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ABSTRACT

Motivation: Modern HIV-1, hepatitis B virus and hepatitis C virus
antiviral therapies have been successful at keeping viruses
suppressed for prolonged periods of time, but therapy failures
attributable to the emergence of drug resistant mutations continue
to be a distressing reminder that no therapy can fully eradicate
these viruses from their host organisms. To better understand the
emergence of drug resistance, we combined phylogenetic and
statistical models of viral evolution in a 2-phase computational
approach that reconstructs mutational pathways of drug resistance.
Results: The first phase of the algorithm involved the modeling of
the evolution of the virus within the human host environment. The
inclusion of longitudinal clonal sequence data was a key aspect
of the model due to the progressive fashion in which multiple
mutations become linked in the same genome creating drug resistant
genotypes. The second phase involved the development of a Markov
model to calculate the transition probabilities between the different
genotypes. The proposed method was applied to data from an
HIV-1 Efavirenz clinical trial study. The obtained model revealed the
direction of evolution over time with greater detail than previous
models. Our results show that the mutational pathways facilitate
the identification of fast versus slow evolutionary pathways to drug
resistance.
Availability: Source code for the algorithm is publicly available at
http://biorg.cis.fiu.edu/vPhyloMM/
Contact: pbuendia@miami.edu

1 INTRODUCTION
The incidence of disease and death from viral infections with
HIV-1, hepatitis B virus (HBV) and hepatitis C virus (HCV) has
been dramatically reduced with the advent of modern combination
therapies. In patients on modern HIV-1 antiretroviral therapy, viral
levels are suppressed to almost undetectable levels (<50 copies/ml),
but HIV is known to persist in latent reservoirs in resting CD4+ T
cells and also as free virus in the plasma. Drug-resistant strains
have emerged in patients with sub-optimal therapies or with lax
adherence to a treatment regime (Bailey et al., 2006; Bangsberg,
2008; Bangsberg et al., 2004; Kolber, 2007; Palmer et al., 2008;
Sethi et al., 2003).

∗To whom correspondence should be addressed.

Advances in the area of computer science and information
technology facilitate the study of viral evolution and aid in the
development of new therapy design systems. Genotype-based
prediction systems of drug-resistance, for example, represent a new
frontier in the fight against the emergence of drug-resistant strains.
A majority of these systems, however, only predict the current
phenotype and do not predict future drug resistance (De Luca et al.,
2003; HIVdb, 2002; Lengauer and Sing, 2006; Mazzotta et al., 2002;
Savenkov et al., 2005; Shafer and Schapiro, 2005). Other models that
seek to describe viral evolution fail to include a phylogenetic context
of ‘within-host’ population dynamics. These models do not utilize
the nucleotide information content in viral sequences and often do
not consider the sampling time or host origin (Beerenwinkel et al.,
2004, 2005a, 2005b; Foulkes and De Gruttola, 2003; Pan et al.,
2007).

Single-genome viral RNA sequences, representative of both
majority and minority viral populations within a patient, are an
ideal source of molecular information in the study of in vivo
viral evolution. Multiple studies demonstrate the significance of
these clonal sequences in the framework of longitudinal studies for
the understanding of the disease progression in a patient (Bailey
et al., 2006; Delobel et al., 2005; Kieffer et al., 2004; Mens
et al., 2007; Resch et al., 2005). Pyrosequencing has emerged
as a cost-effective sequencing methodology that is based on
the detection of released pyrophosphate during DNA synthesis
(Ronaghi, 2001). This technology has led to the identification of
previously undetectable drug resistant HIV variants from drug-
naïve patients at the start of therapy (Simen et al., 2007). With
the arrival of the 454 pyrosequencing technology, the availability
of in vivo information of the minority and majority HIV species
within a patient and their corresponding frequencies will result in
the development of new statistical and phylogenetic models such as
the one proposed here that aim to estimate the direction of the virus
evolution in response to treatment.

