which they created
a cDNA expression library from a surgically resected lung adenocarcinoma.[155] Following
transformation of NIH3T3 cells, cDNAs were recovered from cells by PCR amplification and
sequenced. One of these sequenced transcripts contained a fusion between EML4 (echinoderm
microtubule-associated protein-like 4) and ALK (anaplastic lymphoma kinase) that was later
confirmed as an inversion of chromosome 2p in 6.7% (5 of 75) NSCLC patients.[155] Wild
type EML4 is a member of the EMAP family of proteins and the amino-terminus (amino acids
1-249) were previously demonstrated to be essential for microtubule formation in HeLa cells.
[156] ALK encodes a tyrosine kinase and a MAM domain (a domain frequently found on the
extracellular side of the membrane on many receptors). Despite the apparent low frequency
EML4-ALK gene fusions in NSCLC, the transforming ability of EML4-ALK gene fusion
variant 1, 2, and 3b, but not a kinase inactive mutant (K589M) has been demonstrated by
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engrafting NIH-3T3 cells infected with retroviral expression vectors and showing that tumors
arise in 8/8 mice from all groups except for the kinase dead mutant.[157]

To corroborate the low frequency EML4-ALK rearrangements in NSCLC, careful PCR-based
analysis was completed on NSCLC cases to identify novel in-frame EML4-ALK gene fusions
that led to the identification of two novel fusion isoforms called variant 3a and 3b.[157] Even
more recently, analysis of a cohort of 253 lung adenocarcinoma patient samples identified two
new EML4-ALK fusions in which either exon 14 or exon 2 of EML4 was fused to Exon 20 of
ALK (variants 4 and 5, respectively), however, only 4.35% of patients were found to express
any of the 5 known EML4-ALK genomic rearrangements.[158] A similarly low rate of the
ELM4-ALK fusion was reported in a study of 104 lung cancer surgical specimens with only
one fusion positive case [159] and, in a study of different lung cancers, the fusion was identified
in 3.4% (5 of 149) adenocarcinomas, but not in 48 squamous cell carcinomas, 3 large-cell
neuroendocrine carcinomas, or 21 small-cell carcinomas.[160] However, this is to be expected,
given the small sample size from non-adenocarcinomas. The ALK gene has previously been
identified as the 3’ fusion partner of NPM- [161], TPM3- [162], CLTC- [163], ATIC-
[164-166] and TFG- [167]. In light of this observation, RT-PCR analysis was used to screen
all known hematologic ALK fusion partners in a cohort of 77 NSCLC samples, however, no
redundant fusion partners were identified and only 2.6% (2 of 77) NSCLC cases harbored the
EML4-ALK fusion.[168] To supplement the existing RT-PCR data in the literature, our group
developed a break-apart FISH assay to analyze ELM4-ALK fusion as well as the amplification
of each gene. We reported the fusion occurred in less than 3% of NSCLC cases analyzed, and
that, in most cases harboring the lesion, not all cells exhibited the fusion. We also found that
EML4 and/or ALK amplification occurred, indicating that other mechanisms of genomic
rearrangement leading to amplification may arise.[169]

SLC34A2-ROS
In 2007, a survey of phosphotyrosine signaling in lung cancer not only led to the re-
identification of the EML4-ALK fusion, but also the discovery of a novel translocation between
chromosomes 4p15 and 6q22, in which the transmembrane domain containing N-terminal
region of the solute carrier family 32, member 2 (SLC34A2) is fused to an N-terminal
transmembrane domain of the c-ros oncogenes 1 (ROS), respectively, in the lung cell line
HCC78.[170] SLC34A2 is encoded from a single transcription variant and ROS, which is a
type I integral membrane bound tyrosine kinase is a known oncogene that is highly expressed
in several tumor cell lines, and also encoded from a single transcript. Interestingly, while the
authors did not identify SLC34A2 rearrangements with ROS in patient samples, a gene fusion
between CD74, located at 5q32, and ROS was observed, in which the tandem transmembrane
domain structure was again observed.[170] This suggests not only that ROS is another
promiscuous gene fusion partner, but the tandem transmembrane structure is one mechanism
leading to constitutive activation of the tyrosine kinase. Indeed, forced expression of the
SLC34A2-ROS chimera demonstrated constitutive kinase activity in the cellular membrane
fraction.[170]

