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ABSTRACT

Motivation: Protein-protein interactions (PPls), though extremely
valuable towards a better understanding of protein functions and
cellular processes, do not provide any direct information about the
regions/domains within the proteins that mediate the interaction.
Most often, it is only a fraction of a protein that directly interacts
with its biological partners. Thus, understanding interaction at the
domain level is a critical step towards (i) thorough understanding of
PPI networks; (i) precise identification of binding sites; (iii) acquisition
of insights into the causes of deleterious mutations at interaction
sites; and (iv) most importantly, development of drugs to inhibit
pathological protein interactions. In addition, knowledge derived
from known domain-domain interactions (DDIs) can be used to
understand binding interfaces, which in turn can help discover
unknown PPIs.

Results: Here, we describe a novel method called K-GIDDI
(knowledge-guided inference of DDIs) to narrow down the PPl sites to
smaller regions/domains. K-GIDDI constructs an initial DDI network
from cross-species PPI networks, and then expands the DDI network
by inferring additional DDIs using a divide-and-conquer biclustering
algorithm guided by Gene Ontology (GO) information, which identifies
partial-complete bipartite sub-networks in the DDI network and
makes them complete bipartite sub-networks by adding edges.
Our results indicate that K-GIDDI can reliably predict DDIs. Most
importantly, K-GIDDI’s novel network expansion procedure allows
prediction of DDIs that are otherwise not identifiable by methods
that rely only on PPI data.

Contact: xwchen@ku.edu

Availability: http://www.ittc.ku.edu/~xwchen/domainNetwork/ddinet.html
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Recent developments in high-throughput technologies have made
it possible to systematically discover physical and functional
interactions between proteins (Bork ez al., 2004; Chen and Jeong,
2009; Hu et al., 2009; Lin et al. 2009; Parrish et al., 2006;
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Vidal, 2001). Protein—protein interactions (PPIs), though extremely
valuable towards a better understanding of protein functions and
cellular processes, do not provide any direct information about the
regions/domains, defined as structural or functional sub-units, within
the proteins that mediate the interaction (Jothi et al., 2006). Most
often, it is only a fraction of a protein that directly interacts with its
biological partners. Given that a majority of all proteins are multi-
domain proteins (Jothi et al., 2006) and interactions between two
proteins are often characterized by interactions between a pair of
constituent domains. Thus, understanding interaction at the domain
level is a critical step towards (i) thorough understanding of the PPI
networks and their evolution; (ii) precise identification of binding
sites; (iii) acquisition of insights into the causes of deleterious
mutations at interaction sites; and most importantly (iv) development
of drugs to inhibit pathological protein interactions (Pawson and
Nash, 2003). In addition, information derived from known domain—
domain interactions (DDIs) are increasingly used to understand
binding interfaces (Akiva et al., 2008; Gong et al., 2005; Shoemaker
et al., 2006), which in turn can help discover unrecognized PPIs
(Schuster-Bockler and Bateman, 2007).

Many aspects of cell signaling, trafficking and targeting are
governed by interactions between globular protein domains and, in
some cases, between a globular domain and short peptide segment
(Neduva et al., 2005). Interactions between globular domains have
drawn increased attention over the last few years. Three-dimensional
structures or models are a great aid to understanding the details of
how protein or domain interactions are mediated. Recent studies
suggest that the limiting factor is no longer the number of protein
structures, but the number of 3D templates on which to model
interactions (Aloy and Russell, 2004). This has created an urgent
need in the community to identify the most comprehensive possible
set of interaction templates. Given that it has been estimated that
there are about 10 000 interaction types and that it will take more than
20 years before we know a full representative set (Aloy and Russell,
2004), it is important that we expedite the process of identifying all
interactions at the domain level to fully understand the structural and
evolutionary aspects of protein interactions and complexes (Itzhaki
et al., 2006). Understanding interactions at the domain level will
move us a step closer towards understanding critical molecular
details of how interaction networks are constructed, which in turn
will help illuminate cellular processes (Pawson and Nash, 2003).
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Knowledge-guided DDI inference

Although high-throughput techniques used for experimental
determination of PPIs can be used to infer interaction between
individual domains (Ikeuchi et al., 2003; Sleno and Emili, 2008),
to our knowledge, no study has used such approaches to detect
DDIs on a genomic scale. One way to infer DDIs is to study
3D structures (Aloy and Russell, 2006; Finn et al., 2005; Littler
and Hubbard, 2005; Stein et al., 2005; Russell et al., 2004).
Unfortunately, the number of known DDIs is still mostly limited by
the availability of 3D structures as the number of PPIs with known
structures is far fewer than the number of known interactions. This
limits us from uncovering all possible domain level interactions.
Moreover, DDIs inferred from structural data could explain no
>20% of the PPIs for any of the Escherichea coli, Saccharomyces
cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and
Homo sapiens organisms (Itzhaki et al., 2006; Schuster-Bockler
and Bateman, 2007). To expedite the discovery of DDIs, several
computational approaches have been proposed in recent years in an
effort to unearth previously unrecognized DDIs on a genome scale.