Several methods that estimate the phylogenetic relationship of
within-patient serially sampled sequence data have been published
since 2000 (Buendia and Narasimhan, 2004, 2007; Drummond and
Rambaut, 2003; Drummond and Rodrigo, 2000; Rambaut, 2000;
Ren et al., 2001). The performance of the different methods was
compared in two earlier studies, suggesting that MinPD, a method
used in our current research, had a better overall performance
(Buendia and Narasimhan, 2008; Buendia et al., 2006). HIV
evolution within a patient exhibits strong evidence of continual
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positive selection, reflecting the successive fixation of advantageous
mutations and the extinction of unfavorable lineages (Rambaut
et al., 2004). Under continuous drug pressure, HIV resistance
mutations tend to accumulate along certain pronounced ‘mutational
pathways’, leading to groups of positively associated mutations
(Moya et al., 2000; Shafer and Schapiro, 2005). It has been shown,
for example, that for patients on Efavirenz therapy, mutation 101E
most often appears after the appearance of mutation 190S in the same
genome (Beerenwinkel and Drton, 2007). Understanding the series
of mutational pathways serves as a starting point for the planning
of long-term antiviral treatments that seek to prevent future drug
failures.

Mutagenetic tree models (Fig. 5) have been used to model
the stochastic accumulation of mutations and are based on strong
statistical concepts but are restrictive in their assumptions as
discussed below (Beerenwinkel et al., 2005a). Another limitation
of the model is the failure to include a phylogenetic context of
‘within-host’ population dynamics. Phylogenetics is the study of
the evolutionary ancestor/descendant relationships between species
and has been critical for understanding the biology and evolution
of HIV (Hillis, 1999). A modification of the mutagenetic tree model
that incorporates phylogenetic analysis was proposed later but did
neither consider nucleotide data, revertant mutations, sampling time
nor patient origin (Beerenwinkel and Drton, 2007).

The advantage of our proposed method is that it combines
statistical and phylogenetic models of evolution and takes into
account the complete information available in viral RNA/DNA
clonal nucleotide sequences sampled serially from the same hosts.
The new method is built upon the features of Sliding MinPD,
an enhanced version of MinPD that models the evolution of the
virus in its host environment through serial evolutionary trees and
networks (Buendia and Narasimhan, 2004, 2007). In a second step,
the evolutionary trees are reduced to a transitional Markov model by
translating the nucleotide sequences into drug resistance genotypes
and computing the transition probabilities between those genotypes
as described in a related study (Foulkes and De Gruttola, 2003).

2 METHODS
We propose a new algorithm, ‘vPhyloMM’, which uses phylogenetic and
Markov model approaches to model the evolution of viral drug resistance.
‘vPhyloMM’ characterizes the transition from sensitive to resistant virus and
from one category of resistance to another by inferring distinct mutational
pathways with corresponding transition rates and linkage relationships. The
2-step approach to reconstructing the mutational pathways of drug-resistance
is to infer the within-host evolutionary relationships and subsequently
construct a Markov model from the evolutionary relationships (Fig. 3).

2.1 Phase 1: phylogenetic model
The phylogenetic analysis was performed with ‘Sliding MinPD’, a
distance-based program that infers evolutionary lineages from within-host
longitudinal clonal sequences without assuming a molecular clock (Buendia
and Narasimhan, 2004, 2007). The program searches for the closest ancestor
of each sequence among all previous sampling times. The phylogenetic
model used in the current study does not assume recombination events in
the evolutionary history of the sequences. Detectable recombination events
are rare in drug suppressed virus as cell co-infection is rare and the residual
viremia is dominated by a homogeneous population of viruses (Bailey et al.,
2006; Fraser, 2005; Levy et al., 2004). The recombination detection feature
was therefore turned off to focus on tree-like evolutionary relationships.

Fig. 1. Representation of the within-patient evolutionary relationships of the
virus for each patient. The tree for patient 5 from the Bacheler et al. (2000)
dataset is shown with bootstrap support values enclosed in square brackets,
and solid horizontal lines indicating genetic distance.

Fig. 2. Binary sequences describing the viral genotype for seven markers.

There are no other limiting assumptions in the phylogenetic model. A serial
evolutionary tree is constructed from the patient’s viral sequences for
each patient separately using the program Sliding MinPD (Fig. 1). Sliding
MinPD calculates the statistical significance for all predictions in terms of
bootstrap values and presents the results in a serial evolutionary tree. The
bootstrap support is calculated for each ancestor/descendant relationship and
placed after the descendant sequence in the tree visualization (Fig. 1). The
ancestor/descendant transitions described in the trees are used to compute
the transition frequencies between genotypes.

