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ABSTRACT

Motivation: LC-MS allows for the identification and quantification
of proteins from biological samples. As with any high-throughput
technology, systematic biases are often observed in LC-MS
data, making normalization an important preprocessing step.
Normalization models need to be flexible enough to capture
biases of arbitrary complexity, while avoiding overfitting that would
invalidate downstream statistical inference. Careful normalization of
MS peak intensities would enable greater accuracy and precision in
quantitative comparisons of protein abundance levels.
Results: We propose an algorithm, called EigenMS, that uses
singular value decomposition to capture and remove biases from
LC-MS peak intensity measurements. EigenMS is an adaptation of
the surrogate variable analysis (SVA) algorithm of Leek and Storey,
with the adaptations including (i) the handling of the widespread
missing measurements that are typical in LC-MS, and (ii) a novel
approach to preventing overfitting that facilitates the incorporation of
EigenMS into an existing proteomics analysis pipeline. EigenMS is
demonstrated using both large-scale calibration measurements and
simulations to perform well relative to existing alternatives.
Availability: The software has been made available in the
open source proteomics platform DAnTE (Polpitiya et al., (2008))
(http://omics.pnl.gov/software/), as well as in standalone software
available at SourceForge (http://sourceforge.net).
Contact: yuliya@stat.tamu.edu
Supplementary information : Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Spectral peaks from LC-MS can be used to identify and quantify
proteins in complex biological samples (Nesvizhskii et al., 2007).
However, LC-MS experiments are susceptible to many sources
of systematic bias, including non-constant instrument calibration,
imperfect sample preparation, sample run order, etc. (Fig. 1; Callister
et al., 2006, Jaitly et al., 2006, Petyuk et al., 2008). Here, we
characterize typical biases in LC-MS peak intensities using large-
scale calibration measurements with known internal controls. We
compare several existing normalization methods and propose an
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algorithm for estimating and removing systematic biases using the
singular value decomposition (SVD) of residual peak intensities.
Existing methods are found to either be incapable of capturing
complex bias trends or to overfit the data, resulting in invalid
downstream statistical inference. The proposed algorithm, called
EigenMS, is demonstrated to capture biases with great accuracy
without overfitting (Tables 2 and 3).

Calibration datasets are extremely valuable for assessing
the performance of computational methods, since they permit
comparisons between the results of a method and known
characteristics of the experimental design (Tseng et al., 2001). In
order to address the normalization of peak intensities in LC-MS, we
obtained a large-scale calibration dataset prepared in-house. Samples
of Salmonella (S.typhi) proteins under two biologically distinct
conditions were mixed together in five different concentrations, with
equal concentrations of a mixture of quality control (QC) proteins
added to each. Five replicates of each of the five concentration
groups were obtained in five batches using a randomized block
design. With this design, we are able to definitively separate
biological signal from technical bias. In particular, the QC proteins
can be used to evaluate a normalization method’s ability to remove
bias, and the Salmonella proteins can be used to evaluate the
method’s ability to preserve biological signal. We note, however,
that maintaining perfect equality of control protein concentrations
across samples is difficult in practice, an issue that we encountered
here.

We examine several standard normalization methods for LC-MS
peak intensities, including global scaling, peptide-specific ANOVA
models (Kerr et al., 2000) and scatterplot smoothing techniques
like lowess (Yang et al., 2002) and quantile normalization (Bolstad
et al., 2003). Global scaling cannot capture complex bias trends
like those commonly seen in high-throughput genomic or proteomic
experiments. When the sources of bias are known exactly, ANOVA
models can effectively estimate and remove systematic biases
(Hill et al., 2008). However, the use of peptide-specific models
for preprocessing may overfit the data and invalidate downstream
statistical analysis (Dabney and Storey 2007a). Furthermore, it will
not generally be possible to identify all of the relevant sources of bias
to sufficiently model biases with ANOVA. Scatterplot smoothing
techniques are widely used in the microarray literature, but they do
not necessarily address all sources of systematic bias, and they can
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Table 1. Concentration percentages accounted for by the different proteomes
in each sample from the calibration data

Experiment
Concentration percentage

Total S.typhi. Log MgM QC

1 100 100 0 15
2 100 75 25 15
3 100 50 50 15
4 100 25 75 15
5 100 0 100 15

actually introduce additional biases in common settings (Dabney
and Storey 2007b).

