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ABSTRACT

Motivation: During the past decade, we have seen an exponential
growth of vast amounts of genetic data generated for complex
disease studies. Currently, across a variety of complex biological
problems, there is a strong trend towards the integration of data from
multiple sources. So far, candidate gene prioritization approaches
have been designed for specific purposes, by utilizing only some
of the available sources of genetic studies, or by using a simple
weight scheme. Specifically to psychiatric disorders, there has been
no prioritization approach that fully utilizes all major sources of
experimental data.
Results: Here we present a multi-dimensional evidence-based
candidate gene prioritization approach for complex diseases and
demonstrate it in schizophrenia. In this approach, we first collect and
curate genetic studies for schizophrenia from four major categories:
association studies, linkage analyses, gene expression and literature
search. Genes in these data sets are initially scored by category-
specific scoring methods. Then, an optimal weight matrix is searched
by a two-step procedure (core genes and unbiased P-values in
independent genome-wide association studies). Finally, genes are
prioritized by their combined scores using the optimal weight
matrix. Our evaluation suggests this approach generates prioritized
candidate genes that are promising for further analysis or replication.
The approach can be applied to other complex diseases.
Availability: The collected data, prioritized candidate
genes, and gene prioritization tools are freely available at
http://bioinfo.mc.vanderbilt.edu/SZGR/.
Contact: zhongming.zhao@vanderbilt.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
It is now commonly accepted that many complex illnesses
are not inherited in a Mendelian fashion and that they are
polygenic/multifactorial (Schork, 1997). Identifying causal genetic
factors including genes and genetic markers is an essential step
in our understanding and subsequent prevention and treatment of
these complex diseases. During the past decade, we have seen an
exponential growth of vast amounts of biological data generated
by the revolutionary high throughput technologies of genomics,
transcriptomes and proteomics (Leung and Pang, 2002). A variety
of strategies for the selection of candidate genes for the follow
up studies of complex diseases are available, including but not
limited to, positional cloning, functional candidates, and the use
of microarray and pathway data (Sullivan et al., 2004). For each of
these strategies, even though the number of genes to consider has
been greatly reduced, a large number still remains and secondary
selection procedures are necessary. However, most procedures are
not conducted with an a priori strategy. Rather, information is
weighed and ranked intuitively by the investigator. Specifically
in psychiatric genetics, most of the studies thus far have been
limited to functional candidates suggested by neurotransmitter
psychopharmacology, falling under the heading referred to as ‘the
usual suspects’ (Sun et al., 2008). Currently, across a variety of
complex biological problems, there is a strong tendency towards the
integration of data from multiple sources, including gene sequence
information, gene expression, protein–protein interactions, Gene
Ontology (GO) annotations, and the use of this integrated data to
select a list of ‘prioritized’ candidate genes (Aerts et al., 2006;
Le-Niculescu et al., 2007; Ma et al., 2007; Rossi et al., 2006; Xu
and Li, 2006). Such selections of prioritized candidate genes are
much needed for follow-up studies and also for systems biology
approaches such as network or pathway analysis (Goh et al., 2007;
Guo et al., 2009). So far, these candidate gene approaches have
been designed for specific purposes (e.g. gene network and pathway
analysis) or for utilizing only some of possible sources of genetic
studies (e.g. gene expression) (Franke et al., 2006; Le-Niculescu
et al., 2007). For many complex diseases or disorders, massive
multiple-dimensional genetic datasets have been available. These
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include thousands association studies, many genome-wide linkage
scans and gene expression studies as well as cross species gene
information. This provides us an opportunity but also a great
challenge to develop effective approach for data collection, curation
and integration so that candidate genes can be selected based on all
available genetic evidence, weighed and then prioritized.

Schizophrenia is a major complex and debilitating psychiatric
disorder with a lifetime prevalence of ∼1% in the world (Gottesman,
1991). The disease originates from a complex combination of genetic
effect and environmental factors, which has been strongly supported
by family, twin and adoption studies (Ross et al., 2006; Sullivan
et al., 2003). Because of the severe effects of this illness, researchers
and clinicians have been working together for decades to identify
susceptibility genes or genetic markers. So far, thousands of reports
have declared or refuted association to genes or linkage to genomic
regions in schizophrenia, as well as numerous gene expression
studies. Frustratingly, the traditional approach of trying to find the
causative variation in the genomic regions that are associated with
the disease has not, to date, proven very successful, and for some
disease-susceptibility genes or regions, their genomic structures,
functional regulations and evolutionary patterns appear complicated.
This calls for alternative approaches to study genetic effects on
complex diseases such as complicated gene regulation (i.e. gene–
gene interactions) and gene–environment interactions. A list of
candidate genes is needed for such purpose.