The drug resistant genotype for each viral sequence was determined by
looking at the codon to amino acid translation as shown in an example in
Figure 2. Each genotype was described by a binary sequence of 0’s and 1’s.
A 1 indicates that the amino acid is present at that position, a 0 that it is
not. For example, a 1 was added if the codon AAT or AAC appeared in
amino acid position 103 of the reverse transcriptase (RT) gene indicating the
presence ofAsparagine (N). We reference a particular nucleotide sequence by
either its binary sequence or a position code that uses the mutation position
numbers. Figure 2 shows the binary codes for seven positions of interest. The
markers used in the example are: 0 = wildtype, 1 = 100I, 2 = 101E, 3 = 101Q,
4 = 103N, 5 = 108I, 6 = 190S, 7 = 225H. For a nucleotide sequence containing
103N and 225H and otherwise wild-type amino acids, we have the binary
sequence 0001001 or the position code 47 (drug resistant amino acids at
positions 4 and 7 are present).

2.1.1 Genotype clustering techniques Two types of genotype clustering
techniques were introduced at different steps during the processing of the
data:

(1) Ancestral sequences that share the same genotype and a small genetic
distance from a descendant were grouped together to compute the
bootstrap support at the genotype level instead of the nucleotide level.
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Fig. 3. Flowchart of the reconstruction of mutational pathways. Label pp
indicates per patient results.

(2) Descendant sequences that share the same genotype and are linked
to the same ancestor for the same two time points were counted as a
single transition.

The genotype clustering feature for the computation of the bootstrap
support, case (a) above, was introduced into Sliding MinPD to obtain a
more accurate support for the ancestor/descendant predictions when the
focus is on transitions between genotypes. It is known that the sensitivity
of phylogenetic predictions is negatively affected when there are highly
homologous sequences in the dataset, which is the case when some of the
viral sequences had insufficient time to evolve between sampling times.
Choosing a smaller but representative set of divergent sequences often
provides the same phylogenetic tree far more efficiently (Rosenberg and
Kumar, 2001). The approach implemented in Sliding MinPD does not remove
sequences, but instead clusters ancestral sequences with respect to their
similarity (distance clustering) and identical genotype for the computation
of the bootstrap support per cluster. In the evolutionary tree, each cluster is
represented by the ancestor sequence with minimum genetic distance to the
descendant sequence.

The second clustering method, case (b) above, serves to remove sampling
bias. Many similar sequences may be sampled at a given time point
representing the same ‘predominant’ quasispecies. The evolution from the
ancestor virus to this swarm of virus should count as one transition if they
all share the same common ancestor and the same genotype. This approach
aggregates all such transitions within a patient to compute the transition
frequencies among genotypes from the ancestor/descendant relationships.

2.1.2 Codon frequencies Once the ancestor/descendant predictions for
single clonal sequences have been generated, it is possible to also calculate
the codon transition frequencies for each of the positions associated with drug
resistance. These statistics provide an additional layer of prediction support
for the design of the model. For transitions from an ancestral genotype, the
ancestral codon at a particular amino acid position may be indicative of a
preference for a particular mutational pathway. This information expands the
Markov model prediction capability.

Let N =nij be the observed number of transitions i → j between an
ancestral genotype i to a descendant genotype j over all time intervals for
two genotypes i, j ∈ G. Let c(i → j)k,p ∈{0,1} be the indicator of the presence
of a three-letter codon c over the alphabet �c ∈{A,C,G,T} at position pin an
ancestral clone involved in a transition k from i to j. Each position represents
a particular position along the DNA sequence that is associated with drug
resistance. The frequency of a particular ancestral codon c at position p for
transitions i→ j is calculated by

f
(
cij,p

)= 1

N

N∑
k=1

c
(
i→ j

)
k,p .

Fisher exact tests were carried out to calculate the significant association
between codons and transitions departing from a particular ancestral
genotype. The Benjamini and Hochberg (1995) correction for multiple
comparisons was used when more than two tests were carried out for an
ancestral genotype

2.2 Phase 2: Markov model
For the second phase of the vPhyloMM algorithm, the evolutionary trees of
all patients were reduced to a compact set of transitions and the transition
counts between ancestor/descendant genotypes were computed as previously
described. The genotypes are associated with the amino acid mutations that
impart resistance to a particular drug (Fig. 2). Only the transitions with non-
parametric bootstrap support >0.7 were chosen to determine the topology
of the Markov model.