We present an algorithm, called EigenMS, that adapts the
surrogate variable analysis (SVA) method (Leek and Storey 2007)
to the problem of normalization of LC-MS peak intensities. SVA
uses SVD on model residuals to find trends that are responsible
for significant variation that is not explained by the experimental
factors of interest. In our context, these ‘residual eigenpeptides’ can
be used to flexibly capture and remove complex biases in LC-MS
peak intensities. Our adaptations of SVA result in several beneficial
features of EigenMS for the proteomics setting. First, EigenMS is
applicable to data with widespread missing measurements, as is
common in MS-based proteomics. Second, the EigenMS algorithm
is well-suited for inclusion in an existing proteomics analysis
pipeline, as it does not require any special downstream steps or
housekeeping. EigenMS is shown to perform well relative to existing
alternatives, based on the calibration data as well as simulations. The
algorithm is available as part of the open source proteomics analysis
platform DAnTE (Polpitiya et al., 2008). EigenMS is generally
applicable in bottom-up MS-based experiments based on either
tandem MS (Nesvizhskii et al., 2007), high-resolution LC-MS or
hybrids of the two (Zimmer et al., 2006).

2 METHODS

2.1 Experiments
2.1.1 Calibration dataset Salmonella samples grown under two
biologically distinct conditions (Log—logarithmic phase cultures grown in
a rich medium and MgM—acidic, magnesium-depleted minimal nutrients
medium) were combined in five different concentrations, with 25 QC
proteins added in equal concentrations to each as internal controls. The
Log phase is what is typically achieved by Salmonella cells in rich
medium, whereas MgM is thought to mimic the virulent conditions created
within host organisms. The QC proteins are derived from a mixture of
organisms, including horse, rabbit and cow. Five replicates of each of the
five concentration groups were obtained in five batches. Concentration run
order was randomized within each batch. Table 1 details the concentrations
for each of the Log, MgM and QC proteomes by experiment number. We
removed the first concentration group from our analysis due to its overall
low intensity across all batches. The Figure 1A shows a heatmap of the raw
peak intensities (see Fig. 5 in Supplementary Material for the corresponding
picture of the QC peptides). There are 228 peptides identified from the 25
QC proteins, and 3627 Salmonella peptides, corresponding to 686 unique
Salmonella proteins. Overall, about 50% of all peak intensities are missing,
due to peptides that were identified in some samples but not in others.

While the peptides derived from the QC proteins should be identical, on
average, across samples, there are practical difficulties (e.g. pipetting errors)
in ensuring exactly equal concentrations. Another technical feature to note
is that batches 4 and 5 were run using a different liquid chromatography
column than batches 1, 2 and 3; differences between the data from the two
columns are apparent in the heatmap of the raw intensities. Furthermore,
as is the case with many high-throughput experiments, replication in
these samples is technical in nature, rather than biological. This has the
potential to underestimate the sources of variability present in the resulting
samples, producing invalid P-values (Churchill 2002, Dabney and Storey
2006). Nevertheless, the data from the calibration measurements considered
here proved to be valuable for building and validating our normalization
algorithm. The data are included in the software download at SourceForge,
for reference; simply search for ‘EigenMS’ at http://sourceforge.net.

2.1.2 Simulation We simulated data to mimic the calibration data
described above, using the following model:

yijk =µi +Cij +Bik +TjK +εijk, (1)

where yijk is the log-transformed peak intensity for peptide i, comparison
group j and batch k; µi is the overall mean intensity for peptide i; C, B
and T represent mean differences between comparison groups, batches and
arbitrary additional sources of technical variation, respectively; and the ε

represent random error. Usual sum-to-zero constraints apply to the C, B
and T terms. We generated five comparison groups, five batches within
each group and m=200 peptides, of which 80 were differentially expressed
across groups. The group effects were chosen as monotonic step functions,
similar to what is expected in the calibration dataset. The batch effects were
constructed to reflect the LC column effect expected in the calibration dataset,
with batches 4 and 5 differing from batches 1–3. Finally, the T terms in
the simulation model were generated completely randomly, which meant to
reflect systematic differences between samples that are not related to any
known aspect of the experimental design. For full details of the simulation,
see the Supplementary Material. The Figure 4A shows a heatmap of the raw
intensities.