In this study, we propose a multi-dimensional evidence-
based candidate gene prioritization approach. In this approach,
we collected and curated all the available genetic studies of
schizophrenia including more than two thousand association
studies, genome-wide linkage scans, and gene expression studies.
By developing a weight scheme, genes were ranked by
weighted evidence from different studies. We evaluated these
prioritized candidate genes using independent unbiased genome-
wide association studies (GWAS) and also gene expression data
in human tissues. This multi-dimensional evidence-based approach
and framework can be applied to many other complex diseases such
as alcohol dependence, depression, anxiety, nicotine dependence and
Alzheimer’s disease.

2 CANDIDATE GENE SELECTION AND
PRIORITIZATION

We introduce a comprehensive scoring and weighting scheme that
can be applied to prioritize candidate genes for complex diseases
based on their multiple sources of genetic data. The design is shown
in Figure 1. The framework includes five steps: data collection and
curation, scoring, weighting, prioritization, and evaluation. First,
we collected all the data with experimental evidence including
association studies, linkage scans, gene expression and high
throughput literature search. To address the great variety of data
and its unequal amount of information, and to further increase user
flexibility, we categorized the data into different groups such as
‘association’, ‘linkage’, ‘gene expression’, and ‘literature search’.
Second, we assigned scores for the genes in each data category
by category-specific scoring method. Third, we developed a weight
scheme to weigh the evidence from different categories of data.
An optimal weight scheme was found from weight matrix pool by
using (i) a small set of genes that have been well considered as
candidate genes by experts or by recent meta-analysis of association

studies, and (ii) random selected data (P-values) from independent
GWA studies. Fourth, these genes were assigned an integrated score
by using the optimal weight scheme and then prioritized based on
the integrated scores. Fifth, the prioritized genes were evaluated
by cross-using independent GWAS information, independent gene
expression in human tissues, or follow up experimental verification.
The approach was illustrated by using schizophrenia as a case
(Fig. 1).

2.1 Four categories of data for gene ranking
2.1.1 Association study The recently established
SchizophreniaGene database collected and curated association
studies for schizophrenia in about 1400 publications (Allen
et al., 2008). We extracted all association studies published in
peer-reviewed journals from the SchizophreniaGene database. The
extracted information included gene annotations, study information
(e.g. ethnic groups), statistical analysis methods in association
studies and their results, number of cases and controls, number of
families (number of affected and unaffected family members), and
genotypes of each polymorphism.

In our previous study (Sun et al., 2008), we developed a
combined odds ratio (OR) method to combine the ORs from multiple
association studies of each gene. For each gene, we first performed
an extensive evaluation of risk allele of each marker based on its
ORs, confidence intervals (CIs) and P-values in multiple studies.
We then calculated ORs using the risk alleles that we evaluated. The
largest OR among the markers surveyed in each study was selected
to represent its effect size in that association study. These OR values
were next combined by using R package ‘meta’ and a P-value was
obtained by a Z-test. Thus, this P-value suggests a rough proxy of
the magnitude of positive association evidence. Because the smaller
P-value indicates stronger evidence, we assigned a score 3 to a gene
whose P-value <0.001, 2 whose P-value is [0.001–0.05), and 0
otherwise. These genes were annotated as ORG (genes selected by
the combined OR method) in Figure 1.

The combined OR method requires at least two representative
markers in each study and at least two association studies to combine
their representative OR values (Sun et al., 2008). Some genes having
at least two positive association studies might have been excluded
in the procedure. Moreover, more association studies and genes
have been published since then (as of August, 2007). When we
prepared the data for this gene ranking, the number of genes has
increased from 539 to 693 (as of April, 2008), but most of these
new genes (91.6%) had only one study report. The number of genes
with at least two positive association results increased from 115 to
124. Because replication is still a great challenge in schizophrenia
research, we assigned a score 2 to those genes with at least two
positive results and a score 1 to those with only one positive result
to reflect different extent of association. We applied this combinatory
strategy (i.e. P-value from combined OR method and scores based
on the number of positive association studies) to all genes that had
association report. Theoretically, the largest score of a gene would
be 3. As a result, we had 281 genes with the assigned scores ranging
from 1 to 3.