SLC45A3-ELK4
With the recent advent of next generation sequencing technology (described below), our group
has recently identified another recurrent gene fusion in prostate cancer.[171] Using this
technology we identified the fusion of SLC45A3 to ELK4, an ETS family member. Here exon
4 of SLC45A3 is fused to exon 1 of ELK4. Interestingly, this novel gene fusion was identified
from the RNA of a cell line harboring a known gene fusion involving another ETS family
member gene, ETV1. Likewise this novel gene fusion involves SLC45A3, which is known to
fuse with ETV1 in other prostate cancer cases. Unlike other gene fusions described to this point,
SLC45A3-ELK4 seems to result from polymerase read-through and intergenic splicing rather
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than genomic rearrangement as no detectable alterations were detected on the DNA level by
fluorescence in situ hybridization (FISH), array comparative hybridization (aCGH) or high-
density single nucleotide polymorphism (SNP) arrays.[171] RNA level gene fusions were
recently identified in endometrial stromal tumors and are discussed below.

Lessons from MLL translocations
While the list of epithelial derived gene fusions continues to expand, it is important to highlight
unique mechanisms of oncogene formation through specific genomic rearrangements from the
hematological malignancies. Translocations altering the mixed-lineage leukemia (MLL) gene
on 11q23 frequently lead to fusions with over 40 different genes on different chromosomes
with MLL-AF4 and MLL-AF9 among the most frequent chimeras. (reviewed in [172], [173])
Interestingly, different MLL fusions are highly associated with either acute myeloid leukemia
(AML) or acute lymphoid leukemia (ALL, depending on the fusion partner.[174] MLL is the
mammalian homologue of a Drosophila gene called trithorax, which was shown to play a
critical role in axial morphogenesis and patterning during embryogenesis through the
regulation of HOX genes (HOM-C in Drosophila).[175,176] Multiple studies have suggested
that deregulation of HOX gene expression contributes to leukemogenesis.[177] Additionally,
retroviral transduction of a MLL fusion gene construct was able to transform wild type, but
not the Hoxa9-deficient, bone marrow cells providing direct evidence that specific HOX gene
expression may be required for leukemogenesis.[178] Because MLL chimeras often lose large
fragments and different domains from either the N- or C-terminal regions, the seemingly critical
role of MLL-associated HOX gene expression to leukemogenesis led to the question of whether
the molecular mechanisms by which wild type MLL regulates gene expression are mutually
exclusive from those employed by MLL chimeras.[179]

As the molecular mechanisms of MLL target gene regulation continue to unravel, several
studies have shed light on the fact that molecular function between wild type and fusion gene
settings may be unique, though the outcome of gene activity is ultimately similar. Wild type
MLL encodes a multi-domain protein with three AT hooks used for binding AT-rich DNA
sequences and a histone methyltransferase domain [180] and assembles into supercomplexes
containing several different chromatin remodeling enzymes on target DNA motifs like those
found in HOX genes.[181] Chimeric MLL proteins, on the other hand, appear to utilize different
mechanisms to modulate HOX gene expression and initiate leukemogenesis. For example,
fusion of coiled-coil domains from GAS7 or AF1p to MLL endow the chimeric protein with
the ability to dimerize on the target gene promoters and have been suggested to stimulate
transcription through the inappropriate recruitment of members of the MLL supercomplex.
[182] This suggested that preventing dimerization of the coiled-coil domains with targeted
small molecules could inhibit MLL activity in this subset of MLL fusions. In contrast, some
MLL fusions lead to constitutive nuclear retention while maintaining similar binding patterns
as the dimerizable MLL chimeras on the HoxA9 locus.[183] In the absence of a partner gene,
MLL can acquire an in-frame partial tandem duplication (PTD) of exons 5 through 11
(occurring in approximately 4%–7% of AML cases) that causes overexpression of HoxA7,
HoxA9, and HoxA10 in spleen, BM, and blood in a knockin mouse model.[184] As such,
altering downstream HOX gene expression appears to be one critical role of MLL gene fusions
and rearrangements.