A Markov process is a probabilistic model describing the progression of
a system through a sequence of states. The genotypes used in this analysis
represent the states in the Markov model and can be thought of as arising from
a continuous time Markov process as the sampling times vary among patients.
Acontinuous time discrete-state stochastic process is called a Markov chain if
for times t<s, where Z(s) and Z(t) are the states at times s and t respectively
and pij(t,s) is the probability of transitioning from state i to j from time
t to time s, the conditional probability mass function satisfies the following
Markov properties.

(1) pij(t,s) = P[Z(s)= j|Z(t)= i], i.e. the probability of moving from state
i to state j is only dependant on the immediate previous state.

(2) P(t, s) = P(s − t), i.e. the probability of moving between time points
t and s is only dependant on the time elapsed, s− t, not the absolute
time.

The variables used in the model are obtained from the results of the phase
one phylogenetic analysis. Time t and s are the observed sampling times
for an inferred ancestor/descendant transition. States i and j represent the
ancestor and descendant genotypes. The number of transitions from i to j were
aggregated for all such ancestor/descendant relationships among all trees and
are represented by N(i,j). Albert (1962) presented parameter estimates for a
continuous time Markov process that are analogous to estimates for a discrete
time Markov chain (Albert, 1962). Let P(t) be the transition probability
matrix for a continuous Markov model. In a time interval t, the system
undergoes a change of state (or stays in the same state, a repetition) according
to a set of probabilities associated with the state. P(t) can be expressed in
the form

P (t )=exp
(
tQ

)=
∞∑

n=0

tnQn

n! ,

where Q is the infinitesimal generator of the continuous Markov process.
Q is a m ×m matrix encoding the time independent transition rates for a set
of m states. As shown by Albert (1962), Q can be estimated by

q̂
(
i,j

)= N
(
i,j

)

AT
(
i
) ,

with N(i,j) the number of transitions from states i to j, and AT (i) the total
time i is occupied over all P patients (Albert, 1962). A Markov model
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was used in an earlier study to determine whether the presence of certain
mutations among drug-sensitive viruses elevates the risk of developing high-
level drug resistance (Foulkes and De Gruttola, 2003). A similar model was
implemented in our current study to model viral evolution as a system that
can be in one of a set of k distinct genotype states and transitions between
the states in discrete time intervals. The difference between the two models
is that the genotypes and transitions between genotypes are computed based
on the phylogenetic relationship of the sequences, while in the above cited
study a K-means clustering method was used instead.

The transition model for one time interval can be represented as a directed
graph with the P(t) probabilities used as the edge weights (Fig. 4). Dijkstra’s
shortest path algorithm was adapted to find the most probable path between
a start and a destination state by taking the log of the probabilities. For
comparison between competing models, however, we calculated the all pairs
most probable paths and focused on the most probable paths with up to k
edges. All possible paths of length k were found using matrix multiplication
and then sorted first by source and then by weight. Cyclic paths were
identified as those having duplicate vertices and were not considered for
output.

Low support states were pruned from the model if they were connected
through edges with transition counts ≤x, with x the pruning threshold. In
cases when there is a particular start state in the model, such as the ‘wild type’
genotype in the example used below, ancestorless states are reconnected to
the start state by computing the transitive closure and all pairs’ shortest paths
for the non-pruned graph using an implementation of the Floyd–Warshall
algorithm.

2.2.1 Implementation The add-in R library ‘msm’ developed by
Christopher Jackson (http://cran.r-project.org/web/packages/msm/index.
html) was used to calculate the transition probabilities of the Markov model.
Perl scripts were developed to format input and output data, to run Sliding
MinPD and the R scripts, to compute the statistics and evaluate the model.

2.3 Empirical data
The data used to build the model consists of sequenced clones of length
984 bp from the HIV-1 pol gene, collected from 120 patients at different
time points during phase II clinical studies of the RT inhibitor ‘Efavirenz’.
(Bacheler et al., 2000). Patients participating in those studies received
combination therapies that also included AZT, 3TC and Indinavir. Seven
amino acid mutations that are associated with drug resistance to Efavirenz
were studied: L100I, K101E, K101Q, K103N, V108I, G190S and P225H.