2.1.2 Linkage study More than 32 genome-wide linkage scans
and fine mapping studies for schizophrenia have suggested multiple
regions that harbor genes influencing susceptibility to schizophrenia

2596



[15:06 31/8/2009 Bioinformatics-btp428.tex] Page: 2597 2595–2602

A multi-dimensional evidence-based candidate gene prioritization approach

Fig. 1. Framework for prioritization of candidate genes. ORG represents genes selected based on combined odds ratio method (see text). m is the proportion
(%) of core genes and n is the proportion of all available candidate genes. A parameter set of m and n is used to search the optimal weight scheme (see text).
GWAS information used in searching optimal weight matrix (random P-values from GWAS P value pool, either CATIE or GAIN) is different from that in
evaluation step (only P-values in the selected genes are used). For a non-redundant use of GWAS information, when CATIE dataset is used in randomness
step, GAIN dataset would be used in evaluation step, and vice versa.

(Fanous et al., 2007; Lewis et al., 2003; Ng et al., 2009), but
no region has shown strong consistent support for these linkage
analyses. We used the results in a recent meta-analysis of 20
complete genome scans of schizophrenia (Lewis et al., 2003).
The results suggested 12 consecutive bins that met two aggregate
criteria for linkage (PAvgRnk and Pord <0.05). Those bins located
in the following regions: 2q, 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q and
14p. The two aggregate criteria P-values were calculated based on
permutation test. PAvgRnk is the probability of observing, by chance,
each bin’s average rank, and Pord is the probability of observing it
for a bin with the same place in the order of average ranks in each
permutation. We used those 12 consecutive bins, identified their
corresponding physical locations on chromosomes, and extracted
genes within these regions. This resulted in a total of 2262 genes
with official gene symbols. We assigned score to each gene by its
−log10(PAvgRnk).

During our preparation of the manuscript, Ng et al. (2009)
published a new meta-analysis of 32 genome-wide linkage studies
for schizophrenia. We did a similar gene prioritization analysis
by using the genes extracted from the 10 bins with nominally
significance evidence. We prioritized 173 genes, 119 of which
overlapped with the 160 prioritized genes based on Lewis et al.
(2003) (see Section 3.3). The analysis based on Ng et al. data is
available at http://bioinfo.mc.vanderbilt.edu/SZGR/.

2.1.3 Gene expression data The Stanley Medical Research
Institute (SMRI) has assembled a large number of microarrays
for schizophrenia and bipolar studies. Thus, we used Stanley

Array collection data, which provided meta-analysis of 12
individual gene expression datasets involved in 988 arrays
(https://www.stanleygenomics.org/, November 2007) (Higgs et al.,
2006). For schizophrenia only, we downloaded the overall P-values
for the genes from the database and extracted those genes whose
P-values were <0.05. This resulted in 730 genes with gene symbols.
We assigned score to each gene by its −log10 P, where P is based on
the t-statistic for the weighted fold change and combined standard
error of the fold change.

2.1.4 Literature search Co-occurrence of two entries in a
document has often been applied to identify relationship (Roberts,
2006). We used NCBI PubMed automatic term mapping strategy
to examine whether a gene and a schizophrenia-related keyword
co-occur in the same document. Such a relationship suggests that the
gene might have been studied for schizophrenia, and likely the gene
is associated with schizophrenia because positive results have often
been selected for publication. We evaluated different terms that are
related to schizophrenia and selected six of them: ‘schizophrenia’,
‘schizophrenias’, ‘schizophrenic’, ‘schizophrenics’, ‘schizotypy’
and ‘schizotypal’. We extracted 25 759 human protein-coding genes
from the file “Homo_sapiens.gene_info” downloaded from the
NCBI FTP Gene (ftp://ftp.ncbi.nlm.nih.gov/gene/). Next, we used
NCBI Entrez Programming Utilities ESearch to search NCBI
PubMed. If a gene and a keyword co-occur in the same publication,
a hit would be assigned. For example, the keyword ‘schizophrenia’
and gene ‘DTNBP1’ co-occurred in 113 publications and 113 hits
were assigned to DTNBP1 and schizophrenia. Because the number
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of hits does not provide quantitative measurement of evidence, we
assigned score 1 for a gene that has any hit(s) with a keyword. For
the six keywords that we used, a gene might have score ranging
from 0 (no hit with any keyword) to 6 (hits with all six keywords).
After manual checking the results of special gene symbols (e.g.
gene symbols containing a hyphen), we had 1402 genes whose
scores were >0. It is worth noting that there is some duplication of
information with association studies, but literature search provides
additional information.

