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Abstract
A system for electromyographic (EMG) triggering of robot-assisted therapy (dubbed the EMG game)
for stroke patients is presented. The onset of a patient’s attempt to move is detected by monitoring
EMG in selected muscles, whereupon the robot assists her or him to perform point-to-point
movements in a horizontal plane. Besides delivering customized robot-assisted therapy, the system
can record signals that may be useful to better understand the process of recovery from stroke.
Preliminary experiments aimed at testing the proposed system and gaining insight into the potential
of EMG-triggered, robot-assisted therapy are reported.
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I. INTRODUCTION
Stroke is a leading cause of disability worldwide. Every year, over 600 000 people suffer from
stroke in the U.S. alone, and about 80% of acute stroke survivors lose motor skills of the arm
and the hand [1], [2]. A recent innovation in rehabilitation of stroke patients is robot-assisted
therapy. Several research studies have shown that intensive goal-directed repetition of
movement promotes recovery following a stroke [3]–[5]. Robots can perform repetitive tasks
consistently and controllably. They are also equipped with sensors and can record position,
velocity, and force exerted by the patient, which may be used to measure patient’s motor
performance quantitatively and objectively.

Several rehabilitation robots have been proposed so far. Examples include MIT-MANUS [6],
ARM Guide [7], and MIME [8]. Clinical effectiveness was reported in several studies; patients
who received robot-assisted therapy showed greater recovery than those who received sham
exposure to robot therapy or a matched amount of traditional occupational therapy [9]–[14].
The potential advantages have stimulated an expanding array of research effort using
customized robot-assisted therapy. Adaptive robot therapy was recently proposed and
implemented on MIT-MANUS [15], [16]. The patient is asked to move the end-effector of the
robot while playing a simple video-game (see Fig. 1). The robot provides assistance to complete
the movements and the degree of assistance varies with the patient’s motor abilities. The
patient’s efforts are detected by monitoring when the speed of the robot end-effector exceeds
a certain threshold1.

We investigated whether it would be feasible to use electromyographic (EMG) signals, i.e.,
muscular electrical activity, to trigger the assistance provided by the robot. Using the EMG to
trigger the robot action may offer the following advantages.

1. It would allow robotic therapy to be customized, e.g., through selection of specific
muscle(s) to trigger the robot. This could be used to train specific muscles of patients
according to their needs.

2. It would provide a means to verify that patients are actually attempting to generate
movements during robotic therapy (e.g., rather than engaging their trunk to generate
movements to exceed the speed threshold)2.

3. It may trigger the robot earlier than triggering based on kinematic signals3.

4. It may allow highly-impaired subjects to activate robot assistance; such patients might
be able to generate EMG signals even though they were unable to produce sufficient
movement to trigger the robot.

5. It may provide data critical to understanding the process of recovery from stroke, and
additional measures of patient recovery, i.e., parameters derived from EMG signals
may be used to quantitatively and objectively assess patient’s motor abilities.

1If the patient is not able to move the end-effector within a given time (typically 2 s), the robot will start providing assistance.
2Voluntary physical exercise is considered to be a key factor in promoting recovery after traumatic injury of the central nervous system
(CNS) on rats [17] and monkeys [4]. It has been shown that it induces neurogenesis in the adult CNS [18], increases trophic factor
production in select regions of the brain [19], and can modulate crucial aspects of plasticity [20].
3Generating faster triggering signals may improve the correlation between a patient’s attempts to move and the robot’s assistance. This
may make robotic therapy more effective since the timing of stimulus seems to be important for induction of plasticity [21].
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While the use of EMG to control machines has been investigated extensively, the use of EMG
in robot-assisted therapy has so far been limited to monitoring pre-treatment versus post-
treatment changes in muscle activation [22]–[24] and to confirm muscle activity or inactivity
in patients undergoing treatment [7], [25]. To the best of our knowledge, the use of EMG for
interactive and customized robot-assisted therapy has not yet been explored.