2.2 Existing normalization approaches
Most widely used normalization techniques in high-throughput genomic
or proteomic studies involve some variation of global scaling, scatterplot
smoothing or ANOVA (Quackenbush 2002). Global scaling generally
involves shifting all the measurements for a single sample by a constant
amount, so that the means, medians or (in mass spectrometry) total
ion currents (TICs) of all samples are equivalent. Scatterplot smoothing
techniques are widely used in microarray studies (Bolstad et al., 2003,
Yang et al., 2002). ‘M versus A’ plots (or MA plots, for short) compare
two samples by forming a scatterplot with the averages of intensities on
the x-axis and the differences of intensities on the y-axis; these are often
used for highlighting intensity-dependent biases. As an example, in terms of
model (1), an MA plot comparing batches k =1 and k =2 from group j=1
would plot Ai = ( yi11 +yi12)/2 versus Mi =yi12 −yi11, i=1,2,...,m. Under
certain conditions, any systematic deviations in the scatterplot away from
the horizontal zero line can be interpreted as bias. MA smoothing would
proceed by fitting a smooth curve to the relationship between the Ai and Mi,
then shifting the points to remove the fitted values of that curve, forcing the
scatter to follow the horizontal zero line. In the results that follow, we apply
scatterplot smoothing of MA plots, arbitrarily using the first sample as the
baseline to normalize all other samples too. ANOVA-based normalization
can be carried out by fitting gene- or peptide-specific ANOVA models, with
specific model terms included for expected sources of bias, then subtracting
off the estimated biases from the model (Kerr et al., 2000). In the calibration
dataset, we employ peptide-specific models that include batch effects:

yijk =µi +Cij +Bik +εijk, (2)

similar to model (1), but only including terms that represent known aspects
of the experimental design.
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A B

Fig. 1. Heatmaps of peak intensities for raw Salmonella (A) and EigenMS-normalized peptides (B). Sample indices are shown on the x-axis; the first five rows
correspond to batches 1–5 of the first concentration group, and so on. The y-axis shows the residual eigenpeptides; the plot of the first residual eigenpeptide
shows the entries in the first column of the V0 matrix (see Section 2.4), etc. Arrows indicate samples for which systematic biases are apparent; black arrows
correspond to samples from batch 4, gray to batch 5. For each highlighted sample, note the dark horizontal bands in the raw Salmonella peptides. These
features are thought to be due to the use of a different LC column in the last two batches. The bands have been removed after normalization.

2.3 Surrogate variable analysis
The EigenMS algorithm is an adaptation of the SVA method for detecting
significant unmodeled factors in the gene expression microarray setting
(Leek and Storey 2007). The basic idea of SVA is to (i) use knowledge
of the experimental design to estimate effects of the experimental factors
of interest, (ii) carry out SVD on the model residuals to capture remaining
systematic trends, then (iii) use the estimated residual trends as additional
factors to be adjusted for in the downstream, inferential model. This captures
the cumulative effect of technical features without requiring knowledge of
their exact sources. The SVA algorithm estimates ‘surrogate variables’ as
projections of gene expression trends due to technical factors and requires
that downstream statistical inference include the surrogate variables as
covariates. In so doing, normalization is carried out simultaneously with
inference, resulting in a clever work-around to the common problem of
overfitting due to complex preprocessing.