Attempts have been made to understand DDIs using a hypothesis
based on correlated mutations at interaction sites (Jothi et al., 20006;
Kann et al., 2007), generally referred to as the co-evolution principle
(Pazos and Valencia, 2008). Many other methods rely solely on PPI
networks to infer DDIs. One of the first was the Association Method,
which seeks domain pairs that co-occur more often in interacting
protein pairs than expected by chance (Sprinzak and Margalit, 2001).
This idea was later extended using a maximum likelihood estimation
approach where domain interaction probability is optimized using an
expectation maximization algorithm (Deng et al., 2002; Liu et al.,
2005). Other groups have proposed probabilistic network models
(Gomez and Rzhetsky, 2002; Nye et al., 2005), machine learning
algorithms (Chen and Liu, 2005, 2006), phylogenetic profiling
(Pagel et al., 2004) and integrative models (Lee ef al., 2006; Ng et al.,
2003) to study domain interactions. More recently, a unique class of
methods emerged where given a PPI network, the goal is to find an
optimal set of DDIs that together could explain or justify the set of
all interactions in the PPI network. For instance, the DPEA method
(Riley et al., 2005) introduced a new measure for each potentially
interacting domain pair, called E-score, which measures the degree
of reduction in likelihood of observing the given PPI network when
excluding a domain pair. A variant of this method was proposed
later (Wang et al., 2007). Similar optimization frameworks were
proposed to identify the minimal set of DDIs that could explain the
set of all PPIs (Guimaraes et al., 2006; Singhal and Resat, 2007).

In this study, we explore an alternative approach called K-GIDDI
(knowledge-guided inference of DDIs) for predicting DDIs from
cross-species PPI network data. K-GIDDI begins by constructing an
initial DDI network from cross-species PPI networks, which is then
expanded by inferring additional DDIs using a divide-and-conquer
biclustering algorithm guided by Gene Ontology (GO) information
(Ashburner et al., 2000). The expansion of the DDI network is
done by identifying partial-complete bipartite sub-networks, guided
by GO molecular function terms and adding necessary edges to
make them complete bipartite sub-networks. The presumption is
that the newly added edges in the DDI network represent missing
DDIs, which could be due to the utilization of not-yet-complete PPI
networks.

The predicted DDIs are evaluated against a set of known
DDIs (Finn et al., 2005; Stein et al., 2005) inferred from PDB
structure data (Berman et al., 2000), and predictions from previous

approaches stored in the DOMINE database (Raghavachari ef al.,
2008). Our results indicate that K-GIDDI can reliably predict
DDIs, and its performance is better, if not comparable, to that of
previous approaches. Most importantly, K-GIDDI’s novel network
expansion procedure allows prediction of DDIs that are otherwise
not identifiable by methods that rely only on PPI data. This is
significant because information derived from these novel DDIs could
be used to understand binding interfaces, which in turn can help
discover unrecognized PPIs.

2 METHODS

2.1 Initial DDI network construction

Most DDI prediction methods are based solely on PPI data. As much as
we value the data generated from high-throughput experiments, several
independent studies have, however, indicated that their false positive rates
could be as high as 50% (Deane et al. 2002; Mrowka et al., 2001; von
Mering et al., 2002). Even literature-curated PPI data is of lower quality than
commonly assumed (Cusick et al., 2009). Only recently, advances in high-
throughput technology have reduced the false positive rates to acceptable
levels (Yu et al., 2008). Thus, in order to construct a reliable DDI network
from noisy PPI datasets, we designed our approach, K-GIDDI, to take
advantage of those PPIs that have been known to occur in many organisms,
which, intuitively, are more likely to be true interactions than the ones that
have been observed in only one organism. This strategy, which has been used
by some of the previous approaches to control noise in the PPI data (Chen
et al., 2008; Guimaraes et al., 2006; Riley et al., 2005), has been shown to
be effective in minimizing the number of false inferences.

There are cases where a domain from one protein may make direct
physical contact with two or more domains from another protein (Pawson and
Nash, 2003) that almost always co-occur. In some cases, these co-occurring
domains are fused together to form a single domain/protein in some reference
organisms (Kamburov et al., 2007). In addition to deducing one-to-one DDI
patterns, K-GIDDI was also designed to detect these one-to-many or many-
to-many DDI patterns, which may be biologically meaningful interaction
templates. In summary, the task at hand was to extract the conserved DDI
patterns buried within the noisy PPI datasets derived from diverse organisms.