3 RESULTS
AMarkov state transition model was used to represent the mutational
pathways of drug-resistance. For states described by a binary
sequence of seven possible mutations, which have been observed for
Efavirenz, there are 27 = 128 possible states; however, only a few
states are represented in the data, resulting in a probability transition
matrix of smaller dimension. Twenty-six genotypes were observed
among all patients with a maximum of three mutations linked on
the same viral genome. Low support states, those connected to
transitions that were only observed once, were pruned from the
model, reducing the model to 12 genotype states. The 16-week
probability of transitioning from one state to another or staying in
the same state was computed for the model shown in Figure 4.
Only observed transitions are represented in the directed graph. The
probability of transitioning in a different time frame can also be
computed using the formulas presented in the Section 2.

Fig. 4. Mutational pathways for Efavirenz. Transitions that appear in the
competing MTreemix model are highlighted by bold lines.

Fig. 5. Mtreemix mutagenetic tree for Efavirenz.

3.1 Model comparison and statistics
A competing model, called the mutagenetic tree model, which can
be generated from binary sequences using the programs Mtreemix
or RTreemix (Beerenwinkel et al., 2005a), is shown in Figure 5.
The mutagenetic tree model is built on sound statistical theory, but
is restrictive in its assumptions and does not consider mutations
that revert to a previous state. Nucleotide data are not used. Neither
patient origin nor the time when a viral sequence was sampled is
considered. Each node represents only the transition from wildtype
to drug resistance for one specific amino acid position, while the
nodes in our Markov model represent the linked mutation genotype,
leading to a more informative model.

When the binary sequences are obtained from clonal sequences
instead of consensus sequences, the mutagenetic tree is comparable
to the mutational pathways obtained by our method. The two
methods, however, do not display equivalent information. The
comparison focuses, therefore, on the shared states and transitions
between the two models. The edges in the mutagenetic tree are
weighted with the conditional probability of the child event given
that the parent event has occurred and are not based on time. The
mutagenetic tree has fewer states as it represents a cumulative
process; once a mutation is added it is not lost and transitions
between disjoint genotypes (that do not share the same mutations)
are not possible. Both models share a similar topology for the most
probable paths, but due to the exhaustive scope of our approach, we
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Table 1. Ten highest 16-week transition probability paths from wildtype

Probability Ancestor Descendant States s1 s2 s3 Total

0.2467 0 4 2 0 4 129
0.0330 0 47 2 0 47 7
0.0320 0 45 2 0 45 10
0.0283 0 47 3 0 4 47 170
0.0165 0 45 3 0 4 45 151
0.0123 0 34 2 0 34 4
0.0080 0 14 2 0 14 3
0.0060 0 34 3 0 4 34 137
0.0050 0 457 3 0 4 457 134
0.0033 0 4 3 0 47 4 11

Column ‘Total’ indicates the number of observed transitions between the two states.
Position codes: 0 = wildtype, 1 = 100I, 2 = 101E, 3 = 101Q, 4 = 103N, 5 = 108I, 6 = 190S,
7 = 225H. first, second and third states in path: s1, s2, s3.

are able to capture additional details that reveal novel evolutionary
patterns of drug resistance.

As seen in the model in Figure 4, the probability of remaining
in the same state (a repetition) after 16 weeks is always larger than
the probability of transitioning to a different state. The repetition
probability for the wild state decreases from 0.972 for the 1-week
interval, to 0.648 for the 16-week interval and to 0.258 for the 52-
week interval. The most probable transition from the wild-type state
is to genotype state 103N with probability 0.2476. It is interesting
to note that 103N incoming transitions have higher probability than
outgoing transitions, with the exception of transitions to and from
genotype 103N/225H (0.115 and 0.099, respectively). Once the
virus acquires the 103N/225H genotype the model predicts that
it will maintain this genotype for a prolonged period of time or
add mutations to it (since the state has other outgoing transitions).
The reverse can be observed for viruses with the 103N mutations
linked with a non-225H mutation on the same genome, in which
case the viruses have a higher probability of losing the non-225H
mutation in the same period of time. It should be noted that this
conclusion cannot be drawn from the mutagenetic model in Figure 5
as reversions are not considered. While reversions are rare and it is
possible that inferred reversions are a consequence of fluctuations in
virus sub-populations rather than actual mutations, this possibility
is allowed by our model, as both processes can lead to previously
observed genotypes.