II. BACKGROUND: MYOELECTRIC CONTROL
In myoelectric control, EMG is processed to generate a signal which is fed into a control system.
Two classes of control signals are commonly derived from EMG: 1) continuous signals:
typically a measure of EMG amplitude, presumably related to muscle exertion, is used to
control continuous variables, such as the speed of prosthesis motion [26]–[33] and 2) discrete
signals: typically the output of a pattern recognition processor that analyzes multichannel inputs
is used to distinguish different classes of limb motion, such as different gestures [34].
Historically, rehabilitation engineering has been the earliest field of application for myoelectric
control. The main application, explored since Wiener’s Cybernetics in the late 1940s [35], is
control of arm amputation prostheses [36]–[40]. More recently, tele-operation and virtual
reality have used EMG for predicting user’s intentions [29], [41]–[45].

In rehabilitation of stroke patients, a recent application is EMG-triggered neuromuscular
stimulation, which seeks to promote motor relearning via retraining of voluntary control of
movement [46]. EMG is recorded from a given muscle, usually the wrist or finger flexor. As
soon as a patient voluntarily attempts to move and EMG exceeds a threshold, a neuromuscular
stimulator assists the movement so that full extension of the limb is experienced. A theoretical
neurophysiological basis for clinical effectiveness of this technique [47]–[53] is that alternative
motor pathways can be recruited and activated to assist the stroke-damaged efferent pathways.
This explanation is based on sensorimotor integration theory, which states that sensory input
from movement of the affected limb directly influences subsequent motor output [47].

In many of the above applications, detection of the onset of muscular contractions is the first
step for identifying the user’s intentions. Single-threshold detectors [54] are the main class of
algorithms used for this purpose, although more sophisticated approaches have been proposed
[55], [56]. In single-threshold detectors, the onset is the time when the processed EMG signal
(typically the EMG envelope) exceeds a threshold, which is selected to discriminate the
background noise from the component generated by active muscles. While parameters such as
bandwidth of the filter for EMG processing and threshold value can influence the sensitivity
of the algorithm and processing delay [54], single-threshold detectors are easy to implement;
for this reason, they were chosen for the design of the EMG game.

III. EMG GAME
A. Hardware

The system was implemented using InMotion2 (Interactive Motion Technologies, Inc.,
Cambridge, MA), a back-drivable therapy robot and Bagnoli 4 (Delsys, Inc., Boston, MA) an
EMG acquisition system with four differential electrodes.

B. The Control System
The control system is shown in Fig. 2. The control program was implemented on a personal
computer in C++ using the QNX operating system4.

4Although we are presently moving to C code using Real-Time Linux.
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1) EMG Preprocessing—EMG signals were recorded with a gain of 1000 V/V and a
bandpass of 20 ± 5 Hz to 450 ± 50 Hz and digitized with sampling frequency fc = 1.0 kHz and
16-bit quantization (United Electronics Industries, Inc., Canton, MA). Signals were high-pass
filtered (second order Butterworth, cut-off 10 Hz), full-wave rectified, and low-pass filtered
to construct an estimate of the EMG envelope (moving average, length Md, where d = 1,…,4
indicates a data acquisition channel).

2) Generation of the Control Signal—In the following, the ith sample of the processed
EMG signals recorded from each data acquisition channel d (d = 1,…,4) is defined as
EMGd(i). The robot action was triggered when a robot boolean control signal TR was enabled
(became 1).

(1)

where ∥ is the logical OR operator and TCd is a binary triggering signal associated with each
EMG channel, defined as follows:

(2)

where

(3)

(4)

(5)

and N is the number of samples used to calculate the parameters above (see below). Equations
(2)–(5) implement a single-threshold detector: for each channel d, the onset was detected when
EMGd exceeded Td (calculated as the mean Ad plus αd times the standard deviation Sd of
EMGd) for at least Pd consecutive samples. If onset was not detected in any of the EMG
channels, the robot control signal TR was kept at 0 and no robot action was triggered. As soon
as onset was detected in any of the four channels, the robot control signal TR became 1, thereby
triggering robot action.

The performance of the single-threshold detector can be varied by adjusting the values of
parameters Pd, Md, and αd [54]. These parameters were tuned to provide satisfactory onset
detection for this application (e.g., to reject electrocardiographic artifacts that affected some
of the EMG traces).
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3) EMG Game Controller Timing—The controller generated the targets on a video-screen,
similar to previous robot therapy (see Fig. 1) [9], [10]. Fig. 3 shows the timing of the EMG
game controller.

4) Impedance Controller—Once the robot action had been triggered, the robot impedance
controller assisted the patient’s arm movements in the same way as in the adaptive game
described elsewhere [15], [16]. The controller allowed patients capable of movement to reach
the targets unassisted, but it provided assistance to patients who could not reach the targets.
The amount of assistance was based on the patient’s performance.

