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Rapid genome-wide identification of genes required for infection
would expedite studies of bacterial pathogens. We developed
genome-scale ‘‘negative selection’’ technology that combines
high-density transposon mutagenesis and massively parallel se-
quencing of transposon/chromosome junctions in a mutant library
to identify mutants lost from the library after exposure to a
selective condition of interest. This approach was applied to
comprehensively identify Haemophilus influenzae genes required
to delay bacterial clearance in a murine pulmonary model. Muta-
tions in 136 genes resulted in defects in vivo, and quantitative
estimates of fitness generated by this technique were in agree-
ment with independent validation experiments using individual
mutant strains. Genes required in the lung included those with
characterized functions in other models of H. influenzae patho-
genesis and genes not previously implicated in infection. Genes
implicated in vivo have reported or potential roles in survival
during nutrient limitation, oxidative stress, and exposure to anti-
microbial membrane perturbations, suggesting that these condi-
tions are encountered by H. influenzae during pulmonary infec-
tion. The results demonstrate an efficient means to identify genes
required for bacterial survival in experimental models of patho-
genesis, and this approach should function similarly well in selec-
tions conducted in vitro and in vivo with any organism amenable
to insertional mutagenesis.
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Whole-genome analytic techniques have been developed to
identify bacterial genes essential for growth or survival in

vitro or during infection of model hosts. The most direct of these
approaches can be classified as ‘‘negative selection’’ strategies, in
which large pools of diverse mutants are analyzed to identify
mutations that reduce fitness under a particular condition.
‘‘Signature-tagged mutagenesis’’ utilizes DNA arrays represent-
ing unique hybridization tags that are introduced into each
mutant within a library of strains to be evaluated (1). The
‘‘transposon-site hybridization’’ and ‘‘microarray tracking of
transposon mutants’’ methods use microarrays displaying each
gene of the target organism to monitor the relative abundance
of transposon insertions in these genes under varied selection
conditions (2–4). Each of these methods has been effectively
used to identify virulence genes in diverse bacteria. For many
pathogens, however, generation of large banks of uniquely
tagged mutants is impractical and whole-genome microarrays
may be unavailable, particularly for newly recognized organisms
or genetically diverse species. In both microarray-based meth-
ods, hybridization is used to detect the abundance of a given
mutation within the library of mutants. Therefore, quantification
is limited by background hybridization levels and the dynamic
range of signal detection. A method that generates an output that
allows precise noise filtering and a broad dynamic range would
represent a significant advancement of the negative selection
strategy.

In this study we report a technique termed ‘‘high-throughput
insertion tracking by deep sequencing’’ (HITS) that uses a
whole-genome transposon mutant bank in combination with
massively parallel sequencing to efficiently analyze bacterial
genes involved in pathogenesis. HITS allowed analysis of genes
required by Haemophilus influenzae to resist clearance from the
lung, a site colonized during pneumonia and chronic obstructive
pulmonary disease (5, 6). Because deep sequencing is used for
detection, background signal is easily identified and removed
during data analysis, and the dynamic range of detection is
limited only by the number of sequencing reads, which can be
readily increased. The results highlight the utility of HITS in
systematic discovery and analysis of virulence genes required in
environments encountered by bacteria during pathogenesis.

Results
Overview of the HITS Technique. HITS is outlined schematically as
two steps in Fig. 1 A and B. The first step involves fragmentation
and ligation of adapters to sheared genomic DNA prepared from
a high-density mutant bank carrying random transposon inser-
tion mutations. In this study, mutagenesis was performed with a
minitransposon derived from the Himar1-mariner transposon,
which inserts efficiently in the genomes of H. influenzae and
other bacteria, with only the dinucleotide TA as the apparent
insertion site specificity (7–9). Selective amplification of trans-
poson/chromosome junction regions is performed by PCR, and
the resulting amplicons are purified by affinity capture. Sequenc-
ing is performed en masse on the Illumina next-generation
sequencing platform. The second step identifies the genomic
location of each transposon insertion site within the bank by
mapping chromosomal sequences adjacent to inverted terminal
repeats of the transposon to the reference genome. The fitness
of insertion mutants containing disruptions in a given gene is
reflected in both the relative number of insertion sites detected
within the gene and the number of times each site is detected by
the sequence analysis.