K-GIDDI accomplishes the task by gathering functionally related PPIs
into a ‘group’ from which it derives the most representative and significant
interacting domain (DDI) pattern that could explain the set of PPIs within
that group. For instance, consider two PPIs between proteins P and Q and
between proteins X and Y. The two PPIs (P—Q and X —Y) are defined as
functional neighbors and are classified to belong to the same group if and
only if proteins P and X, and proteins Q and Y (or P and Y, and Q and X) are
functionally ‘similar’ (Fig. 1). Two proteins are considered to be functionally
similar if the distance between them, defined as the shortest GO-graph-node
distance between their annotated GO molecular function terms, is less than
or equal to a threshold ¢, which is set empirically. Since GO is designed as a
directed acyclic graph in which each node represents a term, the GO-graph-
node distance is described as the least number of nodes separating the two
terms. After obtaining groups of functionally related PPIs, for each group
of PPIs, we enumerate all possible DDI patterns. Not only do we consider
singular DDIs, in which a domain from one protein interacts with a domain
from another protein, but we also consider instances where one domain from
one protein interacts with two or more domains from another protein (one-
to-many or even many-to-many). To select the most significant DDI patterns
occurring within the PPIs in each group, we assess the significance of each
DDI pattern in a group by computing its x>-value using the formula

2 N x(AD —CB)?
" (A+C)B+D)A+B)C+D)’

where N is the total number of PPIs in the network, A is the number of
PPIs in the group that contains the DDI pattern and B is the number of PPIs

X ()
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Fig. 1. A schematic of the K-GIDDI method to infer DDIs. Colored squares
denote protein domains, and proteins are denoted by single or concatenated
domains. PPIs and DDIs are denoted by edges/lines connecting proteins or
domains, respectively. Colored rounded-rectangles contain proteins sharing
the same GO ‘molecular function’ term, and gray squares containing a pair
of rounded-rectangles denote groups containing functionally similar PPIs.
A representative DDI pattern is derived from each group. Those inferred
DDIs that pass the statistical significance thresholds are then assembled to
generate the initial DDI network, which is then expanded via a knowledge-
guided search to include DDIs that may not be identified otherwise by
methods that rely only on PPI data. The network expansion procedure,
guided by GO information, identifies proteins sharing the same GO terms and
their interaction partners, extracts the network spanning the domains within
these proteins, and uses a biclustering algorithm to identify partial-complete
bipartite sub-network and fills-in missing edges, denoted as red broken lines,
to make them complete bipartite sub-networks.

outside the group that contain the DDI pattern. C and D are the number of
PPIs in the group and outside the group, respectively that do not contain
the DDI pattern. A DDI pattern occurring more frequently in PPIs inside the
group (functionally similar) than those outside the group is expected to have
a higher x? value, hence is more significant. In our study, only those DDI
patterns with the highest x> values from each group are retained for DDI
network construction.

Our decision to classify PPIs based on GO molecular function rather
than GO’s ‘cellular component’ or ‘biological process’ terms was based
on two reasons: (i) classification of PPIs based on GO cellular component
term would be less meaningful as a PPI cannot involve one protein from
one cellular compartment and the other from another compartment, and
(ii) although classification of PPIs based on GO biological process term
could be justifiable, such a classification would result in fewer ‘groups’
(gray squares in Fig. 1) as there are far fewer biological processes in
number than molecular functions. Since only the top-scoring DDI from
each group is retained for the initial DDI network construction, using GO

biological process would effectively result in fewer predicted DDIs during
the initial DDI network construction (sparser network), which in turn would
affect the subsequent network expansion procedure that searches for dense
partial-complete bipartite graphs.

2.2 A knowledge-guided approach for DDI network
expansion

Due to incompleteness of the PPI network, DDI prediction methods relying
solely on the PPI data may not be able to infer the entire set of DDIs
that might exist. Therefore, we propose to expand the above built DDI
network by searching for partial-complete bipartite graphs by which novel
interactions can be inferred between domains, which may be interacting
within the context of one or more PPIs that may not have been discovered
yet. The assumption is that few missing interactions between domains in
those partial-complete bipartite graphs may be due to the use of incomplete
PPI datasets.

Formally, the DDI network determined above can be represented by an
undirected graph G = (D, E), where D is the set of domains (vertices), and E
is the set of interactions (edges/links). A bipartite graph or bigraph is defined
as a graph G=(D=V;UV,,E), whose vertices can be divided into two
disjoint sets V| and V> such that every edge connects a vertex in Vj to a
vertex in V. A complete bipartite graph, also called biclique, is a special
kind of bipartite graph where every vertex in set V; is connected to every
vertex in set V,. That is, for any two vertices v| € V| and v, € V>, there exists
an edge connecting v; and v; in graph G, which will contain a total of | V| V2|
edges.