Aseparate path that does not involve 103N and goes from wildtype
to 190S to 101E/190S (0→6→26 using the position codes) was
observed in both models. As can be observed from Figures 4 and 5,
among the five transitions with highest probability are two that
appear in both models: transitions from wildtype to 103N, and from
190S to 101E/109S. Table 1 shows the 10 most probable paths that
start at the wildtype state with up to four states. It is interesting
to note that a few of these paths also appear in the mutagenetic
model, such as 0→4→47, 0→4→45, 0→4→34 (the numbers
in parentheses indicate the position code of the mutation). In our
model, we also observe transitions from wildtype to a genotype state
with two mutations, for example, to 103N/225H (47). It should be
mentioned that the probability of this single transition is very low
(0.033) and that a separate path through 103N(4) exists with high
single transition probabilities, suggesting that the transitions occur

so quickly that the intermediate state (with only 103N) will not be
observed.

The frequencies of the ancestral codon for each
ancestor/descendant transition were computed as described in
the methods section. In order to obtain this information, it is
imperative that longitudinal clonal nucleotide sequences be used
in the framework of phylogenetic analysis. Nucleotide consensus
sequences (polyclonal sequences), on the other hand, merely
summarize the viral population and do not identify different
variants or reveal their evolutionary impact. Using the method
described previously, we obtained the frequencies for wild-type
transitions shown in Table 2. The most prevalent codon is shown
in the column header and a dash in the rows below the header
indicates that it was the only codon observed for that particular
ancestor/descendant transition. The data can be used to identify
codon frequency patterns that indicate a preference for one
mutational path over another. For example, codon GGC at position
6 has been observed 88% of the times for transitions 0→6 from
wildtype to 190S (only codon counts of 5 or more are considered);
but in other paths, it has been observed at only low frequencies
or not at all. In fact, the presence of codon GGC at position 6
indicates a significant preference for the 0→6 transition (P < 0.001
for a Fisher exact test with subsequent Benjamini and Hochberg
correction). A few other significant codons of lesser relevance
were found, such as CCC at position 7 indicating a preference for
the 6→26 transition (P = 0.001), GGA at position 6 indicating a
preference for the 2→0 reversion (P = 0.002) and AAC at position
4 indicating a preference for the 14→4 reversion (P = 0.001).
This information is useful when developing a prediction system
in combination with the multinomial probability distribution for
transitions from a given state in the Markov model.

3.2 Model validation
In order to test whether the virus evolution is independent from the
host environment and independent of the time of sampling, we ran
several correlation tests involving the variable of interest, number
of transitions. A transition in our model is defined as a change in one
or more of the six amino acid positions, giving equal weight to a
transition with 1, 2 or more amino acid changes. Statistical analysis
found no significant correlation between number of transitions
and sampling time within a patient, suggesting independence of
time and transition count. Moreover, when looking at parameters
that co-vary between patients, significant correlations were found
between number of sampling times and number of transitions,
(r = 0.513, P= 0.04), and number of sequences per sampling point
and number of transitions (r = 0.45, P = 0.013), indicating that the
transition counts are affected by the number of sampling points and
number of sequences sampled, two variables which are independent
of the host environment.

In addition, the method by DeGruttola and Foulkes (2004) was
used to test formally that the first-order, stationary Markov model
holds for all transition and all time points (De Gruttola and Foulkes,
2004). The test is based on simulated datasets generated from the
estimated Markov model and is used to assess whether the Markov
properties (presented above) hold. The simulation test is performed
using the following algorithm.

(1) Compute eijl , the expected transition frequencies between
genotypes i and j (binary sequences) in time interval l, by
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Table 2. Frequency of observed synonymous codons for transitions from wildtype

Ancestor Descendant pos:1 (TTA) pos: 2; 3 (AAA) pos: 4 (AAA) pos: 5 (GTA) pos: 6 (GGA) pos: 7 (CCT)

0 0 CTA (3%) AAG (1%) AAG (3%) GTG (8%);
GTC (1%)

GGC (5%);
GGG (2%);
GCA (1%)

CCC (10%); CTT (1%)

0 6 – – AAG (5%) – GGC (88%)a CCC (28%)
0 4 CTA (6%);