Generation of a Mutant Bank Selected for Growth or Survival in Vivo
in the Murine Lung Model. The mechanisms that allow H. influ-
enzae to persist in the lung are not well understood. Mouse
pulmonary infection provides a well-established model for in-
vestigation of mechanisms used by H. influenzae and other
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bacteria to persist and resist host defenses during lung patho-
genesis (10–12), yet there have been no comprehensive studies
to identify H. influenzae genes needed at this site. To evaluate the
utility of HITS for virulence gene identification using the mouse
lung model of infection, we inoculated 5 mice with 107 cfu of a
�75,000 member insertion mutant library of H. influenzae
generated with a Himar1 mariner–derived minitransposon. At
24 h after inoculation an average of 9.2 � 105 cfu were recovered
from the lungs of each mouse. Chromosomal DNA was isolated
for analysis from both the inoculum and from the ex vivo
bacterial populations. The numbers of cfu in the inoculum and
recovered from mice suggested that the mutant library was likely
to be sufficiently represented in both populations and that
mutants had been subjected to in vivo selection.

Analysis of Genomic Mutant Banks by HITS and Application to
Genome-Wide Identification of H. influenzae Genes Required in the
Lung. We conducted the HITS procedure (Fig. 1) on the input
library and mapped the insertions to their chromosomal posi-
tions (Fig. S1). Insertions were evenly distributed around the
chromosome, and �44% of the 131,960 total possible chromo-
somal TA target sites for mariner were found to have sustained
insertions in this library. Before passage in vivo, a total of
534,567 sequencing reads mapped to nonrepetitive chromosomal
regions immediately flanking 55,935 unique sites, with 44,270 in
predicted protein coding genes and 11,665 in intergenic regions
or structural RNAs. Of 1,657 annotated genes, no insertions
were detected within 268 genes and 90 sustained insertions in
�5% of their possible TA insertion sites, implicating at least 358
genes as essential for growth or viability on laboratory medium
in vitro. Twenty-five genes with �8 possible TA insertion sites
were excluded from analysis on the basis of an estimated
probability of 0.05 that they could fail to sustain insertions owing
to chance at this level of transposon insertion density in the
library. Thirty-five genes could not be analyzed because they
either contained extensive repetitive sequences or were dupli-
cated in the genome. After subtraction of essential genes, genes
containing repetitive sequence, or genes with very few possible
insertion sites, there were 1,239 genes that could be analyzed.

For fitness analysis of mutants after in vivo selection, we
considered the number of transposon insertions detected in the
first 5–80% of each gene, the region in which insertions are
expected to abrogate gene function. To exclude genes in which
insertion mutations led to potential in vitro growth defects, we
set a threshold requiring that candidate virulence genes sustain
insertions in at least 40% of their possible mariner transposon
target sites before in vivo selection, and 201 genes sustained
densities of insertions below this threshold (Fig. 2 and Table S1).
In the 1,038 annotated protein-coding genes that were dispens-
able in vitro, an average of 287 sequencing reads detecting
insertions in the 5� 5–80% region of each gene was observed