Contrary to conventional complete bipartite graphs, the two sets of vertices
we look for are not necessarily disjoint to reflect the fact that a domain may
interact with itself. Moreover, we aim to find partial-complete instead of
complete bipartite graphs. More precisely, the problem to solve here is to
identify sub-graphs (or sub-networks) from the DDI network containing two
sets of domains DV| and DV, such that every domain in DV is connected to
at least a certain percentage of domains in DV and vice versa. Once a partial-
complete bipartite graph has been identified, the missing edges (presence of
which would otherwise make the partial-complete bipartite graph a complete
bipartite graph), representing the additional DDIs, are added to the network.

Instead of blindly searching through the entire DDI network G for
partial-complete bipartite graphs, we use GO information to guide the
search so that the search space is significantly reduced to only those
sub-graphs that contain functionally related domains and their interacting
partners. To accomplish this task, for each GO ‘molecular function’ term,
we first compile a set of proteins that share that functional annotation,
and gather their interaction partners. Let us denote the set of proteins with
the annotation term 7; as P; 1 ={pi 11.pi12, ...} and the set of interaction
partners for the proteins in P; | as P;2={pi21.Pi22,...}. Then from each
set of proteins, the corresponding set of constituent domains are compiled:
Dj1={di11,di12, .. di1m} from P; 1, and D; 2 ={d; 21,d;. 22, -.- ,d; 2n } from
P;,. After obtaining the two sets of domains, we extract the subgraph
G’=(D; 1 UD, 3, E’) from the DDI network G =(D, E) such that D; | € D,
D;> €D, and (d; 1}, di2) € E° CE, where j=1-m, and k=1-n.

Once our focus is confined to the subgraph G’=(D; 1U D; » ,E’), we initiate
the search for a partial-complete bipartite graph G* =(DV U DV 5, E*) such
that every domain in DVis connected to at least a certain percentage of
domains in DV, and vice versa (Fig. 1). In graph theory, finding complete
bipartite sub-graph in a given graph with maximal number of edges is
computationally intractable (NP-complete). Thus, the crucial question here is
how to search for such graphs. To tackle the challenge, we propose to employ
a biclustering algorithm. Biclustering is a simultaneous clustering technique,
frequently used in gene expression analysis (Madeira and Oliveira, 2004),
applied on both row and column dimensions of a matrix to find sub-matrices
in which rows and columns are highly correlated. For the problem at hand,
from the sub-graph G’, we can establish an adjacency matrix A where the rows
refer to the domains in D; | and the columns refer to the domains in D;  with
dimension m=|D; 1| by n=1D; »|. Individual elements in the matrix, A, is 1
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Fig. 2. A pictorial illustration of the divide-and-conquer biclustering
algorithm. An arbitrary row from the input matrix A, containing either 1s or
Os represented as gray and white boxes, is chosen as a template to rearrange
the columns such that columns containing 1s in the template row are arranged
on the left (J,) and those containing Os arranged on the right (J,). Numbers
1-9 within the template row serves as a guide to the column rearrangement.
Next, the rows are rearranged such that submatrices A(J,, J,) and A({,, J,,)
contain only Os. Letters a—h within right column serves as a guide to the
row rearrangement. Matrices U and V are processed recursively until the
resultant sub-matrices contain at least a specific percentage of 1s in each
column and row.
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if (d; 1, di,2k) € E” and O otherwise Vj and Vk, and d; 1j € D; 1, di 2 € Dip.
One fundamental difference exists between our problem and the one for gene
expression analysis. Instead of having a matrix of real numbers representing
expression levels, our adjacency matrix A contains binary values, 1s and Os,
representing whether or not two domains interact. Moreover, the objective in
gene expression analysis is to identify correlated expression patterns, which
implies that every value is important. In contrast, the Os in our matrix A are
meaningless, and the elements in the resultant sub-matrices will mostly be 1s.

Keeping the above differences in mind, we modify a divide-and-
conquer biclustering algorithm called binary inclusion-maximal biclustering
algorithm (Bimax) (Prelic et al., 2006) that can be used to identify maximal
sub-matrices with all elements equal to 1 (i.e. complete bipartite graphs).
However, our objective is to identify partial-complete bipartite graphs and
not complete bipartite graphs. To this end, we modify the Bimax algorithm
as follows. The divide procedure first partitions the input adjacency matrix
A into two smaller, possibly overlapping sub-matrices U and V. This is done
by taking an arbitrary row as a template, rearranging the set of columns by
separating them into two subsets J;, (containing all 1s) and J, (containing
all 0s) based on the template row (Fig. 2). Then the rows are rearranged as
follows: first place the rows I, with 1s only in the columns corresponding to
Jyu, then the rows /,, with 1s in the columns corresponding to both J,, and J,,,
and finally the rows I, with 1s only in the columns corresponding to J,,. fu, Iw
and /v in conjunction with Ju and Jv defines U as the sub-matrix A(Ju U Iw,
Ju) and V as the sub-matrix A(Iw U Iv, Ju U Jv). In the conquer procedure,
the resulting sub-matrices U and V' are then decomposed recursively in
the same manner until the resulting sub-matrix (or sub-matrices) represents
a bicluster in which each row and column contain a specific percentage,

b, of 1s (Fig. 2). The complete Approx-Bimax algorithm is provided as
Supplementary Material S1.