2.2 Data for evaluation: core genes and random sets
from GWAS

To find an optimal weight scheme for all the genes (4062) we
collected in the above four categories, we prepared for a small
gene set which includes genes that have been commonly considered
candidate genes in expert review or had significant results in the
meta-analysis of association studies. Ross et al. (2006) reviewed the
evidence in four domains (association with schizophrenia, linkage
to gene locus, biological plausibility and altered expression in
schizophrenia) and suggested 19 genes being candidates. We also
included 27 genes with significant meta-analysis results performed
by the SchizophreniaGene team (as of November 5, 2008). The
genes were selected by having a nominally significant summary OR
in all ethnic groups or Caucasian samples. When we combined the
genes from these two sources, we had a total of 37 non-redundant
genes. Among these genes, 33 appeared in our list of 4062 genes. We
considered these 33 genes as a core gene set and used it to evaluate
weight matrices.

We used GWAS data to evaluate whether the top genes ranked
by a weight scheme have enriched markers with small P-values in
the GWAS. So far, there have been two published GWA studies
for schizophrenia: Clinical Antipsychotic Trials of Intervention
Effectiveness [CATIE (Sullivan et al., 2008)] and Genetic
Association Information Network [GAIN (Manolio et al., 2007)].
CATIE is a multi-phase randomized controlled trial of antipsychotic
medications involving 1460 persons with schizophrenia. CATIE
GWAS included 492 900 SNPs genotyped in a total of 738 cases
and 733 group-matched controls (Sullivan et al., 2008). GAIN
is a public–private partnership and includes many phenotypes.
We used GAIN data for schizophrenia based on European
Americans (1440 cases and 1469 controls), which genotyped
727 600 SNPs. The data was extracted from the NCBI dbGaP
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=gap). We used
these two GWAS datasets in our search of optimal weight matrix and
evaluation on the prioritized genes. For each gene, we first identified
all the markers genotyped in GWAS that were mapped to the gene.
Then, the marker whose P-value was the smallest in a gene was
chosen to represent the significance level of that gene.

2.3 Search for optimal weight matrix
2.3.1 Combined scores and weight matrix pool A simple weight
scheme such as the same or similar weight assigned to each of the
collected multiple datasets has often been applied to rank candidate
genes (Adie et al., 2006; Saccone et al., 2008). Considering the great
variety of the datasets and their genetic information, it is necessary
to assign different weights to those datasets. However, such a task is
challenging because in many cases we do not exactly know which
data contains more useful information. Here we describe a weight

vector to assign weight to each data source and then combine them
to calculate the score for each gene. Given the number of datasets
or sources of information being N (e.g. 4), the original score from
each dataset or source could be weighted specifically and then a
combined score could be calculated by the following function:

ScoreCombined =
N∑

i=1

wi ×Scorei. (1)

For N datasets, there are possible K (e.g. N+1) different weights,
thus, it forms a KN weight matrix pool.

2.3.2 Step one: weight matrix selection by core gene dataset The
core genes that we prepared in Section 2.2 represent the best
reviewed or evaluated candidate genes at present, though it is a
small list of genes. We used them to evaluate all possible weight
matrices and selected those matrices that could rank the core genes
in the top positions in all the available candidate gene pool that
we collected from all sources. Here, we introduce two parameters
to require the majority of the core genes being included in the
top gene list by a weight matrix: proportion of core genes (m, %)
and proportion of all candidate genes as considered top ranked
genes (n, %). The m and n values can be flexibly set by specific
gene ranking procedure; however, a combination of a larger m
and a smaller n indicates a better performance. For example, a
weight matrix produces 95% of core genes in the top 5% ranked
genes of the candidate gene pool shows an ideal performance. The
following iterative procedure selects the weight matrices that satisfy
the threshold values m and n.

(1) For each weight matrix in the matrix pool, a combined score
is calculated for each gene by function 1.

(2) All genes collected from all sources and the core genes are
sorted by their combined scores, respectively.

(3) In these two sorting lists, a vector is generated to record the
ranking positions of core genes in the ranked candidate gene
list.