2.4 EigenMS
EigenMS follows the general approach of SVA with a few modifications.
Because EigenMS is intended to be implemented within a pipeline of
informatics tools, we prefer to avoid requiring the user to keep track of
surrogate variables in downstream analysis. Instead, we follow the general
SVA approach of estimating systematic residual trends using SVD, then
subtracting off those estimates from the raw data. To prevent overfitting, we
employ a rescaling trick to the normalized data, resulting in valid downstream
inference and no qualitative difference from the full SVA results. We adapt
the SVA algorithm as follows:

(1) For peptide i, i=1,2,...,m, estimate the model yi =Xβi +εi, where
yi is the vector of n intensities for peptide i, X is the model matrix
including only the experimental factors of interest, βi is a vector
of model coefficients and εi is random error. Let R be the m×n
matrix of residuals, with i-th row containing the vector ei =yi − ŷi,
i=1,2,...,m.

(2) Compute the SVD of R as R=UDV ′, where U is m×n, and both
D and V are n×n.

(3) Identify the number, H, of eigenvalues that account for a significant
amount of residual variation. This is done by bootstrap significance
analysis as in the original SVA paper. The first H columns of V are
then taken to represent bias. Let V0 be the corresponding n×H matrix.
The columns of V0 are referred to as ‘residual eigenpeptides’.

(4) To estimate peptide-specific bias, perform the regression R=BV0 +ε,
where B is a matrix of coefficients that relate the residual
eigenpeptides to each peptide’s vector of residuals. Estimate B by
least squares: B̂=RV0(V0

′V0)−1 =RV0 (since V0 is an orthonormal
matrix).

(5) Normalize the raw intensities by subtracting off the estimated bias:
Ỹ =Y −B̂V0. Here, Y is the m×n matrix of raw intensities with i-th
row containing yi, i=1,2,...,m.

The normalized intensities are then contained in Ỹ , a m×n matrix of the
same dimensions as the raw data. Our intention is that the users be able
to explore and analyze the normalized data without considering the steps
taken in preprocessing. However, as detailed in the SVA paper, a substantial
number of degrees of freedom have been used up by the above algorithm.
Thus, downstream inference on the normalized data without account for this
will proceed as though there are more available degrees of freedom than
there really are, resulting in underestimated P-values and anticonservative
inference. With this in mind, we describe next a rescaling trick that avoids
this problem.

2.4.1 Rescaling to prevent overfitting To maintain our ability to compute
valid P-values on the normalized data, we incorporate a rescaling algorithm
that replaces the systematic variability removed by EigenMS with just
enough random variability to approximately achieve the correct number of
degrees of freedom. We first compute P-values for experimental factors of
interest (‘group effects’ in the examples considered here) using a model
that also includes the residual eigenpeptides computed by EigenMS, as
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would be done if carrying out normalization and inference simultaneously.
We then compute P-values using the already-normalized data and a model
that only includes the experimental factors of interest, as would be done if
carrying out normalization in a preprocessing step, then inference on the
already-normalized data, without any special steps to address the degrees
of freedom used up in normalization. The rescaling algorithm then adds
residual variability to the second model by spreading out its residuals, until
its resulting P-values are indistinguishable from the first model’s.

Let yij be the intensity for peptide i in sample j, i=1,2,...,m, j=1,2,...,n.
Consider the model

yij =µi +
K∑

k=1

αkiwkj +
L∑

l=1

γliglj +εij, (3)

where the wkj are the primary variables of interest, and the glj are secondary
factors whose effects we would like to remove from downstream analysis.
Significance analysis could be based on the null hypotheses H0i :α1i =
...=αKi, i=1,2,...,m. A natural test statistic for peptide i is the ANOVA
F-statistic, Fi =MSTri/MSEi, computed under model (3). Under standard
ANOVA model assumptions, Fi follows the F(K−1),(n−K−L) distribution if
the null hypothesis is true, and the corresponding P-value can be computed
as P(F(K−1),(n−K−L) ≥Fi), where F(K−1),(n−K−L) is a random variable from
the F(K−1),(n−K−L) distribution.

For the purposes of normalization, we would like to estimate and remove
the effects of the glj to produce normalized data

ỹij =yij −
L∑

l=1

γ̂liglj . (4)

Subsequent significance analysis on the normalized data would be
conveniently carried out by computing F-statistics F̃i under the model
assuming only primary factors are present:

ỹij =µi +
K∑

k=1

αkiwkj +ε∗
ij . (5)

However, without acknowledging the preprocessing steps taken to estimate
and remove bias, the assumed null distributions for the resulting test statistics
will be incorrect. For example, if model (5) were assumed to apply to the data
after normalization, the null distribution for a resulting F-statistics would be
assumed to be F(K−1),(n−K), instead of F(K−1),(n−K−L). This overestimate of
the number of degrees of freedom would result in underestimated P-values.