3 RESULTS AND DISCUSSION

3.1 Data sources

To build the DDI network, we assembled the PPI data for
S.cerevisiae, C.elegans, D.melanogaster and H.sapiens from the
DIP January, 2008 release (Salwinski et al., 2004), BioGRID
2.0.38 release (Stark er al., 2006) and HPRD September, 2007
release (Peri et al., 2003). The assembled dataset contained 54 987,
3085, 5375 and 30223 PPIs among 3794, 1609, 2059 and 7167
proteins in S.cerevisiae, C.elegans, D.melanogaster and H.sapiens,
respectively.

Domain assignments for each protein were made using the HMM
profiles from Pfam 22.0 (Finn er al., 2008). Both the manually
curated Pfam-A and the automatically generated Pfam-B profiles
were considered for domain assignments. The set of interacting
proteins in S.cerevisiae, C.elegans, D.melanogaster and H.sapiens
contained a total of 4542, 2346, 3715 and 12082 unique Pfam
domains, respectively. We found a total of 429 Pfam domains that
were common among all four organisms. Supplementary Material
S2 contains the distribution and overlap of domains across the four
organisms. We used GO ‘molecular function’ terms (Ashburner
et al., 2000) to assign function for each protein in our dataset.
Together, the proteins in our dataset were assigned a total of 2788
unique GO functions.

The DDI network was constructed in two parts. In the first part,
an initial DDI network was constructed using K-GIDDI’s network
construction procedure (Fig. 1; see Section 2 for details). In the
second part, this network is then expanded to include additional
DDIs via a novel knowledge-guided search for partial-complete
bipartite graphs, which in the end are made complete bipartite graphs
by adding the missing edges.

3.2 Statistical evaluation of the predicted DDIs

The limited number of gold standard DDIs makes the evaluation
of DDI prediction methods a challenging problem. Typically, pairs
of domains reported to interact in crystal structures of protein
complexes are used as a benchmark for true positives. To evaluate
the reliability of DDIs predicted by our algorithm K-GIDDI, we
compared them with the set of known DDIs reported in iPfam (Finn
et al., 2005). In iPfam, two domains are defined as interacting if and
only if they are close enough in at least one PDB complex to form an
interaction. However, one must keep in mind that iPfam embodies
only a small fraction of all possible DDIs that may exist. According
to a recent study (Itzhaki et al., 2006), DDIs in iPfam and 3DID
(Stein et al., 2005) databases could explain no >20% of the PPIs
for any of the E.coli, S.cerevisiae, C.elegans, D.melanogaster and
H.sapiens organisms. Hence, it must be emphasized that the number
of predicted DDIs that can be verified by these two databases of
known DDIs is rather small. Just because a predicted DDI cannot
be verified using iPfam or 3DID does not necessarily mean that
it is a false positive. It is certainly possible that at least a sub-
set of unverifiable DDI predictions is true, and that they have not
been crystallized yet. For instance, only ~11.4-17.3% of the DDI
predictions by the RCDP approach (Jothi et al., 2006) are known to
be true.
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Given this backdrop, in order to evaluate the reliability of
the DDIs predicted by K-GIDDI, we adopt a statistical approach
described by Deng et al. (2002). If K-GIDDI’s predictions are
reliable, then a DDI predicted by K-GIDDI should be much more
likely to be present in the set of known DDIs than an interaction
between a random pair of domains. To measure the fold enrichment,
we use the following formula, which measures the ratio of the
fraction of predicted DDIs known to be true to the fraction of random
domain pairs known to interact:

“/
o @)
N

Fold=

where n is the number of DDI predictions, k is the number DDI
predictions that are known to be true, N is the number of all possible
domain pairs and K is the number of all possible domains known to
interact.

Recall that K-GIDDI makes DDI predictions in two parts: initial
DDI network construction and knowledge-guided expansion of the
DDI network. In the first part, an initial DDI network is constructed
by mining statistically significant DDI patterns from functionally
related PPIs (see Fig. 1 and Section 2 for details). A Xz—value,
assessing the significance of each possible DDI pattern, is computed
in the process. One would expect that the higher the significance
score (high x%-value), the more likely the predicted DDI is a true
interaction. Furthermore, in the second part of K-GIDDI, we expand
the DDI network through novel knowledge guided search of partial-
complete bipartite sub-networks using the biclustering algorithm
Approx-Bimax. Since the emphasis is on partial-complete bipartite
sub-networks, one can choose on how partial-complete a bipartite
graph needs to be to constitute a desired result. In another words, we
can choose the percentage of 1s all rows and columns of a matrix
must have in order for it to be classified as a bicluster (or partial-
complete sub-network; Fig. 2). Intuitively, one would expect the
higher the percentage threshold, the more likely the predicted DDIs
are true interactions.