TTG (3%)
AGA (2%)a;
AAG (1%)

AAG (3%);
AGA (1%)

GTG (6%);
GTT (1%);
GTC (1%)

GGG (4%); GGC (2%) CCC (10%); CCG (3%)a

0 47 – – AGA (3%) – GGC (3%) –
0 45 TTG (2%) – – – GGC (40%); GGG (4%) –
0 34 – – AAG (31%) – – CCC (23%)
0 2 – – AGA (29%) – GGC (10%) CCC (19%)
0 24 – – – – – –
0 14 – – – – GGC (57%) CCC (29%)

Most prevalent codon appears in parentheses in header line; transitions with this codon are identified by a dash. Position codes are as before.
asignificant preference for the indicated transition.

using the Markov transition matrix pij for interval l and
the following formula: eijl = ni.lpijl, with ni.l the observed
number of all transitions from i in interval l.

(2) Based on ni.l , we obtain n′
ijl , the simulated observed number

of transitions by drawing ni.l times from a multinomial
distribution for interval l with probabilities pi1l,pi2l, ...,pikl
with k the number of genotypes/states.

(3) Repeat step 2, B = 100 times to obtain 100 n′
ijl for each i,j,l.

(4) Calculate V (b)
i.l =∑C

j=1

(
n′ (b)

ijl −eijl

)2

eijl
forb = 1, ... ,B with C the

number of states. Order the V (b)
i.l , such that the largest V value

is in V (b)
(CxM).

(5) Calculate the r-th expected order statistic E(r) =
1
B

∑B
b=1V (b)

(r) for r = 1, ... ,C×M. E(r) is the mean V

value among all 100 simulations for a given r.

(6) Let D(b)
(r) =

∣∣∣V (b)
(r) −E(r)

∣∣∣ (the difference from the mean for each

simulation) and record the 95% confidence interval (CI) of the

distribution of D(b)
(r) over all b=1, ...,B.

(7) Calculate the r-th order statistics D(r) =|V(r) −E(r)| with V(r)
similar to the V from equation in (4), but with nijl instead of
n′

ijl .

(8) Significance is assessed by comparing the D(r) to the 95% CI

of the distribution of D(b)
(r) over all b=1, ... ,B.

Figure 6 shows the result of the validation process, which compares
the order statistics of V to their expected values. Each circle
represents a particular time interval and a start state. We restricted
our application to the six most frequently observed time intervals
to reduce the sparseness of data, but included all 12 states from the
model shown in Figure 4. Thus, a total of 6×12 = 72 dots are plotted.
The lines in the figures correspond to the 95% confidence bands for
the 72nd (dashed) and 71st (dotted) order statistics. A single dot
outside the dashed lines or two dots outside the dotted lines suggest
a departure from the Markov assumption. Using this approach, it can

Fig. 6. Observed versus expected statistics.

be noted that the number of observed transitions is slightly greater
than expected; however, this difference is not significant. One point,
in particular, has a marked distance from the other points (4 weeks,
wild-type state), but the outlier is well within the 95th percentile
(dashed line).

The empirical data used in the model creation was analyzed for
putative recombination events. The few predicted recombination
events were not found to affect the model. These events were among
the same genotype or had low bootstrap support leading to their
automatic exclusion from the model.

4 DISCUSSION
A 2-step algorithm that combines phylogenetic analysis and a
Markov process was developed to capture the mutational pathways
of drug resistance, i.e. branching structures in which the evolution
of specific mutations can be traced along directed paths. Serially
sampled nucleotide sequences from HIV-1 viruses were studied
using a per-patient phylogenetic approach to model the within-
host evolution of the virus via serial evolutionary trees. The
Markov model step recovered a map of the potential pathways
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for drug-resistance for a specific drug by reducing the set of serial
evolutionary trees to an n-state Markov transition model showing the
transitions from one mutation state to another. Our algorithm should
be applicable to fast evolving viruses that develop drug resistant
mutations under drug pressure.