Fig. 1. HITS and comparison of selected libraries. (A) HITS sample prepara-
tion and enrichment of transposon/chromosome junctions. After transposon
mutagenesis, chromosomal DNA is purified from H. influenzae mutant library.
Red, ITRs of himar1 transposon; white, contents of transposon, including the
kanamycin resistance gene. Illumina oligonucleotide adapters (gray) are li-
gated to sheared genomic DNA. Fragments of the transposon/chromosome
junctions are enriched via PCR using transposon- and adapter-specific primers.
The biotinylated transposon-specific primer (yellow) anneals to the ITRs of the
transposon and includes the Illumina sequencing primer site. The adapter-
specific primer anneals to only 1 oligonucleotide of the partially complemen-
tary adapter. Enriched fragments are collected using streptavidin-coated
paramagnetic beads. After washing, single-stranded DNAs are eluted from
the beads and used for cluster formation on Illumina flow cells. (B) Comparison
of lung-selected output library to input library. After sequencing, reads are
mapped to the reference genome (solid arrows, plus strand; dashed arrows,
minus strand) to identify the transposon insertion sites. The number of inser-
tion sites detected per gene and the number of sequencing reads per site are
used to determine the relative abundance of the mutant within the library
before and after selection. The examples depict insertion patterns at TA sites
in hypothetical gene A, in which insertion mutations confer attenuated
growth or survival during infection, and gene B that is not required for growth
in vitro or in vivo. Insertions in genes that are essential for growth on rich
culture media are absent in the input library and are not detected by HITS.

Fig. 2. Comparison of transposon insertions in the mutant library before and
after selection in the lung model. Insertion sites in the 5� 5–80% protein
coding sequence of the gene and reads associated with these sites were
considered for fitness analysis. The saturation of transposon insertions within
1,239 genes in the input library is shown on the x axis. Saturation was
calculated as the percentage of sites within a gene sustaining transposon
insertions to the total number of possible of insertion sites (TA dinucleotides).
The lung survival index (s.i.) is represented on the y axis as the number of reads
mapped to a gene in the output library divided by the reads identified in the
input library (points on the x axis represent s.i. values of zero). Essential genes,
those sustaining insertions in �5% of possible sites, are not shown (shaded);
the majority of these sustained no insertions, and the remaining 25% aver-
aged 1 insertion per gene. The threshold for an inferred in vitro growth defect
(solid line) was set at a saturation of 40% of the possible TA insertion sites
within a gene. The threshold for in vivo attenuation (dashed line) was set
at a lung s.i. of �0.30. Numbers of genes falling within each quadrant
are indicated.
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(Fig. S2). HITS analysis of these genes was quite reproducible.
When two preparations of genomic DNA from the transposon
mutant bank were independently analyzed, the number of in-
sertions detected in each gene was similar, with the majority
(82%) of genes having �20% variation in insertion density
between samples (Fig. S2). Therefore, both the complexity of the
transposon bank and the detection of mutations by sequencing
seemed to be sufficiently saturating for reproducible analysis of
the relative abundance of mutants in the library.

To identify genes required during infection, we analyzed the
relative number of insertions in each gene in the output library
obtained after lung infection vs. insertions in the library before
in vivo selection. The results are shown graphically in Fig. 2, and
the complete data are listed in Table S1. A total of 903 genes had
similar numbers of insertions before and after selection in the
lung, indicating that they were not required in this model. This
large number of genes with insertion patterns in the output
library that were similar to those in the input library indicated
that significant stochastic loss of mutations had not occurred in
the infection model. The 135 genes that sustained insertions in
�40% of their possible TA insertion sites and in which the
number of insertions decreased by at least 3.3-fold after selection
in the lung were considered candidate virulence genes (Table
S2). Representative insertion patterns for genes detected as
being required during infection (galU and orfH) vs. those that are
not required in vivo (xylA) are shown in Fig. S3. In summary,
HITS implicated 8.1% of the 1,657 annotated genes in the
genome in survival or growth of H. influenzae in the lung.