Various approaches are available for avoiding this problem, including
(i) Storing the estimated secondary factor effects and plugging them in as
covariates in the significance-testing model, and (ii) manually adjusting the
number of degrees of freedom in the null distribution. Both of these require
the user to keep track of the preprocessing steps taken and incorporate them
into any software used for downstream inference. To avoid this requirement,
we instead consider adding random variability to the model residuals to
effectively remove the appropriate number of degrees of freedom. This
allows for significance analysis post-normalization with no special steps
required on by the user; that is, no additional covariates need to be added to
the inferential model, and no adjustment to the null sampling distribution of
test statistics are required. The specific algorithm employed for rescaling is
as follows:

(1) For peptide i, i=1,2,...,m, estimate the model yi =Wφi +εi, where
W = [XV0], and φi is the vector of coefficients relating W to yi.
Compute the P-values for the experimental factors of interest, and
call these p1,p2,...,pm. These correspond to the analysis that carries
out inference and normalization simultaneously.

(2) For peptide i, i=1,2,...,m, estimates the model ỹi =Xζi +εi, where
ζi is the vector of coefficients relating X to ỹi, and call the resulting P-
values p̃1,p̃2,...,p̃m; also, let ei denote the vector of model residuals
for the i-th peptide, i=1,2,...,m. These P-values correspond to
the analysis that carries out inference in a separate step, after
normalization.

(3) For peptide i, i=1,2,...,m, and for each of a range of scale factors
γr ∈ (0,S), r =1,2,...,nγ :

(a) Define rescaled residuals er
i as the ei whose elements have been

shifted further from zero by the selected scale factor γr : the v-th
residual eiv becomes er

iv =eiv +sign(eiv)×γr , v=1,2,...,n.

(b) Compute the corresponding rescaled version of the normalized
data as ỹi −ei +er

i .

(c) Compute the P-value based on the rescaled, normalized data
ỹi and a model that only includes the experimental factors (the
regression of ỹi on X). Call this p̃r

i .

(d) Record the absolute difference between pi and p̃r
i : dr

i = ∣∣pi − p̃r
i

∣∣.
(e) Choose the scale factor γ̂i that minimizes the absolute difference:

γ̂i =γqi , where qi =argminr (dr
i :r =1,2,...,nγ ).

(4) Compute the rescaled, normalized data by applying the scale factors
for each peptide that were selected as above.

The upper boundary S for the range of the scale factors is chosen such that
the rescaled residual SDs are not permitted to exceed the residual standard
deviations estimated from model (3). In our analyses, we have set nγ =100.

By using the selected residual eigenpeptides to carry out inference and
normalization simultaneously, we minimize issues with overfitting. Note,
however, that the above procedure does not address the uncertainty associated
with the computation and selection of the residual eigenpeptides themselves,
although simulation results suggest this is a minor omission. P-values for the
normalized data are computed without any need for inclusion of surrogate
variables as model covariates, or adjustments to the degrees of freedom
used in the null sampling distribution. Thus, for example, the complete
peptides from a two-class problem with n samples in each comparison
group could be tested for differential expression using a standard two-
sample t-statistic and t2(n−1) null distribution (assuming equal variances)
after EigenMS normalization; note that we define ‘EigenMS normalization’
to include both the SVD-based adjustment and the rescaling algorithm.