(4) Select the matrix if m of the core genes is ranked in the top n
of the candidate genes. The position ( j) where the m-th gene
locates in the candidate gene list is recorded for the evaluation
in step two.

(5) Repeat the above steps until all weight matrices are analyzed.

2.3.3 Step two: selection of weight matrix by GWAS markers The
weight matrices selected in step one are further selected by using
one independent GWAS dataset (CATIE or GAIN) to find which
matrix can identify a top list of genes that enrich markers with small
P-value in GWAS. In this process, we use the best (i.e. smallest)
P-value of each gene without taking into account the number of
available GWAS markers in the gene. For each matrix, we select the
number of top genes by position j in step one. Similarly, we randomly
select 1000 subsets of genes from GWAS dataset with subset size j.
For each random set, we compare whether its P-value distribution is
statistically different from the selected top ranked gene (Wilcoxon
rank-sum test, P <0.05). We repeat this randomization 10 times to
estimate the confidence of this approach.
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2.4 Prioritization of candidate genes
The weight matrix with the best performance is applied to calculate
the combined scores for core genes and candidate genes. The score
distribution is examined for the core and candidate genes and a cutoff
value is set for approximate maximization of combined scores for
core genes.

2.5 Evaluation on prioritized candidate genes
2.5.1 Evaluation using GWAS data We used CATIE or GAIN
GWAS data to evaluate whether the prioritized genes are more likely
to enrich markers with small P-values than all the candidate genes.
For a non-redundant use of GWAS information, when CATIE dataset
is used in randomness step in Section 2.3.3, GAIN dataset would be
used in evaluation step, and vice versa.

2.5.2 Gene expression We evaluated expression of the prioritized
candidate genes by comparing with non-disease genes. We compiled
non-disease genes using protein coding genes downloaded from the
NCBI Gene database and disease genes downloaded from the NCBI
OMIM database (ftp://ftp.ncbi.nlm.nih.gov/repository/OMIM/).
There were 23 430 genes that had not been annotated with any
disease yet. These genes were considered non-disease genes.
Next, we extracted gene expression data from WebGestalt
(http://bioinfo.vanderbilt.edu/webgestalt/) (Zhang et al., 2005),
which included expression data in 47 human tissues originally
from the CGAP-expressed sequence tag (EST) project (Strausberg,
2001). We used the WebGestalt Tissue Expression Bar Chart to
obtain the number of genes expressed in each tissue. The proportion
of genes in a gene list expressed in a tissue was calculated by the
count of genes expressed in the tissue divided by the total number
of genes. The difference in gene expression distribution between the
schizophrenia prioritized candidate genes and non-disease genes
was performed by Wilcoxon signed-rank test.

3 RESULTS AND EVALUATION

3.1 Comparison of candidate genes in four data
categories

We performed an extensive data collection and annotations to
identify candidate genes from four major sources of information:
association studies, linkage analysis, gene expression, and high
throughput literature search. Table 1 summarizes the collected data,
which represents the largest collection and curation of candidate
genes from schizophrenia genetic studies. The number of genes
varies among data categories, reflecting the different resolution of
genomic regions in different studies or technologies.

After removing the redundancy, we had a total of 4062 genes.
These genes are considered candidate gene pool and our task is to
prioritize them by their combined evidence. There were 239 genes
found in both the association studies and literature search. This
represents 85% of the genes from association studies and 17% of
the genes from literature search, reflecting that literature search is
an effective approach (e.g. in terms of coverage) to identify possible
candidate genes. Interestingly, 225 genes (10%) from linkage dataset
were also found in literature search, suggesting that many genes
under linkage peaks (i.e. large genomic regions) have been under
extensive follow up investigations. There were only 85 genes shared
by at least three categories and five shared by all four sources. The

Table 1. Schizophrenia candidate genes in four categories

Category Number of
genes

Number of genes overlapped

Association Linkage Expression

Association 281
Linkage 2262 83
Expression 730 15 86
Literature 1402 239 225 58

distribution of genes among different categories reflects the complex
nature (e.g. low rate of replications) of the causal genetic factors in
schizophrenia.