Genetic footprinting provides a means for analyzing insertions
in discrete genes to verify results obtained with HITS. Genetic
footprinting uses PCR with a specific chromosomal primer
paired with a transposon primer for physical mapping of inser-
tions to the chromosome in a bank of mutants (13). For a given
gene, PCR results in a set of products varying in size that
correspond to the distance between the chromosome-specific
primer and each transposon mutation within that gene. Speci-
ficity is further assured by conducting the procedure with a
primer 5� of the gene and independently with a primer 3� of the
gene. For this validation we chose genes of LPS biosynthesis
(opsX, rfaF, orfH, and galU) in which mutations resulted in

pronounced attenuation relative to wild-type according to HITS
data (Table S2). H. influenzae produces a short chain carbohy-
drate on its LPS (also called lipooligosaccharide, LOS) and lacks
the repeating O-antigen carbohydrate typical of some bacterial
LPS. The LOS of H. influenzae consists of a conserved ‘‘inner
core’’ usually composed of 3 heptose residues and an ‘‘outer
core’’ composed of variable-length oligosaccharide extensions
from the heptose residues. The opsX, rfaF, and orfH genes
encode heptosyltransferases I, II, and III, respectively, and
generate the chain of 3 heptose residues initiating at a single
3-deoxy-D-manno-octulosonic acid, which is attached to lipid A
(14–16). The galU gene encodes a UDP-glucose pyrophospho-
rylase that catalyzes the UTP-dependent conversion of D-glu-
cose-1-phosphate into UDP-glucose, the activated form of the
sugar required for biosynthesis of various carbohydrates, and
galU is required for addition of glucose and galactose residues to
the LPS of diverse pathogenic bacteria (17–19).

Representative genetic footprinting results are shown for galU
and orfH and compared with insertion patterns detected by HITS
in Fig. 3 A and B. The decrease in insertion mutations detected
in these genes after in vivo passage of the bank provided
verification of selection against mutants with disruptions in these
genes, and band intensities on genetic footprinting gels were in
good agreement with the abundance of insertions at each site as
detected by HITS. Genetic footprinting also detected in vivo
attenuation of mutants with insertions in opsX, rfaF, and galE,
and similar results were obtained in reactions with primers
positioned either 5� or 3� of each gene (Fig. S4). In contrast, xylA,
a gene of D-xylose metabolism that is not required for bacte-
remia (20), exhibited similar mutational profiles in both the input
and output banks (Fig. 3C), indicating that it is dispensable in the
lung model. Therefore, these results provided a verification of
HITS results by an independent method, identifying virulence
factors previously implicated in bacteremia.

To assess whether genes identified by HITS as being required
in vivo are also required in single-strain infections, we generated
nonpolar mutations removing the complete coding sequences of
galU or orfH, genes implicated as being required in the lung
model by HITS. To address mutant phenotypes with a recent
clinical isolate, mutations were constructed in the nontypeable

Fig. 3. Comparison of HITS analysis, genetic footprinting, and single-strain infections. Genetic footprinting of input and output libraries for (A) galU, encoding
UDP-glucose pyrophosphorylase, (B) orfH, encoding heptosyltransferase III, and (C) xylA, encoding xylose isomerase, are shown in the gel images. PCR analysis
was conducted using the transposon-specific primer marout and chromosomal primers galU�F, orfH�F, or xylA�F that anneal 278 bp, 202 bp, and 279 bp upstream
of the respective genes. In the plots, HITS data correspond to regions analyzed by footprinting. (D) H. influenzae NTHi wild-type (NT127) and deletion mutants
of galU and orfH recovered from lungs of C57BL/6 mice (7 mice per strain) 24 h after intranasal inoculation with each strain. Bars represent the mean cfu per
lung. Comparisons between wild-type and mutants were statistically significant via one-way ANOVA with Tukey’s multiple comparison test (P � 0.001). LLD, lower
limit of detection. Fold differences in mean cfu recovered for NT127 wild-type strain vs. the galU or orfH mutants in individual mutant infections (brackets) are
compared with HITS results (below the chart). HITS survival indices were 0.011 for galU and 0.012 for orfH, corresponding to in vivo attenuations (calculated as
the reciprocal of the s.i.) of 89-fold and 82-fold, respectively. In A–C, genome coordinates of transposon insertion sites detected via HITS analysis were reoriented
with respect to the chromosomal primer positions used in footprinting. The y axis was modeled to the migration of the molecular weight (MW) standard of
footprinting gels using nonlinear regression, and the x axis represents the number of sequencing reads mapped to insertion sites. The scale of the MW standards
on the right of each panel applies to both the genetic footprints and the HITS analysis plots. White, nonessential genes; gray, genes required for growth or survival
in the lung.
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H. influenzae strain, NT127 (21). In agreement with HITS and
genetic footprinting results, both mutants were attenuated for
survival in the lung. Moreover, the degree of attenuation cal-
culated by HITS falls within the variation in fold difference
observed between single-strain infections of individual mice.
(Fig. 3D). The galU and orfH genes were previously shown to be
essential for survival of H. influenzae in bloodstream models of
infection (22, 23). A requirement for these genes in the lung
supports the view that H. influenzae utilizes structures of the LPS
inner and outer core in virulence strategies to combat clearance
mechanisms of the host found in both of these environments.