Given that wild type and chimeric MLL proteins appear to accomplish at least one similar
molecular function (HOX gene regulation), the question of how epithelial gene fusions will
function in comparison to their wild type counterparts remains intriguing. For example, we
have very little understanding of the normal molecular mechanisms utilized by ERG and ETV1
to control gene expression (prostate cancer gene fusions, discussed above), let alone the critical
co-factors required for transcriptional regulation. Although we may expect the molecular
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mechanisms of ERG and ETV1 mediated gene regulation to be the same in the wild type and
fusion settings (because the encoded proteins are nearly identical), this remains to be proven.
Perhaps the ability to design rational drug targets against specific fusion proteins without
obvious molecular susceptibilities (like the tyrosine kinase activity of BCR-ABL) will depend
as much on our understanding of each fusion protein’s function and critical co-factors as on
their downstream targets.

Difficulty in identifying epithelial cancers gene fusions
With the discovery of the TMPRSS2-ERG gene fusion in prostate cancer, we look back on the
history of cancer biology and wonder why gene fusions have not been identified in some of
the most well studied epithelial cancers? Part of the problem was methodological, as the
chromosome quality in epithelial neoplasms is very poor when compared to hematologic
neoplasms. However, cytogenetic techniques have improved dramatically since the discovery
of the “minute” chromosome in 1960.[6] In fact, in the 1960s, chromosome patterns in
epithelial tumors were already being described as abnormal [185] and it was often thought that
the degree of cytogenetic changes corresponded proportionally with clinical progression
[186], making the identification of individual and recurrent translocations difficult. In fact, the
idea that the induction of genomic instability is a critical and intended step in the malignant
progression of solid tumors has gained considerable momentum.[187,188] Recently, it was
demonstrated that overexpression of Separase, a protein that is over-expressed in a subset of
breast cancers, leads to can induce chromosome instability and aneuploidy in the mutant p53
mouse mammary epithelial cell line FSK3.[189] Likewise, deregulation of Mad2, which
regulates separase activity, has been shown to promote chromosomal instability, induce
aneuploidy and lead tumorigenesis.[190] Interestingly, once Mad2-induced neoplastic
transformation has occurred, Sotillo et. al. demonstrated that expression of Mad2 is no longer
required for tumor progression suggesting that the induction of chromosomal instability could
be a transient event in oncogenesis.[190] In fact, it is possible that specific gene fusions induce
genomic instability through deregulation of normal mitotic events like separase or Mad2
activity or through novel mechanisms yet to be described. If induction of chromosomal
instability was a mechanism of oncogenesis employed by a specific gene fusion, then induction
of other secondary “carrier” chromosomal rearrangements would simply serve to mask the
identification of the recurrent genetic rearrangement. Such a progression pattern in epithelial
tumors could explain the complex heterogeneity often observed in such malignancies. In
contrast, leukemias, lymphomas and mesenchymal tumors are almost 95% clonal.[191] As
such, the complexity and shear number of genomic rearrangements in epithelial malignancies
has led to difficulty in defining primary aberrations in these neoplasms. This difficulty
eventually led to the incorrect notion that genomic rearrangements leading to gene fusions were
simply less common in epithelial tumors.