3.2 Search for optimal weight matrix
3.2.1 Selection of effective weight matrices by core gene evaluation
We collected four categories of candidate genes, i.e. genes with
four major lines of evidence. The score was assigned for each
gene in each data category (Fig. 1, see Section 2.1). In an initial
phase, information from each data category was treated equally.
In this study, we arbitrarily assigned weight to each data category
from 1 to 5. A higher weight for a category leads to a higher score
and helps the gene in that category rank better. In an exhaustive
search, we have possible 54 = 625 weight matrices. Considering a
total of 33 core genes in the 4062 candidate genes, we set threshold
value m to be 95% (31 genes) or 90% (30 genes) and n to be 3%
(top 122 genes), 4% (top 162 genes) or 5% (top 203 genes). For
example, parameter set (m = 95%, n = 5%) requires at least 95% of
the core genes located in the top 5% of the ranked 4062 candidate
genes. Our analysis indicated that it is impractical to set n to be 1
or 2% (see Table 2). Therefore, we had six parameter sets to search
for optimal weight matrix.

Only three parameter sets could have weight matrices that satisfied
the corresponding criteria (Table 2). There were 51 weight matrices
that satisfied parameter set (m = 90%, n = 5%), suggesting that the
criteria in this parameter set are too loose. For other two-parameter
sets, we found four weight matrices (m = 90%, n = 4%) and one
matrix (m = 95%, n = 5%), respectively. These five weight matrices
were further analyzed in step two by using GWAS data (see
Section 2.3.3).

Using 1000 random sets of genes from the CATIE or GAIN
GWAS and repeating this procedure 10 times, we evaluated whether
the generated top genes by position j had more chance to have
small P-values of GWAS markers than the randomly selected genes.
Here j is the position in the ranked candidate genes where the m-th
core gene matches. Table 2 shows that all five weight matrices
could generate top genes that had high probability of enriched
small P-values than the random genes. Among them, the matrix
[wassociation= 5, wlinkage= 2,wexpression= 2,wliterature= 1] stood out
by showing the highest probability and confidence. We abbreviated
this weight matrix as [5, 2, 2, 1].

3.2.2 Comparison of the five weight matrices We further
examined the distribution of GWAS P-values in the top ranked genes
by these five weight matrices. The genes generated by matrix [5, 2,
2, 1] had the highest proportion of small P-values (P <0.05) in
GAIN (Fig. 2) or CATIE (Supplementary Fig. 1) dataset, indicating
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Table 2. Search for optimal weight matrix by core genes and GWAS P-values

No. of weight Step 2: selection by GWAS P-values
Parameter seta matrices Step 1: selection by core genes (No. of subsets ± SD)b

m (%) n (%) Weight matrixc Position jd Position le CATIE GAIN

90 5 51 [2, 1, 1, 1] 170 457 663.2 ±9.4 611.5 ± 17.6
[2, 1, 2, 1] 199 1213 754.2 ± 9.8 526.7 ± 13.5
[3, 1, 1, 1] 168 496 866.5 ± 10.2 762.2 ± 13.2
[3, 1, 1, 2] 186 695 594.6 ± 18.4 470.6 ± 8.7
[3, 1, 2, 1] 179 1247 886.7 ± 10.7 893.4 ± 7.6

.

.

.
.
.
.

.

.

.
.
.
.

90 4 4 [4, 2, 2, 1] 156 1404 893.0 ± 6.6 678.6 ± 10.2
[5, 2, 2, 1] 157 1419 951.8 ± 6.7 926.3 ± 7.1
[5, 4, 2, 3] 156 634 870.9 ± 10.2 790.6 ± 12.1
[5, 4, 3, 3] 159 652 823.3 ± 11.6 812.0 ± 14.3

90 3 0 NA NA NA NA
95 5 1 [5, 3, 2, 2] 202 715 831.2 ± 8.6 902.4 ± 8.4
95 4 0 NA NA NA NA
95 3 0 NA NA NA NA

am and n denote threshold proportion in the core gene set and total candidate gene set (see text).
bNumber of random subsets having significant different P-value distribution from the top ranked candidate genes. SD: standard deviation.
cWeight is ordered by wassociation, wlinkage,wexpression,wliterature. In the parameter set (m = 90%, n = 5%), only five matrices are listed due to space limitation.
dPosition j is where the m-th core gene locates in the n-th top ranked candidate genes (see Section 2.3.2).
ePosition l is where the last core gene in the ranked candidate gene list.
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Fig. 2. Distribution of P-values of the GAIN study in the five top gene sets
generated by the five weight matrices. On the x-axis, the GWAS P-values
were separated into different bins. The weight in the matrix (e.g. [4,2,2,1])
is ordered by ‘association’, ‘linkage’, ‘expression’ and ‘literature’.

their enrichment of significant markers. This comparison further
supports that this matrix had better performance than the other four
matrices, which had similar performance. Therefore, we selected
weight matrix [5, 2, 2, 1] to calculate the combined scores and to
rank genes from the four categories of data.