To evaluate the performance of K-GIDDI, we assess the accuracy
of the predictions made by the initial DDI network construction
procedure and the network expansion procedure separately, and
in combination. To this end, predictions were made using various
combinations of two parameters: s and b, where s represents the
percentage of inferred DDIs with the highest x2-values that were
used to construct the initial DDI network (Fig. 1), and b represents
the percentage of 1s all rows and columns of a matrix must have in
order for it to be classified as a bicluster (Fig. 2). The fold enrichment
[Equation (2)] of DDIs predicted using the network construction and
expansion procedures are shown in Tables 1 and 2, respectively.

As shown in Table 1, the predictions by the K-GIDDI’s network
construction procedure alone are significantly better than random.
The fold enrichment over random decreases as s increases (relaxed)
indicating that the higher the x%-value, the smaller but more
reliable the resulting DDI network is. On the other hand, we
noticed a drop in fold enrichment values for the DDIs predicted
by K-GIDDI’s network expansion procedure (Table 2). This drop-
off in performance was expected since the goal of the DDI network
expansion procedure is to discover those DDIs that may not have
been crystallized because of the reasons that the PPIs containing (or
mediated by) them may not have been identified yet. These DDIs

Table 1. Evaluation of DDIs predicted from K-GIDDI’'s network
construction procedure alone against the set of known DDIs (Finn et al.,
2008)

S (%) Number of Number of predictions Fold enrichment
predicted DDIs known to be true over Random
10 298 48 103.4
30 1036 104 64.4
50 1745 141 51.9
70 2548 182 45.8
90 4572 266 37.3
100 5796 319 353
Random 2377290 3704 1.0

Table 2. Evaluation of DDIs predicted from K-GIDDI’s network expansion
procedure alone against the set of known DDIs (Finn et al., 2008)

S (%) B(%) Number of Number of Fold enrichment
predicted DDIs  predictions known over Random
to be true
10 50 88 5 36.5
60 47 0 -
30 50 743 27 233
60 409 15 23.5
70 101 3 19.1
80 33 0 -
50 50 1579 39 159
60 897 29 20.8
70 264 11 26.7
80 72 4 35.7
100 50 5704 66 7.4
60 3411 43 8.1
70 1512 18 7.6
80 643 14 14.0
Random - 2377290 3704 1.0

will be overlooked by prediction methods that rely solely on PPI
data.

3.3 Comparison of K-GIDDI’s performance with that
of other methods

To assess how K-GIDDI stacks against previous approaches, we
compared K-GIDDI’s performance with that of three sufficiently
different approaches: RDFF (Chen and Liu 2005), RCDP (Jothi
et al., 2006) and DPEA (Riley er al., 2005). The objective here
is to compare the percentages of predictions (by each method)
known to be true. It must be emphasized that this is only an
indirect comparison as different datasets were utilized in each
study, and it would be extremely difficult to test these methods
on the same dataset since some of these methods impose unique
set of constraints on the input dataset. For example, RCDP (Jothi
et al., 2006) considers only those PPIs with both proteins having
orthologous hits in 10 or more genomes. As shown in Table 3,
the K-GIDDI’s performance is better, if not comparable, to that of
previous approaches.
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Table 3. Comparison of K-GIDDI's performance with that of previous
methods (RDFF (Chen and Liu, 2005), DPEA (Riley et al., 2005), and RCDP
(Jothi et al., 2006))

Method Number of Number of Percentage of
predicted DDIs  predictions predictions known
known to be  to be true
true
RDFF 2475 104 42
DPEA 1812 185 10.2
RCDP_SLA50 960 109 11.4
K-GIDDI_10_50* 386 53 13.7
K-GIDDI_10_90* 298 48 16.1
RCDP_SLA75 336 58 17.3

4K-GIDDI_X_Y denotes K-GIDDI with parameters s=X and b=Y.

Table 4. Fraction of K-GIDDI’s DDI predictions confirmed by DOMINE
(Raghavachari et al., 2008)

S (%) B(%) Percentage of predictions  Percentag of predictions
confirmed by at least one  confirmed by
out of eight other methods ~ PDB + HCP
included in the DOMINE
database