Mitelman Hypothesis
In order to address this notion that fusion genes are almost exclusively a hematologic
phenomena, Mitelman et al. completed a comprehensive study of all known cytogenetically
abnormal neoplasms reported in the literature.[192] Importantly, data published by the group
supported the counter-hypothesis that, in every tumor type, the numbers of recurrent balanced
chromosome abnormalities, gene fusions and balanced rearrangements are a function of the
total number of analyzed cases.[192] In this study, 271 gene fusions and 59 potential gene
fusions (only one gene identified at the breakpoint) were catalogued, of which 275 unique
genes were involved in the rearrangements.[192] This indicated that a substantial number of
genes were present in more than one chimeric transcript (e.g., MLL, ETV6 and RET as described
above). In classifying each gene fusion by the class to which each member of the chimera
belonged, the group demonstrated that the proportion of fusions belonging to each class was
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approximately equal in both hematologic and solid tumor malignancies, with the transcription
factor class accounting for 38-44% and tyrosine kinase class tabulating 5-7%.[192] This study
suggested that the occurrence of gene fusions is a general molecular event that has no
fundamental tissue-specific differences. However, gene rearrangements must at least
encourage function in specific genetic backgrounds such as the TMPRSS2-ERG fusion, which
requires active androgen signaling, and thus encourages prostate specificity.

Tissue-specific gene fusions
The idea that genomic rearrangements are tissue specific is an emerging concept in the field
of gene fusion biology. For example, TMPRSS2 is a strongly androgen regulated and prostate
specific gene that is fused to the ETS family members ERG and ETV1 in prostate cancer.
[135] While other ETS family members form fusion genes that give rise to other malignancies,
chimeras between androgen regulated genes and ETS genes have only been observed in
prostate cancer.[130] Likewise, the ALK tyrosine kinase is frequently fused to multiple
partners in hematopoietic (myelogenous leukemia), mesenchymal (congenital fibrosarcoma)
and epithelial (secretory breast carcinoma) malignancies, but no redundant fusion partners have
been identified across tissue types.[159] Retention of the TFE3 DNA binding domain in
follicular thyroid carcinoma is another example of this, as TFE3 is a thyroid-specific
transcription factor.[93] Importantly, little is understood about the molecular mechanisms
leading to gene rearrangement and the underlying reasons that particular chimeras are formed
recurrently. The idea that tissue specific rearrangements occur by fusing highly transcribed
genes holds promise and would at least partially explain the apparent tissue specificity observed
in the formation of chimeric transcripts even between genes that are fused in multiple cancer
types.

The idea that gene fusions are tissue specific could have profound implications on the discovery
of novel gene fusions. Clearly, however, gene fusions do not always confer tissue specificity.
HMGA2 has a 3’-UTR that is negatively regulated by the Let7 microRNA and simply replaces
its 3’-UTR through rearrangement with another gene (described above), therefore representing
a gene fusion that most likely retains functionality in multiple tissue types. As such, while this
concept may have its largest impact on underlying molecular mechanisms of newly discovered
gene fusions, it will probably not alter the rate gene fusion discovery.