Discussion
The genes implicated in bacterial growth or survival in the lung
were functionally diverse, although several general categories
were notable (Table S3). On the basis of Clusters of Orthologous
Groups (COG) classifications, categories that were overrepre-
sented in the attenuated gene set relative to their representation
in the genome overall were ‘‘cell wall/membrane/envelope bio-
synthesis,’’ ‘‘amino acid transport and metabolism,’’ and ‘‘nucle-
otide transport and metabolism’’ (Tables S2 and S3). The genes
identified provided insight into the selection conditions encoun-
tered by H. influenzae in the lung model.

Components of the bacterial cell surface are frequently the
most direct participants in host–pathogen interactions. A major
class of genes related to the cell envelope that was identified as
markedly attenuated in vivo consisted of genes of LPS synthesis.
LPS is essential in models of H. influenzae pathogenesis in the
middle ear and blood and contributes to numerous aspects of
NTHi infection, including evasion of complement and antimi-
crobial peptides (24–26). Genes needed for extension of the LPS
inner-core structures (opsX, rfaF, and orfH) were required in
vivo in the lung [survival index (s.i.) �0.012] (Table S2), in
agreement with the requirement for these genes for bacteremia
(22, 23). Genes required for precursor production for LPS
carbohydrate outer-core hexose extensions (galU and galE) were
also required (s.i. � 0.025), suggesting that unmodified inner-
core LPS results in enhanced clearance of H. influenzae from the
lung. Genes required for hexose extensions from the first
heptose, lgtF (s.i. � 0.152), or the terminal heptose of the inner
core, lpsA (s.i. � 0.258), were partially required (16, 27), and a
trend of moderate attenuation (�1.5-fold) was also observed in
single-strain infections with an lpsA mutant (Fig. S5). Distal
modifications of the LPS outer-core structure mediated by genes
such as lic3A, which adds sialic acid or the lic1 locus responsible
for addition of phosphorylcholine seemed to be nonessential in
vivo in these experiments. The lic1D gene was previously impli-
cated in the lung model at a late time during infection, but not
at 24 h (28), and it is possible that other distal modifications also
are more important at later times.

Numerous genes involved in transport of proteins or other
substrates were implicated in the lung model, including the
complete twin-arginine translocation system (tatA, tatB, and
tatC), which translocates folded proteins that lack Sec-
dependent signal sequences across the plasma membrane and
contributes to virulence in multiple pathogens (29). An intrigu-
ing set of genes with recently predicted functions in maintenance
of outer-membrane lipid asymmetry (30) was implicated in
pathogenesis in the lung. These genes included vacJ and a set of
5 genes annotated as ‘‘hypothetical genes’’ that are putative
orthologs of an ABC transport system of Escherichia coli en-
coded by the mlaA and mlaBCDEF loci (for clarity, E. coli names
of these genes are noted in Table S2). Orthologs of these genes
were implicated in virulence of enteroinvasive E. coli, Shigella
flexneri, and Burkholderia pseudomallei (31–33). The mla gene
orthologs were required late during the intracellular life cycle for
escape from the phagocytic vacuole (31). A role for the mla genes
in both intracellular pathogens and H. influenzae suggests that H.

influenzae may encounter membrane-damaging host defenses,
such as cationic peptides or stress conditions in the lung, that are
similar to those found in the phagocytic vacuole.