Excessive muscular tone in pathological subjects may induce involuntary arm movements that
can cause the end-effector of the robot to move far from the starting position prior to triggering
robot action. To prevent abrupt motion of the patient’s arm when the robot was triggered, the
robot stiffness was initialized at 150 N/m to ensure gentle arm positioning.

5) Selective Triggering—Different ways to generate the signal TR can be implemented by
modifying (1). As an example, let channel 1 record the EMG signal taken from anterior deltoid
(AD) and modify (1) in a target-dependent way as follows:

(6)

For each i, robot action would be triggered only when EMG1 exceeds T1. Such an option could
be useful to train muscle AD for given directions (in this example the directions of targets N,
NE, W, NW). Targets and muscles could be chosen in a different way for each patient to
implement personalized therapies.

IV. EXPERIMENTS
Three different experiments were conducted. Experiment I was aimed at exploring the
characteristics of EMG signals of stroke patients to better understand the potential of EMG-
triggered, robotic therapy (robot assistance off). Experiments II and III were aimed at testing
the EMG game under unassisted and assisted conditions (robot assistance off and on,
respectively).

Similar to ongoing robot therapy [15], subjects were seated in a comfortable chair in front of
the InMotion2 robot, restrained by a seat-belt with shoulder straps, and had their elbow
supported with a padded wooden support attached to the elbow with Velcro straps. They were
asked to move the end-effector of the robot in the horizontal plane to targets shown on a video-
screen located in front of them. Targets were presented sequentially in a clockwise direction,
starting from target North (see Fig. 1). The sequence was repeated five times. In the unassisted
experiments, if a patient was unable to move back to the central target, the therapist gently
guided the patient’s arm back to the center position.

In all the experiments, electrodes for EMG recording were placed by an occupational therapist
according to established recommendations [57]. Subjects who gave informed consent to
participate were tested at Burke Rehabilitation Hospital, White Plains, NY. The experiments
and informed consent procedures were approved by the Massachusetts Institute of Technology
(MIT) Committee on the Use of Humans as Experimental Subjects and the Institutional Review
Board of Burke Rehabilitation Hospital.
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A. Experiment I: EMG Exploration
Two unimpaired subjects (unimpaired subjects 1 and 2) and five stroke patients participated
in this experiment (patients 1–5). Patients 1 and 2 were out-patients with moderate and mild
hemiparesis; patients 3, 4, and 5 were in-patients with severe hemiparesis (upper extremity
component of the Fugl-Meyer (FM) at admission 18/66, 30/66, 8/66, 0/66, and 4/66,
respectively). For unimpaired subjects and out-patients, EMG was recorded from the following
muscles: pectoralis major clavicularis part (PEC), latissimus dorsi (LAT), triceps long-head
(TRIC), middle deltoid (MD), brachioradialis (BRA), teres major (TM), infraspinatus/teres
minor (INF), anterior deltoid (AD), biceps (BIC), posterior deltoid (PD), upper trapezius (UT),
lower trapezius (LT), and middle trapezius (MT). These muscles were chosen because they
were expected to become active according to previous studies on unimpaired subjects [58],
[59]. Since the Bagnoli 4 records from four channels the protocol had to be repeated four times
in order to gather data from all the muscles selected for recording. For in-patients, due to the
tight treatment schedule required by their rehabilitation programs, EMG was only recorded
from a subset of the above muscles: PEC, BIC, TRIC, and UT. These muscles were chosen
because they were expected to be among the muscles displaying the highest modulation.

B. Experiments II and III: EMG Triggering With Unassisted and Assisted Games
One unimpaired subject (unimpaired subject 3) and two stroke out-patients with severe
hemiparesis (patient 6 and 7; upper extremity component of the FM at admission 11/66 and
unavailable in medical records) participated in these experiments. EMG was recorded from
PEC, AD, BIC, and PD. These muscles were chosen because during experiment I, they were
among the muscles that displayed the highest modulation5 and they were easier to record than
other muscles in the 13-muscle list (i.e., easier than UT used in experiment 1 with in-patients).