Discovery of novel gene fusions
Although the rate recurrent chromosomal rearrangement discovery in epithelial tumors has
been modest, the recent discovery of gene fusions in prostate cancer has led to a renewed
interest in gene fusions identification in other epithelial cancer subtypes. Perhaps the best
explanation for the sudden increase in the characterization of recurrent gene fusions is the
advent of novel technologies. For example, the use of existing gene expression data in the
discovery of novel gene fusions was limited until the emergence of cancer outlier profile
analysis (COPA), which ranks genes by normalizing expression values based on median
absolute deviation of gene expression to accentuate outlier profiles (reviewed in [130]). When
COPA was applied to gene-expression datasets in the Oncomine database [193-196], the
analysis was able to identify several hallmark cancer related genes and led to the discovery of
the ERG and ETV1 outlier profiles in prostate cancer.[135] Subsequent exon-walking
quantitative PCR was used to demonstrate loss of the 5’ exons in both ERG and ETV1, giving
rise to the notion that a gene fusion event was responsible for the outlier expression of these
genes in prostate cancer. Finally, 5’-RNA ligase-mediated rapid amplification of cDNA ends
(5’-RACE) was used to identify the 5’ untranslated region of TMPRSS2, a prostate-specific,
androgen-regulated, transmembrane serine protease gene [131,132,197]. Fusion specific PCR
and fluorescence in situ hybridization (FISH) were used to confirm the genomic rearrangement.
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In contrast to using COPA and exon-walking quantitative PCR to identify fusion gene
candidates, several labs are now employing next generation sequence methods wherein DNA
or mRNA can be fragmented, sequenced and mapped to the genome in a matter of weeks to
identify gene fusions. Various commercial platforms have been developed with the intent of
sequencing as much of the genome or transcriptome as possible and are classified based on the
length of the templates each platform sequences. Long read technologies, like 454, can
sequence long templates (>1kb) whereas short read technologies, like SOLEXA and SOLID,
are currently capable of sequencing 35-50 nucleotide templates. At first glance, long read
technologies may appear to have the advantage of making genome (or transcriptome) re-
assembly much simpler than short read technologies. However, a major advantage of short
read technologies is the depth of coverage, or number of times a segment of the genome is
sequenced, which is currently much higher for short read than long read technologies. As such,
the choice of technology is still dependent on the scientific question.

If our question is to identify the best method for novel fusion gene discovery, we assume that
sequencing the transcriptome space will be much efficient than sequencing cancer genomes.
In theory, the discovery of gene fusions by long read technology will require sequencing across
the actual gene fusion boundary of the chimeric transcript. In contrast, short read technologies
may be able to identify gene fusions by two different methods. The first and most straight
forward method is the identification of sufficient short reads that do not map directly to the
transcriptome, but correspond to the gene fusion boundary; and these short reads should
identify both contributing genes with high probability. Second, because transcripts are thought
to be sequenced with a uniform distribution across the length of the transcript, except for at
the extreme 5’ and 3’ ends, exon expression for each transcript can be analyzed. Genes involved
in rearrangements, leading to chimeric transcripts, would be expected to lack any exon
expression on one of the transcript ends. However, this method will need to be carefully
developed, as mapping of short reads to duplicated sequences (or sequences that appear more
than one time in the genome) remains challenging.

To test whether short or long read technology was better for the discovery of recurrent gene
fusions, we recently sought to “re-discovered” the known gene fusions BCR-ABL1 and
TMPRSS2-ERG by sequencing the RNA transcriptome of either the leukemia cell line K562
or the prostate cell line VCAP, respectively, with both short and long read platforms.[171]
Initially both technologies were able to identify the known gene fusion from the sample, but
were also able to identify several other candidate gene fusions. For example, the Illumina short
read platform nominated 428 candidates from the VCAP cell line.[171] However, most of these
candidates were likely to result from either trans-splicing [198], co-transcription of adjacent
genes followed by intergenic splicing [199], or as a consequence of the sample preparation
protocol. In order to reduce the list of potential candidate genes, we intersected the results of
the two platforms to yield a much more condensed list. Indeed by integrating the short read
and long read platforms rather than constraining the analysis to either short or long read
technology, we were able to significantly reduce the percent of false positive gene fusions
discovered.[171]

In the future, an even newer adaptation of next generation sequencing will likely replace the
current reliance on both short and long read technologies for fusion gene discovery. Paired end
sequencing is a method in which short read technology is used to sequence nucleotides from
both the 5’ and 3’ ends of 200-300 nucleotide fragments of the genome (or transcriptome). By
sequencing both ends of a fragmented RNA, paired end sequencing enhances not only the
reliability of mapping and assembly, but also maintains significant sequencing depth. In a
manner similar to our recent integration of short and long read platforms, the use of paired end
sequencing technology for gene fusion discovery should first be examined by comparing the
ability of matched mate-pairs to identify known gene fusions from control samples. With paired
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end sequencing, a single sample preparation and individual sequencing run will hopefully
provide sufficient coverage for gene fusion discovery and these improvements as well as other
advancements in modern sequencing technologies will likewise lead to a dramatic
improvement in our ability to identify novel, pathogenic gene fusions.