2.4.2 Dealing with missing values Peptides with missing measurements
cannot be included in the matrix algebra required for SVD. However,
since all peptides in the same sample were subjected to identical
experimental conditions, complete peptides from that sample can be used to
identify the residual eigenpeptides required for normalization by EigenMS.
Normalization of the complete peptides proceeds exactly as described above.
Incomplete peptides are treated similarly, but (i) the residual eigenpeptides
found using the complete data are used, and (ii) the subsequent normalization
and rescaling steps proceed using only the complete measurements. For an
incomplete peptide with intensity vector y, let k0 = (k01,k02,...,k0n0 ) be the
vector of indices for the n0 entries in y with missing measurements. Let y(k0)

be the vector containing only the n−n0 complete measurements. Similarly,
let e(k0) be the vector of n−n0 residuals from using y(k0) to fit the model in
step one of the EigenMS algorithm, V0(k0) be the (n−n0)×H version of V0

after removal of rows corresponding to k0 and X(k0) be the similarly modified
version of X. Normalization proceeds with e(k0) and V0(k0) in steps 4 and 5
of the EigenMS algorithm, then using y(k0), V0(k0), and X(k0) in the rescaling
algorithm.

3 RESULTS

3.1 Calibration data
We applied EigenMS separately to both the Salmonella and QC
peptides in the calibration dataset; in both cases, we fit the model
with only concentration group included:

yijk =µi +Cij +εijk, (6)
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A B

Fig. 2. Top three eigenpeptides with first one at the top, second in the middle and third at the bottom for raw (A) and EigenMS-normalized (B) Salmonella
peptides from the calibration dataset. Sample indices are shown on the y-axis; the first five rows correspond to batches 1–5 of the first concentration group,
and so on. Percentages show the percent of total variability in the raw data that is explained by each eigenpeptide. EigenMS proceeds by first removing signal
due to the experimental design (here reflected by the first eigenpeptide), then using the remaining trends deemed to be statistically significant (called residual
eigenpeptides, and here reflected by eigenpeptides 2–4, the fourth not shown in the figure) to normalize the data.

since concentration group is the only experimental factor of interest.
Under the assumption that the QC peptides originated from proteins
of the same concentration in all samples, identification and removal
of any systematic trends present in their profiles across samples
will reduce bias. As noted below, however, there are indications
of variations from sample preparation that may have resulted in
slightly unequal QC protein concentrations across concentration
groups. Furthermore, the use of technical replication may have
the effect here of underestimating sources of variability. While
EigenMS is applicable to incomplete peptides (see Section 2.4.2),
we only consider complete peptides in what follows, since: (i)
our performance assessments are largely based on the validity of
downstream statistical inference, and (ii) for peptides with missing
values, special statistical methods are required to obtain unbiased
model estimates and valid inference (Karpievitch et al., 2009), and
this is not the focus of the present article. In the calibration data,
this left us with 66 QC peptides and 425 Salmonella peptides.

In the Salmonella peptides, EigenMS identified three-residual
eigenpeptides that explained a significant portion of residual
variation in intensities. These eigenpeptides are shown in the
Figure 2A (see Fig. 6 in Supplementary Material for the
corresponding picture for the QC peptides). On the x-axis is
sample index, with the first five ticks corresponding to batches
1–5 of concentration one, the second five ticks corresponding to
concentration two and so on. The first residual eigenpeptide explains
49% of the variance and is evidently due to the different amounts of
the Salmonella proteins in the mixture, as expected. Note that, while
it is difficult to pull a coherent trend out of the remaining pictures,
batch 4 appears to differ in all concentrations in eigenpeptide 2, as
does batch 5 in eigenpeptide 3. These differences in eigenpeptides
for batches 4 and 5 may be due to the use of a different LC column

for these measurements. Note that each residual eigenpeptide has
the same interpretation if reflected about the horizontal zero line.
Thus, an eigenpeptide with an apparent negative effect of batch 4, for
example, is equivalent to that with a corresponding positive effect. In
the Salmonella peptides, for example, the step-function appearance
of the first eigenpeptide reflects the experimental design. However,
it is expected that some peptides will become more abundant and
some less abundant as the concentration combinations are changed.
The one step-function trend reflects both possibilities.