V. RESULTS
A. Experiment I

1) Need for Personalized Therapy—All subjects apart from patient 5 (see below) were
able to move toward the outer targets and back. With each subject, given a movement toward
a specific target, several muscles were found to be active (EMG displayed modulation). In
unimpaired subjects, muscular activation patterns were similar across subjects and consistent
with the results of previous studies [58]–[60]. In stroke patients, patterns varied highly across
subjects, i.e., patients accomplished similar movements by activating different muscles with
different timings6. For example, the EMG taken from TRIC in patient 2 showed almost no
modulation in any direction, but showed modulation in patients 1, 3, and 4. In the movement
from center to target North, with patient 1, BIC was found to be highly active, while with
unimpaired subjects, BIC was found to be active mainly during movements from target North
back to the central target.

These findings suggest that different patients may need to re-learn how to activate different
muscles. EMG game might allow selective training of specific muscles.

2) EMG Triggering in Highly-Impaired Subjects—Fig. 4 shows data taken from patient
5. This patient was not capable of moving in any direction. However, her EMG data showed
some modulation, which in several cases occurred without movement. In the remaining
patients, several muscles presented weaker or slower activation profiles than the corresponding

5During experiment 1, for all directions, among the 13 muscles recorded for out-patients and unimpaired subjects the subset PEC, BIC,
UT, MD, BRA, PD, and AD displayed the highest modulation.
6Stroke affects motor control mechanisms and stroke patients might accomplish movements by using compensatory muscular synergies
[61].
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muscles in unimpaired subjects. For example, in movements toward target North with patient
1, the AD envelope profile slowly increased as movement was performed (while in unimpaired
subjects it rapidly increased before or as soon as movement was initiated). However, it was
still able to trigger the robot action (see Table I). This shows that highly-impaired patients,
who may be able to activate muscles only weakly or even unable to produce movement, may
still produce EMG signals that can trigger robot action. This suggests that EMG triggering
might be particularly useful for highly-impaired subjects.

3) Comparison and Combination of EMG, Velocity, and Force Triggering—
Besides EMG, velocity (υ) or force signals could be used to detect a patient’s attempt to move.
We explored whether a control signal for triggering the robot action could be generated earlier
by using EMG signals rather than velocity or force signals.

In order to compare EMG and υ triggering, we investigated movements from center to target
North. For each subject’s trial and EMG trace, we calculated the difference d = tEMG − tυTH’
with tEMG the onset of muscular contraction and tVTH the instant when υ exceeded a given
threshold VTH. As for VTH, we considered two values: υTH1 = 5.83. 10−3 m/s and υTH2 = 1.75
· 10−2 m/s. Accordingly, we calculated the parameters d1 = tEMG − tυTH1 and d2 = tEMG −
tυTH2. Threshold values υTH1 and υTH2 were chosen because they defined the range for the
speed threshold υTH used in the adaptive game [15], [16], which was calculated as follows:

(7)

where tmove is the time allotted by the adaptive game controller for the movement of the
patient’s arm from the central target to each of the eight outer targets. This value represents
10% of the peak velocity of a reaching movement assuming a minimum jerk trajectory [62].
υTH ∈ [5.83·10−3 m/s−1.75·10−2m/s]. Also, υTH1 corresponds to the resolution for υ
measurements, since its value is just above the noise level present in the filtered signal. As for
υ, we considered two signals: υt and its component υy along the direction pointing to the outer

target. υt was calculated as follows: , with x(i) and y(i) the sampled
positions of the end-effector of the robot at time i,dx(i) = (x(i) − x(i − 1)) · fc and dy(i) = (y(i)
− y(i − 1)) · fc with fc sampling frequency, dxs(i) and dys(i) obtained by filtering dx(i) and dy
(i) with a low pass-filter (first order, cut-off frequency 10 Hz). The following values were then
calculated:

For both υ = υt and υ = υy, d2 < d1 since tυTH2 > tυTH1. d1υy(d2υy) ≤ d1υt(d2υt) since tυy ≥ tυt.
With each subject and α = 1, d1υy values were negative in several different muscles and trials.
For example, they were negative in more than 1 trial for MD, INF, PD, and UT with subject
1; for AD and BIC with subject 2; for INF and AD with patient 1; for AD, BRACH, MD, and
INF with patient 2; for TRIC, BIC, and UT with patient 3; for TRIC, PEC, BIC, and UT with
patient 4. In stroke patients, d1 negative values of the order of several hundreds of milliseconds
were not uncommon. For example, with patient 3,d1υy was negative in four cases in TRIC
(average value −0.296 s) and in UT (average value −0.608 s); similar data was found with
patient 4 in UT, as well as in several muscles of patient 2. Then, as for timing, triggering with
EMG versus velocity based signals (and vice-versa) might make a difference. As α was
increased, e.g., from 1 to 3, the number of times EMG onset was detected before speed
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decreased. The increase of α seemed to have a greater effect in patients than in unimpaired
subjects. Table I reports d1 and d2 values for movements performed from center to target North
for AD, a muscle primarily involved in such movements in unimpaired subjects. With α = land
α = 3, d1υy values were negative in 10 and 5 trials out of 20 (5 trials for each subject),
respectively, all differences localized in patients data.

With patient 1, we found negative values for d1 for very few trials and muscles. Although
strapped to a chair, patients could have engaged their trunk to attempt to generate enough
movement to trigger the robot. While trunk data were not recorded during our experiments,
making it difficult to draw a definite conclusion, this scenario enlightens a potential advantage
of EMG selective triggering. Triggering with EMG taken from upper limb muscles might
“force” the patient to use the upper limb to generate movement to trigger the robot.

To increase the chance of generating EMG triggering signals more quickly than speed
triggering signals the number of channels for (simultaneous) EMG recording could be
increased; lower α values could also be used to allow weaker activations to trigger the robot.
To increase the chance of triggering the robot as quickly as possible, a hybrid EMG and speed
triggering strategy could be used. Thus, to allow the fastest signal (either EMG or speed) trigger
the robot (1) could be modified as:

(8)

Force signals were recorded using a 6-DOF ATI US-30-100 force transducer (ATI Industrial
Automation, Apex, NC). The transducer was placed at the end-effector. Force signals became
distinguishable from the baseline before υ signals, but after EMG signals.

B. Experiments II and III
The parameters of the timing of the EMG game controller were chosen as follows: twait =
tdwell = 2 s (see Fig. 3). For experiment II, tmove was set to 4 s for the patients, so that they had
enough time to move from the central target to the outer targets or vice-versa, and to 3 s for
the unimpaired subject. For experiment III, tmove was reduced to 2 s; the impedance controller
parameters, such as stiffness and damping, were set to the typical values used in the adaptive
game [15], [16].

1) Generation of the Robot Triggering Signal—All subjects were able to generate TR
signals via their EMG. Results are summarized in Table II and Table III for experiment II and
III, respectively.

In experiment II, TR signals were generated as follows. For the southern targets, they were
mainly generated by PD with unimpaired subject 3, by PEC and AD with patient 6, and by
PEC with patient 7; for the northern targets by PEC, AD, and PD with unimpaired subject 3,
by BIC with patient 6 and by PEC and BIC with patient 7. For the northern targets, note that
with patients, AD and PEC usually became active, although weakly and later than BIC, which
displayed a strong modulation. For experiment III, the number of TR signals generated and the
muscles that produced them were consistent with the results of experiment II.

2) Comparison of EMG and Velocity Triggering—Table II reports the results of the
comparison between υ and EMG triggering for experiment II. Note that with α = αd = 1 (d =
1,…,4) for patient 6 the number of TR signals increased to 40. Also, for unimpaired subject 3,
patients 6, and 7 the number of cases where d1υy was negative increased to 24, 19, and 23
(average d1υy values −0.104 s, −0.419 s, and −0.351 s), and where d1υt was negative to 24, 7,
and 12 (average d1υt values −0.102 s, −0.311 s, and −0.206 s), respectively. Average d1υy
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positive values were 0.022 s, 0.276 s, and 0.422 s, and average positive d1υt values were 0.023
s, 0.320 s, and 0.397 s.

Although the patients generally generated vt triggering signals more easily and quickly than
υy and EMG triggering signals, analysis of position data showed that they were only able to
reach some targets. Specifically they could not reach the northern targets and, in some cases,
targets East and West; when shown these targets, they moved toward southern directions.
However, even when patients moved toward the wrong directions, triggering signals based on
vt were still generated. While triggering signals based on υt enable robot assistance as soon as
any movement is generated, triggering signals based on υy ensure that the robot action is enabled
only when the patient moves toward the direction of the target shown (and of robot assistance).
With the EMG game, triggering signals based on EMG are generated only when the patient
voluntarily activates the muscles of the upper-limb, and selective EMG triggering signals are
generated only when the patient voluntarily activates preselected muscles when moving toward
preselected targets. To correlate assistance to a movement with activation of muscles primarily
responsible for generating the same movement might enhance motor recovery from stroke.