Lessons from the JAZF1-JJAZ1 chimera
Advances in sequencing technology will most likely lead to a rapid increase in the number of
characterized gene fusions over the next few years. However, a much more pertinent question
may address the reasons for chromosomal rearrangements leading to gene fusions. Could
fusion transcripts be a part of normal cell biology? It is also plausible that tissue specific fusions
could impart growth advantages that allow a cell to survive traumatic stress. Nonetheless, while
the underlying molecular mechanisms triggering genomic rearrangement are still unclear; we
surmise that once a genomic rearrangement occurs, cells harboring favorable gene fusions will
be selected over time.

Insight into the development of genomic rearrangements may come from fundamental
observations made following the study of endometrial stromal (EMS) tumors. In 2001, a
recurrent translocation t(7;17)(p15;q21) was demonstrated to occur in EMS tumors that led to
expression of the chimeric JAZF1/JJAZ1 mRNA transcript.[200] Although the mechanism
leading to this rearrangement remains unknown, a recent study demonstrated that trans-splicing
of RNAs in normal human endometrial stromal cells can lead to the chimeric JAZF1/JJAZ1
RNA and protein independent of chromosomal rearrangement.[201] This observation suggests
that certain gene fusions may be generated by trans-splicing of RNAs, which then lead to
chromosomal rearrangement due to their pro-neoplastic nature. Interestingly, the group also
demonstrated that the RNA trans-splicing event leading to the JAZF1/JJAZ1 chimera was
inhibited at high concentrations of either estrogen or progesterone, further suggesting that
certain RNA fusions may occur in a hormone-dependent manner. The question of whether or
not other specific gene fusions arise due to abnormal exposure to specific hormones has not
been studied.

Conclusions
A limited number of epithelial gene fusions have been described and the quest for novel
recurrent gene fusions, like the discovery of TMPRSS2-ERG gene fusions in prostate cancer,
may provide major advances in cancer research in the near future. Here, we have demonstrated
that gene fusions lead to over-expression or constitutive activation of oncogenes by a variety
of unique mechanisms including fusion of housekeeping or tissue-specific gene promoters to
oncogenes, as in the case of TMPRSS2 gene promoter and 5’-UTR to ERG or, as in the case
of HMGA2, through evasion of a microRNA by replacement of an oncogene’s 3’-UTR. Despite
the multitude of mechanisms used by chimeric transcripts to drive malignancy, several
important lessons can be taken from characterized epithelial gene fusions, studies of MLL
translocations, as well as the very recent discovery of JAZF1-JJAZ1 RNA fusions, which
precede genomic rearrangement in specific cell types.