Additional overrepresented COG groups included genes in-
volved in nutrient acquisition and interrelated adaptations to
physiologic stress. Pathways of amino acid metabolism were
required in the lung and included enzymes for synthesis or
interconversion of methionine, asparagine, aspartate, serine,
tryptophan, and branched-chain amino acids. Consistent with
amino acid limitation, genes predicted to encode regulators
involved in the stringent response were implicated in vivo,
including RelA, which synthesizes (p)ppGpp in response to
amino acid starvation (34), DksA, which modulates rRNA
expression in response to (p)ppGpp (35), and Lon protease,
which is activated by polyphosphate generated from (p)ppGpp
(36) and has been implicated in proteolytic control of virulence
factors (reviewed in ref. 37). Genes of nucleotide uptake and
metabolism included those required for synthesis of purines and
pyrimidines, in addition to genes involved in NAD uptake, nadN
and hel. These genes mediate sequential conversion of NAD to
NMN and nicotinamide riboside for uptake of this nucleotide
that H. influenzae is unable to synthesize de novo (38). The
complete set of genes for phosphate uptake (pstS, pstB, pstA, and
pstC) was implicated in pathogenesis, as was the gene predicted
to encode PhoB, a conserved response regulator protein that
becomes active under low-phosphate conditions and controls
diverse virulence functions in bacterial pathogens (reviewed in
ref. 39). PhoR, a sensor kinase that activates PhoB, was not
implicated in the lung. In other species, PhoB can be activated
by ‘‘cross-talk’’ with other signaling systems independently of
PhoR (40), and therefore H. influenzae PhoB may be required for
responses to alternative signals. Resistance to oxidative stress is
important for many pathogens. Genes involved in adaptations to
oxidative stress conditions were identified, including pgdX, en-
coding a glutathione-dependent peroxidase (41), oxyR, which
regulates genes critical for oxidative stress resistance, including
pgdX (42), and genes of recombination pathways (ruvA, ruvB,
ruvB, recR, recC, xerC, and xerD) required to repair DNA
damaged by oxidative stress (43). Several genes implicated in the
lung model (nadN, hel, and pdgX) are dispensable for blood-
stream colonization by H. influenzae type b (41, 44). It is possible
that H. influenzae strains differ in their requirements for these
genes in vivo, or that these genes are specifically needed in the
lung, where nucleotide sources and levels of oxidative stress may
differ from those in the blood.

Conclusion
HITS provides a massively parallel system to simultaneously
monitor the relative fitness of thousands of individual mutants
undergoing a selection condition of interest. In this report, a
large library of �75,000 H. influenzae mutants was subjected to
selection in a murine pulmonary model of pathogenesis to
identify genes required for prolonging survival of H. influenzae
in the lung. Analysis of the mutant library by HITS was easily
performed, highly reproducible, and remarkably comprehensive.
Sequencing of transposon/chromosome junctions revealed inde-
pendent insertions in nearly 56,000 genomic sites. More than
96% of H. influenzae protein coding genes were analyzed using
a conservative cutoff that excluded 35 genes that were duplicated
or contained repetitive sequences and 25 genes that had �8 TA
dinucleotides available for mariner insertion. It is anticipated
that with improvements in high-throughput sequencing technol-
ogy, the depth of sequencing coverage will substantially increase
to allow an even greater level of resolution and dynamic range.
The results provide a genome-wide assessment of the genetic
requirements of this bacterium for growth or survival in the lung,
and also represent the most comprehensive fitness analysis that
has been applied to H. influenzae mutants in any animal model.
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The profile of genes required in this environment provides a view
of the host–pathogen interactions occurring during pulmonary
pathogenesis and will provide insight into potential strategies for
the design of vaccines or therapeutics to specifically target H.
influenzae in this site of disease.