10 50 21.63 12.77

- 70 20.66 11.98

- 90 20.42 11.89

30 50 19.71 11.02

- 70 19.50 11.25

- 90 18.85 10.72

50 50 16.48 8.37

- 70 17.85 9.53

- 90 17.22 9.26

Furthermore, we compared the K-GIDDI’s predictions with
the set of known and predicted DDIs in the DOMINE database
(Raghavachari er al., 2008). DOMINE contains DDIs inferred
from PDB entries and those by eight different computational
approaches. DOMINE labels the set of known DDIs inferred from
PDB crystal structures as ‘PDB’, and those that were predicted by
a computational approach as HCP, MCP or LCP representing high-,
medium- or low-confidence DDI predictions. High-confidence pairs
(HCP) are those that were predicted using multiple sources of
information or by at least two sufficiently different computational
methods. Medium-confidence pairs (MCP) are predicted by just one
approach in which both domains are a part of the same GO biological
process. Low-confidence pairs (LCP) are the ones predicted simply
by one computational approach. The comparison summary is shown
in Table 4. For different choices of parameters, 17-22% of our
predictions are confirmed by the set of DDIs in the DOMINE
database, and among them 9-13% are known to be true (in PDB)
and/or have been predicted using heterogeneous data sources or by
multiple approaches.

K-GIDDI was designed to take advantage of those PPIs that have
been known to occur in many organisms, which intuitively, are more
likely to be true interactions compared with the ones that have been

observed in only one organism. This strategy, which has been used
by some of the previous approaches to control noise in PPI data has
been shown to be effective in minimizing the number of false DDI
inferences. The method itself does not impose any restriction as to
how many genomes should a PPI be conserved for it to be included
in the seed set, but those that are conserved in more genomes can
be expected to contribute more. Although such a strategy could be
a potential limiting factor as well conserved DDIs are more likely
to be inferred compared with poorly conserved or lineage specific
DDIs, we found that about one-third of our predictions are organism-
specific (Supplementary Material S3) demonstrating that K-GIDDI
is capable of predicting poorly conserved or lineage-specific DDIs.

3.4 Structure evidence for novel DDIs predicted by
K-GIDDI’s network expansion procedure

One noteworthy contribution of our study is the novel knowledge-
guided approach of DDI network expansion, where possible missing
DDI links are inferred from the identified partial-complete bipartite
graphs. Some of those novel DDIs may not be directly explainable
by observed in current PPI data since none of the interactomes are
complete yet. In contrast, other DDI prediction methods that rely
solely on PPI data will not be able to infer those DDIs inferred by
K-GIDDI’s network expansion procedure. For example, domains
Res III (PF04851) and Helicase_C (PF00271) were predicted to
interact by K-GIDDI’s expansion procedure, but was not predicted
to interact by any of the eight methods profiled in the DOMINE
database (Raghavachari et al., 2008) because the domain pair does
neither appear in nor explain any of the PPI in the utilized PPI
datasets. Res III domain is the Res sub-unit of the type III restriction
enzyme. Type III restriction endonucleases are components of
prokaryotic DNA restriction—modification mechanisms that protect
the organism against invading foreign DNA. Type III enzymes
are composed of two sub-units, Res and Mod. The Mod sub-unit
recognizes the DNA sequence specific for the system and is a
modification methyltransferase, and the Res sub-unit is required
for restriction. The Helicase_C domain is a conserved helicase
C-terminal domain. K-GIDDI’s prediction of interaction between
the Res III and Helicase_C domains is supported by PDB structure
(PDB ID: 1d9x), validating the usefulness of K-GIDDI’s network
expansion procedure.

In addition, if two domains are interacting, they are more likely
to exhibit similar functional roles. Res III is found to perform ATP
binding (GO:0005524), DNA binding (GO:0003677) and hydrolase
activity (G0O:0016787). Helicase_C is observed to execute ATP
binding (GO:0005524) and nucleic acid binding (GO:0003676),
which is a general term for DNA binding (GO:0003677).
Furthermore, some interacting domain pairs may have homologs
in other genomes that are fused into one protein chain. We have
found that Res III and Helicase_C domains co-occur in 1036 protein
sequences in the Pfam database. Figure 3a presents an illustration of
the PDB structures of the two domains co-occurring within UvrABC
system protein B (UniProt: P56981) in Bacillus caldotenax.

We also found evidences for three other DDIs, predicted by
network expansion procedure, which cannot be explained by the
current PPI data but are known to be true: SH3_1 (PF00018) and
P53 (PF00870) (Fig. 3b), Myosin_head (PF00063) and Dynamin_N
(PF00350) and Filament (PF00038) and bZip_1 (PF00170). Table 5
summarizes the fraction of DDISs predicted by the K-GIDDI network
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SH3_1 (PFO0018)

Fig. 3. (a) PDB structure (PDB ID: 1d9x) showing Res III and Helicase_C
domains in UVRB_BACCA protein (P56981), highlighted in green and red,
respectively. (b) PDB structure (PDB ID: lycs) showing the interaction
between SH3_1 and P53 domains, highlighted in yellow and green,
respectively.