We showed that the most probable paths in our model are
comparable to those of the mutagenetic tree model generated by
MTreemix 1.3 (Beerenwinkel et al., 2005a), a program that uses an
EM algorithm for model fitting from binary sequence data. While
the MTreemix program can also generate a mixture model of k
mutagenetic trees to overcome the limitations of a single tree that
does not capture all the pathways, our model goes a step further in
representing linked mutations as states and allows for mutations to
revert back to a previous state. In our analysis of an HIV-1 dataset
from patients on an Efavirenz therapy, we showed that although
most mutations added onto a 103N genotype may revert back to
wildtype, the 225H mutation linked on the same genome with the
103N mutation has a higher probability of persisting over time. The
phylogenetic analysis during the first phase of our approach made
it possible to calculate the frequencies of observed ancestral codons
for all ancestor/descendant relationships and for the six positions
associated with drug resistance. This information may complement
the prediction process of the Markov model as a particular codon
may be associated with a particular path.

It has been suggested that with decreasing viral load, cell
co-infection falls rapidly and viral populations become more
homogenous (Bailey et al., 2006; Levy et al., 2004). Recombination
should therefore have little effect on the emergence of drug
resistance during therapy and is difficult to detect under these
conditions (Fraser, 2005). In the analyzed dataset, the inferred
recombination events were few and did not affect the model.
Incorporating recombination into the model would lead to a greater
number of unlinked genotypes, as different parts of a gene sequence
would have different ancestors. This would in turn affect the
transition model, increasing the number of states and reducing the
power of the model. We have assumed that mutations occur at the
time they are observed. An interval censoring correction could be
applied to some of the larger interval lengths; however, no qualitative
and little quantitative differences were found in a related study when
using the midpoint of time intervals as the time at which mutations
occur (Foulkes and DeGruttola, 2003). This small bias may account
for the underestimation of order statistics in Figure 6. When using
the mean pairwise genetic distance (MPD) between two time points
as an estimate of the evolutionary rate, we found that 65% of patients
had a significant correlation (P <0.05) between MPD and sampling
time, and 88% of those patients showed their MPD to be negatively
correlated with time. This observation did not, however, affect the
assumptions of independence for the Markov model, as the measure
of interest is the observed transitions count. A transition is defined
as a change at one or more of the six amino acid positions. The
transition count was found to be independent of sampling time and
host environment.

The inclusion of clonal sequence data distinguishes our model
from other models that make use of polyclonal sequences (obtained
through bulk PCR methods), which only show the consensus
genotype of the viral population at a given time point. Single-
genome (clonal) viral RNA sequences, representative of both
majority and minority viral populations within a patient, are an
ideal source of molecular information in the study of in vivo HIV

evolution. The ultra-deep 454 pyrosequencing technology generates
reads of up to ∼400 bp in length, data that is ideal for use with
our proposed methods as it allows the identification of linked
mutations. This new technology has led to the identification of
a significantly larger proportion of HIV-infected, treatment-naive
persons as harboring drug-resistant viral variants (Simen et al.,
2009). We incorporated clonal sequence data into our model by
inferring the ancestor/descendant transitions for each patient. We
also calculated the frequency of ancestral codons at drug resistant
positions for all observed transitions and found that certain codons
appear more frequently in certain transitions than others. While
available data are insufficient to allow us to expand the number
of states to include the impact of synonymous codons, future work
will focus on incorporating such information as covariates into the
Markov model likelihood.

Antiviral therapies against HIV-1, HBV and HCV currently
in the market are successful at suppressing virus populations to
undetectable levels, but they do not eliminate the virus. An increase
in viral load at any time can lead to an increase in viral evolution
and to drug resistant mutations leading to therapy failure. Some
reasons for therapy failures are: non-optimal adherence to a therapy,
limited access to therapy in non-industrialized countries, lack of
optimal therapy after previously failed therapy and preexisting drug
resistant mutations. With the availability of clonal (pyro-) sequences
from patients at the beginning of therapy and at points of failure,
the method described here will allow for the reconstruction of new
pathways of drug resistance. We believe that the use of phylogenetic
methods that model molecular processes in viral evolution under
drug pressure and analyze the full information content in nucleotide
sequence data will lead to the identification of distinct evolutionary
pathways to multiple drug resistance.

Findings from the proposed research may have implications for
clinicians; particularly in relationship to treatment strategies that
delay, or potentially even reverse drug resistance and are applicable
to HIV, HBV and HCV anti-viral therapies alike. Future plans
include the development of a therapy outcome prediction system that
combines the phylogenetic and statistical models presented here,
information from clonal viral sequences and clinical and immune
response data.
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