3.3 Prioritization of schizophrenia candidate genes
Using the weight matrix [5, 2, 2, 1], we calculated the combined
scores for all candidate genes (4062 genes) including the core genes
(33 genes). Figure 3 shows the distribution of the combined scores
for these two sets of genes. As expected, the core genes tend to have
high scores while most of other candidate genes have low scores.
A strong difference was observed when we set a cutoff value 11.
Most core genes, but only a small portion of the candidate genes,
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Fig. 3. Distribution of combined scores in the whole candidate genes and
the core genes. In each score bin, proportion was measured by the number of
genes having those scores divided by the total number of genes (core genes:
33; all candidate genes: 4062).

had the score >11. With this cutoff value, we had a total of 160
prioritized genes. Our follow up analysis using GWAS P-values
indicated this cutoff value being valid.

3.4 Evaluation of prioritized candidate gene set
3.4.1 Evaluation by GWAS data: P-value distribution of the
prioritized genes versus the whole candidate genes We evaluated
the 160 prioritized candidate genes using the P-values of CATIE
or GAIN markers. These two studies included genome-wide SNP
markers and were independently designed; therefore, an enrichment
of small P-values in the prioritized genes implies for its potential
utility in follow up studies. Figure 4 displays the distribution of
P-values in the core genes, prioritized genes, and all candidate
genes using CATIE dataset. 39.9% of the prioritized genes had
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Fig. 4. Distribution of P-values of the CATIE study in core genes, prioritized
genes excluding core genes, and all candidate genes excluding core and
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their P-values smaller than 0.05; this compared to 21.7% of all
candidate genes. Similarly, in the GAIN study, we found 42.5%
of the prioritized genes had P-values smaller than 0.05, compared
to 25.9% of all candidate genes (Supplementary Fig. 2). A Wilcoxon
rank-sum test revealed that P-values in the prioritized genes were
significantly smaller than those in all candidate genes (CATIE:
P = 7.50 ×10−5, GAIN: P = 3.97 ×10−4). This evaluation suggests
it a promising list of candidate genes for further bioinformatics
analysis and replication of association studies. It is worthy noting
that the information from the GWAS in this evaluation (e.g. P-values
in prioritized genes versus all candidate genes) is different from that
in our search of optimal weight matrix (random sets from GWAS),
and that our cross-use of GWAS dataset (e.g. CATIE in evaluation
and GAIN in search of weight matrix, or vice versa) has the same
results.

3.4.2 Evaluation by GWAS data: P-value distribution among
different scores We further examined the distribution of P-values
among the candidate genes by their scores. We separated the 4062
candidate genes into four groups: genes whose scores were <5,
5–11, 11–17 and ≥17, respectively. For the genes whose scores
≥17 or 11–17, we observed a higher proportion of small P-values in
CATIE (Wilcoxon rank-sum test, P = 3.8 ×10−5, Fig. 5) or GAIN
(Wilcoxon rank-sum test, P = 2.3 × 10−4, Supplementary Fig. 3)
than other genes (i.e. score <11). This confirms our cutoff value of
11 used in our prioritization of candidate genes.

3.4.3 Evaluation by gene expression in tissues To further
examine whether the prioritized candidate genes support the
neurotransmitters and neuroplasticity theories of schizophrenia, we
analyzed their gene expression patterns in normal human tissues
using gene expression data in 47 tissues from the CGAP-EST
project (Strausberg, 2001). We calculated the proportion of the
candidate genes and the proportion of non-disease genes expressed
in each tissue. We found a statistically significant difference in
expression pattern among the 47 tissues between the proportion
of the prioritized schizophrenia genes and the proportion of the
non-disease genes (Wilcoxon signed-rank test, P = 1.32 × 10−24).
There are nine tissues related to brain or nerve. When we ranked
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Fig. 5. Distribution of P-values of the CATIE study in the 4062 candidate
genes. The candidate genes were separated into four groups by their scores:
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the expression difference between the prioritized genes and non-
disease genes, we found these tissues had their ranks 1st, 2nd, 3rd,
4th, 5th, 6th, 7th, 10th and 16th, respectively. This ranking order
is obviously non-random (P = 0). Furthermore, we observed that
in six tissues the proportion of the prioritized schizophrenia genes
was ∼10% or more than that of non-disease genes. Interestingly,
all these six tissues are brain or nerve tissues: cerebrum (proportion
difference: +12.7%), brain (+12.3%), nervous (+11.8%), cerebellum
(+11.5%), eye (+10.4%) and peripheral nervous system (+9.5%).
This evaluation indicates that the prioritized candidate genes are
more likely expressed in brain or nerve related tissues.