EigenMS removed the effects of the first three residual
eigenpeptides (corresponding to eigenpeptides 2–4, the fourth of
which is not shown in Fig. 2) in Salmonella, as described in
Section 2. The Figure 1B shows a heatmap of the normalized
Salmonella peptides, and it is qualitatively evident that much of
the systematic within-group features in the raw data have been
removed; a similar picture is seen for the QC peptides in the
Supplementary Materials. We also carried out SVD analysis of the
normalized Salmonella data, with the results shown in Figure 2B.
We observed an increase in the relative variance explained by the
first eigenpeptide from 49% in raw Salmonella peptides to 62%
and a decrease in relative variance explained by the rest of the
top eigenpeptides. Since the first eigenpeptide evidently reflects
the pattern across samples expected by the experimental design,
we take this as evidence that EigenMS has enhanced our ability
to discern real concentration differences, an important goal of any
normalization procedure.

As discussed in Section 2, EigenMS should produce valid
P-values and, in particular, null P-values that are approximately
uniformly distributed. We checked this by examining the distribution
of P-values for the QC peptides. Figure 3 shows histograms
of the P-values for the raw QC peptides, as well as for data
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A B C

Fig. 3. Histogram of null P-values for raw (A), EigenMS-normalized (B) and
ANOVA-normalized (C) QC peptides from the calibration dataset; each
x-axis goes from 0 to 1, and the y-axis is the frequency. Since the design
of the calibration experiment called for the QC proteins to be kept constant
across Salmonella concentration groups, the null hypothesis of no differential
expression should be true for all QC peptides, and their associated P-values
should be uniformly distributed between 0 and 1. It is clear that ANOVA
overfits and underestimates the null P-values. While the post-EigenMS
P-values are not uniform, they are shifted in the correct direction as compared
with the raw distribution. As mentioned in the text, the imperfect null
distribution after normalization may be due to slight pipetting errors or
technical replication. In the absence of these issues, EigenMS correctly
produces uniform null P-values (see the right portion of Table 3).

normalized by EigenMS and ANOVA. The P-values for the raw
QC intensities are not uniformly distributed, indicating that either
the actual concentrations of the QC peptides changed from group
to group, or technical replication substantially underestimated the
variation that led to the observed data; either mechanism (or both)
could lead to apparent differential expression in the QC peptides
(Churchill 2002, Dabney and Storey 2006). The distribution of
the P-values after EigenMS normalization does not look uniform
either, although the P-values have been shifted in the right direction;
see Figure 9 in Supplementary Data for a comparison of P-values
before and after rescaling. This highlights the fact that normalization
cannot undo systematic biases across comparison groups, cases
in which bias and biological signal are confounded. The ANOVA
normalization method produces extremely right-skewed P-value
distributions, an indication of overfitting. The scatterplot smoothing
normalization method, as well as global scaling, produce more
uniformly distributed P-values than does ANOVA, but visual
examination of the heatmaps confirm that these normalization
methods are unable to capture the systematic biases present in
the calibration data. Furthermore, global scaling or scatterplot
smoothing to a single reference sample, as is often done, actually
obscures the concentration differences (see Fig. 7 in Supplementary
Material and the left portion of Table 2).

We then compared the normalization methods in terms of the
number of Salmonella peptides selected as statistically significant
over a range of false discovery rate (FDR) cutoffs. To estimate
the FDR associated with a particular significance cutoff, we used
the Q-value, an FDR analog of the P-value (Storey and Tibshirani
2003). At a Q-value cutoff of 5%, corresponding to an expected
FDR of 5% among the selected peptides, the number of Salmonella
peptides called significant increased by 77 over the raw data (see
the left portion of Table 2). Furthermore, EigenMS results in a
greater increase in the number of selected peptides than all other
normalization methods considered, except ANOVA, although the
performance of ANOVA is in large part due to its tendency to
underestimate P-values.

Table 2. Comparison of the number of significant peptides by FDR in the
Salmonella data (left) and simulation data (right)

Salmonella typhi Simulation

FDR 0.01 0.05 0.10 0.01 0.05 0.10

Raw 266 399 473 0 58 77
EigenMS 444 476 476 80 82 87
Global 211 312 372 96 150 172
Smoothing 245 345 412 200 200 200
ANOVA 462 476 476 60 79 80

In the simulation, there were 200 peptides, of which only 80 were differentially
expressed.

Table 3. Distribution of the null P-values for the simulated data before and
after normalization.