As in the case of Imatinib and BCR-ABL1, perhaps the one of the best methods for interfering
with the development of specific malignancies will be through inhibition of well-characterized,
pathogenic fusion genes with rationally designed molecularly tailored therapies. In the future,
the use of both COPA and high throughput massively parallel sequencing will greatly increase
the speed and reliability of fusion gene discovery on both the genomic and transcriptomic
levels. We expect many more gene fusions to be reported over the next several years in various
tumor types, many of which will hopefully serve as rational drug targets.
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Figure 1.
Chronology of gene fusion discoveries in epithelial cancers.
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Figure 2.
Genomic structure of gene fusions with altered transcriptional regulation. The CTNNB1-
PLAG1 and TMPRSS2-ERG chimeras represent an important class of gene fusions in which
the proto-oncogene remains largely intact, but the genomic rearrangement places a new
promoter and 5’-UTR upstream of the main coding sequence, leading to aberrant expression
of the proto-oncogene.
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Figure 3.
HMGA2 gene fusions elude the Let-7 family of microRNAs. The HMGA2 mRNA structure
is shown along with putative Let-7 family binding sequences in the HMGA2 3’-UTR. Results
were predicted by TargetScan [202] and three representative microRNAs are shown with there
highest probability binding sites of the seven total predicted sites along the 3’UTR. Distance
to each predicted binding site is annotated as nucleotides from the start of the 3’UTR. Below
the wild type HMGA2 mRNA are the HMGA2-FHIT and HMGA2-NFIB mRNAs that result
from these two gene fusions. TargetScan did not predict any microRNA binding sites in these
genes. As such, the HMGA2 gene fusions represent a second class of gene fusions in which
the recombination event allows the proto-oncogene mRNA to evade microRNA-mediated
silencing.
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Figure 4.
Nuclear retention of NUT. The BRD4-NUT gene fusion represents a third class of
rearrangements in which the resulting protein gains activity to become a proto-oncogene. In
this case, the two bromodomains of BRD4 are fused to NUT. Although NUT usually cycles
between the nucleus and cytoplasm in a highly controlled manner, appendage of the BRD4
bromodomains to the majority of the NUT protein lead to nuclear retention of the protein and
aberrant activity.
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Figure 5.
Difficulty in discovering gene fusions. One possibility is that a critical function of oncogenes
in epithelial cancers is to alter genomic structure and it has been suggested that such changes
could lead to cancer progression. However, if such a model were true, it would give a reason
for the genomic heterogeneity observed in epithelial cancers that has allowed recurrent gene
fusions to go unnoticed in solid tumors.

Chad Brenner and Chinnaiyan Page 32

Biochim Biophys Acta. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chad Brenner and Chinnaiyan Page 33
Ta

bl
e 

1
C

hr
om

os
om

al
 re

ar
ra

ng
em

en
ts

 in
 e

pi
th

el
ia

l c
an

ce
rs

.

M
al

ig
na

nc
y

G
en

e 
Fu

si
on

C
hr

om
os

om
e 

R
ea

rr
an

ge
m

en
t

M
et

ho
d 

of
 D

is
co

ve
ry

St
ud

y
R

ef

Fo
lli

cu
la

r t
hy

ro
id

 c
ar

ci
no

m
a

PA
X

8-
PP

A
R
γ

t(2
;3

)(
q1

3;
p2

5)
Pr

im
ar

y 
tu

m
or

 k
ar

yo
ty

pi
c 

an
al

ys
is

/F
IS

H
/3

’ R
A

C
E

K
ro

ll 
et

. a
l.

90

M
id

lin
e 

ca
rc

in
om

a
B

R
D

3-
N

U
T

t(9
;1

5)
(q

34
;q

14
)

C
an

id
at

e 
ge

ne
 F

IS
H

 S
cr

ee
n

Fr
en

ch
 e

t. 
al

.
10

6

B
R

D
4-

N
U

T
t(1

5;
19

)(
q1

4;
p1

3)
Pr

im
ar

y 
tu

m
or

 k
ar

yo
ty

pi
c 

an
al

ys
is

/F
IS

H
/s

ou
th

er
n 

bl
ot

Fr
en

ch
 e

t. 
al

.
98

N
on

-s
m

al
l c

el
l l

un
g 

ca
nc

er

EM
L4

-A
LK

in
v(

2p
)

Tr
an

sf
or

m
at

io
n 

as
sa

y/
di

re
ct

 se
qu

en
ci

ng
So

da
 e

t. 
al

.
15

5

TF
G

-A
LK

t(2
;3

)(
p2

3;
q1

2)
Ty

ro
si

ne
 K

in
as

e 
A

ct
iv

ity
 S

cr
ee

n/
5’