4 DISCUSSION
We present a multi-dimensional data integration framework by using
an optimal weight scheme. This is a comprehensive and effective
gene prioritization procedure and fully utilizes the evidence in
most genetic studies; thus it differs from the previous ones. We
demonstrated this approach by using multiple sources of genetic
studies for schizophrenia. We collected and curated the candidate
genes from four major sources of genetic data and assigned initial
scores to the genes from each source by different scoring methods.
For each gene, a combined score, which reflects the effective
evidence of the gene, was calculated by optimal weight matrix.
The prioritized genes were evaluated by the enriched P-values in
two independent GWA studies and also by gene expression pattern
in human tissues. Our evaluation suggests that these prioritized
genes are promising and may be used for follow up bioinformatics
analysis and future replication using other samples. For example,
we used the prioritized genes to reconstruct a molecular gene
network for schizophrenia based on all the available human protein–
protein interactions and found that it had many different network
features from the general cancer gene network [Schizophrenia gene
networks and implications for psychiatric disorders (Sun et al.,
in preparation)]. Based on the schizophrenia gene network, we
were able to identify several small sub-networks in which eight
novel candidate genes (no reports for schizophrenia yet) extensively
interact with the genes in our prioritized list. Replication study
using our Irish Case-Control Study of Schizophrenia (ICCSS)
sample (1021 cases and 626 controls) and Irish Study of High
Density Schizophrenia Families (ISHDSF) successfully verified
three genes significantly associated with schizophrenia (unpublished
data). Furthermore, this approach has been successfully applied to
our project, in which 502 genes with different combined weights
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were selected for follow up replications in our ISHDSF sample
using a custom Illumina iSelect chip, which uses the Infinium®
assay (unpublished data). Thus, this approach is useful not only for
gene prioritization but also for suggesting novel candidate genes for
complex disease studies.

The optimal weight matrix (e.g. [5, 2, 2, 1] in this study) depends
on the core genes for a specific disease and the independent genome-
wide study (e.g. CATIE and GAIN); thus, it is likely different for
other complex diseases. Moreover, for control purpose, we used a
set of ‘core’ genes recently identified by GWAS for Crohn’s disease
or randomly selected from the candidate gene pool, no weight matrix
could be identified to satisfy parameter set [m, n] by requiring
m at least 90% and n at most 5% (e.g. m= 95%, n= 5%), or even
[m= 80%, n= 50%]. The details are shown in Supplementary data,
‘Crohn’s disease and random gene analysis’. This demonstrates that
disease-specific core genes are useful in the search of optimal weight
matrix.

We collected broadly defined candidate genes based on four lines
of evidence, i.e. association, linkage, expression and literature to
prioritize them for further analysis. These data were extracted and
curated from genetic studies with direct evidence (e.g. experimental
data). We may extend this work by including non-experimental
data such as GO annotations, gene network/pathway information,
genetic markers in the conserved non-coding regions, and regulatory
elements (Aerts et al., 2006; van Driel et al., 2005; Wu et al.,
2008). This takes advantage of additional biological information
generated by computational analysis or the ‘omics’ approach, which
is not directly available from the traditional genetic studies. The
disadvantages of including such computational or ‘omics’ data
are, for example, inconsistent quality across the data set (or low
quality), biased approaches in generating such data, and high error
rate in some computational analysis. Therefore, data cleaning and
development of weight schemes are more complicated.

We performed literature search of candidate genes based on
co-occurrence of keywords and genes using the tool developed
by the NCBI Entrez team. Our high throughput literature search
could find the majority (85%) of genes in association studies that
have been collected and carefully curated in the SchizophreniaGene
database (Table 1). Text-mining has been extensively applied to
biological fields recently due to the exponential growth of biological
data (Saccone et al., 2008). Many algorithms and computational
tools have been developed (Yu et al., 2008). We may enhance our
strategy on searching candidate genes by combining a more efficient
algorithm and a better yet more complicated search function such
as logical relationship between the keywords and genes.
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