The HITS procedure was demonstrated using a mariner trans-
poson bank in H. influenzae; however, none of the procedures are
organism specific, and the approach should be applicable to any
organism amenable to mutational analysis with transposons. A
major advantage of the approach we present in this report is that
it can be applied to existing mutant libraries and does not require
use of a specifically engineered transposon. In fact, the procedure
should be readily adaptable to libraries generated with any insertion
mutation capable of providing a primer-binding site. Although a
complete genome sequence is useful for HITS, mapping insertions
to annotated contigs of draft genome sequences should yield much
of the same information. Although HITS was used in this report to
obtain a genome-wide assessment of the requirements for lung
pathogenesis, the procedure should be equally effective for analysis
of requirements for growth or survival under any selective condi-
tion that can be applied to large populations of mutants en masse.
Because of the speed and resolution of HITS, it will be possible to
efficiently conduct fitness analyses in diverse contexts of host–
microbe interactions. Application of this approach is expected to
generate multifaceted views of the genetic requirements of patho-
gens in the environments they encounter in diverse stages of
pathogenesis.

Materials and Methods
High-Density Mutagenesis of H. influenzae by in Vitro Transposition. H. influ-
enzae Rd strain BA042 and clinical isolate nontypeable strain NT127 (21) were
grown in brain heart infusion broth (BHI) supplemented with 10 �g/mL hemin
and 10 �g/mL NAD (sBHI) or on sBHI agar plates at 35 °C. Media contained
kanamycin sulfate at 20 �g/mL (sBHI-Kan) where indicated. The mini-mariner
transposon mmTrcK (carried on plasmid pENTtrcK) was derived from magel-
lan1 (8) by replacement of the endogenous promoter for the kanamycin
resistance gene, aphI, with the trc promoter. Transposition reactions were
performed in vitro as described in ref. 45. Transposition products were trans-
formed into H. influenzae as described previously (8, 46). After selection on
sBHI-Kan plates, the insertion library (�75,000 colonies) was harvested in BHI
with 20% glycerol and stored at �80 °C.

Selection of Transposon Insertion Mutant Library in the Lung Model. The H.
influenzae insertion library (3.1 � 1010 cfu) was inoculated in 50 mL sBHI and
grown with shaking at 225 rpm to a final OD600 of 0.45. For representation of the
input library, cells from 35 mL of culture were collected by centrifugation and
stored at �80 °C. Inoculum for murine lung infection was prepared by pelleting
5 mL of the culture, washing in 1� Hank’s buffered salt solution, and dilution to
concentration of 2.5 � 108 cfu/mL. Forty microliters (107 cfu) was inoculated into
the nares of 5 female C57BL/6 mice (7 to 8 weeks old) anesthetized with ketamine
(50mg/kg)andxylazine (5mg/kg)by i.p. injection.At24hof infection, lungswere
harvested and homogenized using a Fisher Tissuemiser. Dilutions of homoge-
nates were plated on sBHI to enumerate total cfu per lung. To recover the output
library, homogenates from each mouse lung were plated on 12 sBHI agar plates,
and resulting colonies were collected for chromosomal DNA isolation via phenol
chloroform extraction (8). All experiments with mice were conducted with prior
approval of the University of Massachusetts Institutional Animal Use and Care
Committee (IACUC).