Table 5. Fraction of DDIs predicted by K-GIDDI’s network expansion
procedure that are not observed in current PPI data

s (%) b (%) Number of Number of Percentage

Predictions predictions

from network from non-PPI

expansion
10 50 172 34 19.77
- 70 18 3 16.67
30 50 1460 489 33.49
- 70 166 28 16.87
50 50 3426 1364 39.81
- 70 464 111 23.92
100 50 15048 7808 51.89
- 70 3039 994 32.71
- 90 29 6 20.69

expansion procedure that are not observed in current PPI data.
Out of the DDIs predicted by network expansion procedure,
~16.67-51.89% cannot be explained by the currently available PPI
datasets, suggesting that there could be PPIs mediated by these
novel DDIs that may not been discovered yet. The entire list of
DDISs not observed in current PPI data is provided as Supplementary
Material S4.

3.5 Validation of novel DDIs using shortest
GO-graph-node distance

The set of predicted DDIs not in DOMINE were investigated
further for supporting evidence. As we know, two domains/proteins
interact to enable or perform a certain cellular function. Thus,
the interacting domains/proteins are more likely to share similar
functional annotations than a random pair of domains. To this end,
we examined the closest GO-graph-node distance between each
pair of domains predicted to interact, measuring how similar the
functional annotations of the two domains are. Although using
GO-graph-node distance to benchmark the predicted DDIs may
appear to be circular, we wish to emphasize that it is not for the
following reason. While PPIs were clustered into groups based on
GO molecular function (Fig. 1), the prediction of DDIs itself did
not use GO information. Rather, the most significant DDI pattern

Table 6. Comparison between fractions of our predicted DDIs (313 pairs)
and random domain pairs (1408 681 pairs) having certain GO-graph-node
distance

Shortest Number of  Percentage = Number of  Percentage of
GO-graph-  Random of Random  Predicted predicted
node domain domain DDIs DDIs®
distance pairs pairs?

=0 47150 3.35 19 6.07

<1 76648 5.44 30 9.59

<2 167309 11.88 67 21.41

<3 330705 23.48 97 30.03

<4 559503 39.72 134 42.81

aCalculation based on a total of 1 408 681 random domain pairs.
bCalculation based on a total of 313 predicted DDIs.

occurring within each group is inferred based on whether or not this
DDI pattern occurs more frequently in PPIs inside the group than
those outside the group.

A GO-graph-node distance of 0/1 for a pair of domains indicates
that both domains share the same/similar functional annotation.
We found that many domain pairs predicted to interact shared the
same GO functional annotation or have the smallest GO-graph-
node distance of 1, indicating a direct parent—child relationship
where the parent is a more general description of a function and
the child is more specific description of a function. Using a set
of fixed parameters (i.e. s=10% and b=90%), there were 569
DDI predictions that were not found in DOMINE (Supplementary
Material S5). Among those, 313 DDIs involved pairs of domains
for which GO annotations were available for both domains. Of the
313 DDIs, we found 67 DDIs (21.41%) with constituent domains
having GO-graph-node distances <2. To assess the significance of
the percentage, we computed the GO-graph-node distance for all
possible domain pairs (2377290 in total) to see how many of the
random domain pairs would have a distance <2. Out of all 2377 290
domain pairs, 1408681 pairs had GO annotations available for
both domains. Among the 1408 681 random domain pairs, 167 309
(11.88%) had GO-graph-node distance <2, which is ~2-fold less
than that observed for predicted DDIs (21.41%). Table 6 summarizes
the results for various GO-graph-node distances as thresholds.

Although the evaluation of DDIs predicted by K-GIDDI’s network
expansion procedure alone revealed that its performance is lower
compared with that for DDIs predicted by K-GIDDI’s network
construction procedure (Fig. 1; Tables 1 and 2), network expansion
procedure is still useful because it is able to infer novel DDIs which
would otherwise be not inferred using PPI data alone. From the
network expansion procedure, we were able to predict a total of 117
DDIs (Supplementary Material S6), out of which only 88 DDIs had
both domains covered by the iPfam domain space. As shown in Table
2, five out of the 88 DDI predictions by the expansion procedure
are known to be true, which would not have been predicted by any
method that solely relies on PPI data. Of the total 117 DDIs predicted
by the expansion procedure, 61 had both domains annotated with GO
function, out of which 17 domain pairs (27.87%) shared the exact
same GO functional annotation. Most of them were not found among
the set of known DDIs, suggesting that these are novel interactions
yet to be verified.
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4 CONCLUSION

We presented K-GIDDI, a novel knowledge-guided approach for
inferring DDIs from incomplete PPI networks. K-GIDDI infers
an initial DDI network from cross-species PPl networks, and
then expands the DDI network by inferring additional DDIs
using a divide-and-conquer biclustering algorithm guided by GO
information. Our results indicated that K-GIDDI’s performance
is better or comparable with previous approaches for predicting
DDIs. We found biological evidence supporting some of K-GIDDI’s
predictions. Most importantly, K-GIDDI’s novel network expansion
scheme allowed it to predict DDIs that are otherwise not identifiable
by methods that rely only on PPI data.
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