3) Effects of Robot Assistance—A comparison of EMG signals of stroke patients
recorded during experiment II and III showed that with robot assistance on, the EMG level
during the rest periods decreased (significant in 6/8 muscles, p < 0.10). The mean EMG level
of stroke patients during moves tended to decrease (significant in 5/8 muscles, p < 0.10),
suggesting that patients completed the task with less effort.

VI. CONCLUSION
A system for EMG-triggered, robot-assisted therapy (dubbed the EMG game) was introduced.
The EMG game enables robot action only when the patient voluntarily initiates a movement;
it then assists the patient in completing the movements, thereby providing sensorimotor
feedback. The EMG game can implement customized treatments; its parameters can be adapted
to train specific patient muscles and to deliver robotic treatment even when the patient is only
able to generate weak bursts of muscular contractions. While it remains unclear whether EMG
allows faster triggering than speed based triggering signals, experiment II showed that with
speed triggering the direction of robot action might be uncorrelated with the direction of the
movement generated by the patient. Similarly to EMG-triggered neuromuscular stimulation,
the EMG game can be programmed to trigger the robot action as soon as specific muscles are
activated. The EMG game also records information about a patient’s motor performance, such
as which muscles triggered the robot action and at what time instants. This data, together with
kinematic signals recorded during the therapy, may be useful to monitor, quantify, and better
understand patient recovery from stroke. Our future research will be aimed at evaluating its
clinical effectiveness.
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Fig. 1.
(A) Patient during robotic therapy. (B) Display of the typical game in robotic therapy. Eight
targets in directions north (N), north-east (NE), east (E), south-east (SE), south (S), south-west
(SW), west (W), and north-west (NW) are shown on a videoscreen. Patient is required to move
the end-effector of the robot in the horizontal plane from the central target to the eight outer
targets. Position of the end-effector in the plane is displayed on the screen by a small yellow
cursor. Distance between the central target and each outer target position is 0.14 m.

Dipietro et al. Page 17

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2009 September 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Triggering algorithm of the EMG game. Given four channels of EMG, each signal was
processed separately to identify EMG onset, which generated a binary signal (1 if the muscle
had become active, 0 otherwise). Triggering signal TR was generated as the logical OR of the
binary signals generated by each channel. C is the impedance control algorithm for the robot
that generated shoulder (Ts)and elbow (Te) torques.
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Fig. 3.
Timing of the EMG game controller for each time slot, i.e., movement from the central target
to each outer target and back. Patient’s arm was positioned in the center of the robot workspace,
which corresponds to the central target on the videoscreen (see Fig. 1(b), part B). At tstart, the
outer target was shown to the patient; the controller waited twait seconds before triggering the
robot action if the patient did not attempt to move. Game started as soon as the patient’s attempt
to move was detected. Patient had to reach the target position within tmove seconds; if needed,
the robot assisted the patient’s arm to move. After the outer target was reached, the controller
waited tdwell seconds and then showed the patient the central target, which had to be reached
within tmove seconds. After tdwell seconds, the controller showed a new target in a new direction.
For each channel the threshold Td (d = 1,…, 4) was calculated in a time window of length N
samples (1 s) before the end of the time slot. For target North, Td was calculated before tstart;
for the seven remaining outer targets, Td was calculated at the end of the second tdwell time.
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Fig. 4.
(A) Recording from patient 5 during a part of trial 4 in experiment I. EMG modulation is evident
even when speed is measurably zero (see for example time windows [7–9 s] and [12–18 s]).
Speed is composed of several low-amplitude peaks, i.e., the subject generates isolated small
movements. Also, increases in speed do not always correspond to modulation in EMG signals
(e.g., see time window [18–20 s]); movements might have been generated by muscles not
monitored, or by trunk muscles engaged by the patient in the attempt to move. (B) Plan view.
(C) Plan view magnified. Note that the squares labeled 1, 14, correspond to the intervals 1, 14
indicated in the tangential speed plot in (A).
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