Quantile 0.01 0.05 0.10 0.25 0.50

Raw 0 0 0 0 0
EigenMS 0 0.04 0.06 0.19 0.45
Global 0.34 0.69 0.83 0.96 1.00
Smoothing 0.35 0.68 0.78 0.89 0.99
ANOVA 0 0 0 0 0.03

Since none of the 120 peptides included in this comparison were differentially
expressed, the distribution of P-values should be uniform between 0 and 1. Hence,
for a given quantile, we expect that percentage of the 120 null peptides to be
called significant. The raw data have null P-values that are extremely skewed
left, due to strong unmodeled sources of bias. ANOVA normalization adjusts for
batch effects and misses the strong additional technical features included in the
simulation, resulting in a P-value distribution skewed like that in the raw data.
Scatterplot smoothing and TIC normalization result in underestimated P-values
and anticonservative inferences. EigenMS is approximately uniformly distributed as
expected, being slightly conservative.

3.2 Simulation
We applied EigenMS to the simulated data, again based on model (6).
Figure 4B shows the EigenMS-normalized intensities for the
simulated peptides, and it is qualitatively evident that much of the
systematic within-group trends have been successfully removed.
EigenMS identified one-residual eigenpeptide that explained 80%
of the variation in intensities after accounting for the concentration
differences (Fig. 8 in Supplementary Material). This residual
eigenpeptide incorporated the effects of both the B and T factors
in the simulation model (1). The right portion of Table 2 shows
the number of significant peptides by FDR cutoff for the different
normalization methods. EigenMS consistently identifies all of the
80 truly differentially expressed peptides with high confidence.
ANOVA normalization fails to identify as many as EigenMS.
Scatterplot smoothing and TIC normalization select more peptides
than EigenMS, but they underestimate their FDR levels. This is
due to the fact that these methods underestimate P-values in the
simulation, as seen in Table 3. Table 3 shows the distribution
of P-values for the null peptides for the different methods. In
the simulation, the T factors, representing technical features in
addition to batch effects in Equation (1), were created in such a
way that they account for much of the experimental variation. Thus,
analysis of the raw data, failing to account for the sources of bias,
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A B

Fig. 4. Heatmaps of peak intensities for raw (A) and EigenMS-normalized (B) simulated peptides. The first 80 peptides are differentially expressed, as can
be seen from the decreasing intensities from top to bottom, while the last 120 peptides are not.

results in underfitting and a left-skewed null distribution. ANOVA
normalization only adjusts for batch effects and hence fails to capture
the additional strong technical factors, again resulting in left-skewed
null P-values. Scatterplot smoothing and TIC normalization are
sample-specific and hence are able to remove much of the bias, but
they underestimate P-values, resulting in many more type I errors
than expected. The null P-values for EigenMS are approximately
uniform as expected, being slightly conservative.

4 DISCUSSION
Normalization is an important, but difficult problem in high-
throughput proteomics or any other -omics data. Failing to properly
account for biases that result from uncontrolled technical aspects of
an experiment can have serious adverse effects on the conclusions
that can be drawn from the resulting data. On the other hand, overly
aggressive normalization routines can easily do more harm than
good by overfitting and thus invalidating downstream inferential
decisions. In all cases, it is necessary to consider normalization in
the larger context of the entire analysis of a dataset, as the steps taken
to preprocess data will inevitably affect all subsequent analysis steps.
EigenMS has been constructed with these issues in mind, and has
been demonstrated to be able to flexibly capture complex biases
while preserving the validity of downstream statistical inference.

The approach taken by EigenMS to the normalization of MS peak
intensities could be applied to a wide variety of problems in MS-
based proteomics, such as the normalization of mass measurements
(Petyuk et al., 2008) or elution times (Jaitly et al., 2006). Similar
approaches may be applicable to the alignment of LC-MS data,
where elution time and mass images are warped across samples
to maximize overlap of LC-MS feature clusters (Finney et al.,
2008). More generally, systematic errors in alignment on additional
dimensions, incorporating ion mobility drift times, for example,
could be approached using similar strategies to those employed here.
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