Genetic Footprinting. Genetic footprinting was conducted on H. influenzae
genomic DNA from input and output libraries as described elsewhere (45) with
transposon-specific primer, marout, and gene-specific primers that bind 5� or

3� of each gene. Primer design, PCR conditions, and image analysis are de-
scribed in SI Methods, and footprinting primers are listed in Table S4.

Illumina Sequencing of Transposon–Chromosome Junctions from Mutant Librar-
ies. Genomic DNA from mutant libraries prepared before and after in vivo
selection was sheared using a Covaris S2 device. Paired-end Illumina libraries
were created by ligation of adaptors to sheared DNA as described by Bentley
et al. (47) and size selected between 200 and 400 bp. Enrichment of transpo-
son/chromosomal junction regions was performed by PCR amplification with
a 5� biotinylated transposon enrichment primer, PE1MAR, and adapter-
specific PCR PE2.0 enrichment primer (Table S4). Thermocycler settings were as
follows: 30 s, 98 °C; 18 cycles of 10 s, 98 °C, 30 s, 65 °C, 30 s, 72 °C; 5 min, 72 °C.
Fragments between 250 and 300 bp were gel purified and added to Dynal
MyOne C1 beads (Invitrogen) to capture biotinylated templates containing
transposon insertions. The beads were washed according to the manufactur-
er’s instructions, and the nonbiotinylated strand was eluted with 125 mM
NaOH. Supernatants were recovered from beads, neutralized, and templates
purified with MinElute PCR purification columns (Qiagen). The resulting
transposon libraries were quantified on an Agilent Bioanalyzer 2100 RNA
Pico6000 chip (Agilent Technologies). Single-stranded templates were cluster
amplified and sequenced on an Illumina GAII, as described in ref. 47.

Analysis and Mapping of Illumina Sequencing Data. The Illumina sequencing
reads that contained the Himar1 inverted terminal repeat (ITR) sequence
and the adjacent TA insertion site were identified in the raw fasta files and
trimmed of the ITR sequence. The processed sequencing reads are provided
as multifasta files for Input Library Sample1 (Dataset S1), Input Library
Sample2 (Dataset S2), and Lung Output Library (Dataset S3). Processed
reads, typically 53 bp in length, were aligned to the H. influenzae Rd KW20
genome sequence (48) (GenBank accession no. L42023) using SOAPv1.11
alignment software using default settings (2 mismatches allowed per read)
(49). A custom PERL script was used to parse insertion site coordinates from
the SOAP output file to report the number of reads mapped per site and
strand orientations of aligned reads (SI Computer Script). The data were
imported into Microsoft Excel, and insertion site coordinates were mapped
to positions within protein coding genes annotated in protein table RefSeq
file NC�000907.ptt (from the National Center for Biotechnology Informa-
tion: ftp://ftp.ncbi.nih.gov/). For each gene, the number of insertion sites
identified and the total number of sequencing reads in the internal 5– 80%
of the gene were determined using Excel functions. Additional details are
provided in SI Methods. A draft version of H. influenzae strain RdAW (also
referred to as BA042) genome sequence was generated and is at least
99.98% identical to strain Rd KW20 (48).

Single-Strain Infections in the Pulmonary Clearance Model. Nonpolar mutations
deleting the galU and orfH genes were introduced into nontypeable H.
influenzae strain, NT127 (SI Methods). Each H. influenzae strain was used to
inoculate C57BL/6 mice by the intranasal route as described above. At 24 h of
infection, mice were killed and bacterial cfu in the lungs were enumerated as
described above. The number of cfu recovered from the lungs of each mouse
was compared by one-way ANOVA with Tukey’s multiple comparison test.
Blood samples obtained immediately before killing revealed no detectable
cfu. Procedures were approved by the University of Massachusetts IACUC.

Note Added in Proof. During review of this manuscript we learned of an
independent report submitted to Nature Methods by Tim van Opijnen, Kip L.
Bodi, and Andrew Camilli, in which transposon junction sequencing was
successfully applied to study genetic networks (personal communication).
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