 R
A

C
E

R
ik

ov
a 

et
. a

l.
17

0
SL

C
34

A
2-

R
O

S
t(4

;6
)(

p1
5;

q2
2)

Pa
pi

lla
ry

 re
na

l c
el

l c
ar

ci
no

m
a

PR
C

C
-T

FE
3

t(X
;1

)(
p1

1;
q2

3)
Pr

im
ar

y 
tu

m
or

 k
ar

yo
ty

pi
c 

an
al

ys
is

/s
ou

th
er

n 
bl

ot
/5

’ R
A

C
E

Si
dh

ar
 e

t. 
al

.
69

Pa
pi

lla
ry

 th
yr

oi
d 

ca
rc

in
om

a
R

ET
-N

TR
K

1
t(1

;1
0)

(q
21

;q
11

)
Tr

an
sf

or
m

at
io

n 
as

sa
y/

di
re

ct
 se

qu
en

ci
ng

M
ar

tin
-Z

an
ca

 e
t. 

al
.

24

Pl
eo

m
or

ph
ic

 a
de

no
m

a

C
TT

N
B

1-
PL

A
G

1
t(3

;8
)(

p2
1;

q1
2)

Pr
im

ar
y 

tu
m

or
 k

ar
yo

ty
pi

c 
an

al
ys

is
/B

re
ak

po
in

t m
ap

pi
ng

/s
ou

th
er

n 
bl

ot
/5

’ R
ac

e
K

as
 e

t. 
al

.
59

H
M

G
A

2-
FH

IT
t(3

;1
2)

(p
14

;q
15

)
Pr

im
ar

y 
tu

m
or

 k
ar

yo
ty

pi
c 

an
al

ys
is

/3
’ R

A
C

E
G

eu
rts

 e
t. 

al
.

80

H
M

G
A

2-
N

FI
B

t(9
;1

2)
(q

24
;q

15
)

Pr
im

ar
y 

tu
m

or
 k

ar
yo

ty
pi

c 
an

al
ys

is
/3

’ R
A

C
E

G
eu

rts
 e

t. 
al

.
81

Pr
os

ta
te

 c
an

ce
r

TM
PR

SS
2-

ER
G

de
l(2

1)
(q

22
)

C
O

PA
/E

xo
n 

w
al

ki
ng

/5
’ R

A
C

E

To
m

lin
s e

t. 
al

.
13

5
TM

PR
SS

2-
ET

V
1

t(7
;2

1)
(p

21
;q

22
)

TM
PR

SS
2-

ET
V

4
t(1

7;
21

)(
q2

1;
q2

2)
To

m
lin

s e
t. 

al
.

14
9

TM
PR

SS
2-

ET
V

5
t(3

;2
1)

(p
28

;q
22

)
H

el
ge

so
n 

et
. a

l.
15

1

SL
C

45
A

3-
EL

K
4

de
l(1

)(
q3

2)
In

te
rg

ra
te

d 
hi

gh
 th

ro
ug

hp
ut

 se
qu

en
ci

ng
M

ah
er

 e
t. 

al
.

17
1

D
D

X
5-

ET
V

4
t(1

7)
(q

24
;q

21
)

C
an

id
at

e 
ge

ne
 F

IS
H

 S
cr

ee
n/

5’
 R

A
C

E
H

an
 e

t. 
al

.
15

0

Se
cr

et
or

y 
br

ea
st

 c
ar

ci
no

m
a

ET
V

6-
N

TR
K

3
t(1

2;
15

)(
q1

3;
q2

5)
Pr

im
ar

y 
tu

m
or

 k
ar

yo
ty

pi
c 

an
al

ys
is

/F
IS

H
To

gn
on

 e
t. 

al
.

10
8

Biochim Biophys Acta. Author manuscript; available in PMC 2010 December 1.


