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Abstract

This paper presents a stochastic method to estimate the multijoint mechanical impedance of the
human arm suitable for use in a clinical setting, e.g., with persons with stroke undergoing robotic
rehabilitation for a paralyzed arm. In this context, special circumstances such as hypertonicity and
tissue atrophy due to disuse of the hemiplegic limb must be considered. A low-impedance robot was
used to bring the upper limb of a stroke patient to a test location, generate force perturbations, and
measure the resulting motion. Methods were developed to compensate for input signal coupling at
low frequencies apparently due to human—-machine interaction dynamics. Data was analyzed by
spectral procedures that make no assumption about model structure. The method was validated by
measuring simple mechanical hardware and results from a patient's hemiplegic arm are presented.
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[. Introduction

ABNORMAL muscle tone—a muscle's resistance to passive elongation or stretch—is one of
the common and debilitating sequelae of neurological injury such as stroke. However, persons
with stroke who had robotic therapy using a performance-based, progressive protocol
experienced a marked reduction of abnormal tone [1], [2] which prompted us to investigate
better ways to measure it. Hypertonia, an increase in resistance that occurs when a lesion is
present in the upper motor neurons, may increase with movement and suddenly decrease
(“clasp-knife spasticity”) or it may remain constant throughout the range-of-motion (“lead-
pipe rigidity™); spasticity implies disease of the direct corticospinal tracts, whereas rigidity may
suggest a lesion of the basal ganglia [3]. Clinicians are trained to judge muscle tone subjectively
with, for example, the Modified Ashworth Scale (MAS). The MAS is an ordinal scale ([0, 1,
1+,2,3,4]or [0, 1, 2, 3, 4, 5]) that describes the amount of resistance to passive motion [4].
MAS clinical evaluations are conducted by moving a limb about a joint at different speeds,
and by noting the muscular response throughout the range of motion of the limb (i.e., both
speed and position dependent). Although the MAS has been shown to be a reliable clinical
scale [5], an objective measure would provide valuable insight about the effect of stroke on a
hemiplegic limb and may better characterize the effect of rehabilitation therapy.

The physical quantity corresponding to clinical assessment of muscle tone is mechanical
impedance1 Z(s), which characterizes the dynamic relation between motion and force, and
may be considered a dynamic generalization of stiffness K (i.e., the static relation between
displacement and force) [6]. The physical quantity relating applied forces to motion, termed
mechanical admittance Y (s), is the inverse of impedance and may be considered a dynamic
generalization of compliance C (i.e., the static relation between force and displacement).
Hence, “dynamic stiffness” (K(s) = sZ(s)) and “dynamic compliance” (C(s) = Y(s)/s) are other
common terms for related physical quantities but in this paper we use the term impedance
generically to refer to all of the above. Robots such as MIT-MANUS [7] or InMotion2
(Interactive Motion Technologies, Inc., Cambridge MA) are able to deliver forces to a patient's
limb and measure the position, velocity, and interaction forces between the robot and that limb.
Therefore, these robots are well suited to objectively quantify at least one aspect of muscle
tone.

Past reasons for measuring arm impedance range from understanding basic physiological
properties of muscle [8] to testing different hypotheses concerning the maintenance of posture
or the control of movement [9], [10]. Behavioral studies have also investigated how impedance
properties vary with motor learning [11]. An initial attempt to measure human arm stiffness
measured the restoring forces evoked when a series of displacement perturbations were applied
in eight different directions in a horizontal plane while the subjects held the hand at the
perturbation location [8]. The force and displacement vectors were then used to characterize
stiffness. Since Mussa—Ivaldi et al. [8] were interested in measuring biomechanical properties
subserving arm posture, the measurement procedure was designed to increase the duration of
the subject reaction time in order to reduce the occurrence of voluntary movement.

Later studies were extended to include the estimation of dynamic parameters commonly used
to quantify arm impedance, such as inertia and viscous damping. For example, Dolan et al.

Lin this paper, the term “impedance” is used synonymously with “mechanical impedance” for brevity.
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[12] applied several rapidly rising, underdamped position perturbations. By assuming a linear
model structure, they were able to estimate the arm's inertial, damping, and stiffness properties
using the force and displacement time histories in a Cartesian reference frame. Again, the
experimental procedure attempted to limit voluntary responses to the applied perturbations.
Tsuji et al. [13] conducted a similar experiment to estimate impedance properties and also
transformed the property matrices from Cartesian coordinates at the hand to joint coordinates
at the shoulder and elbow. In a later experiment by Gomi and Kawato [10], static stiffness was
estimated by applying trapezoidal positional perturbations in eight randomly ordered
directions. In addition, dynamic inertia, viscosity, and stiffness parameters were estimated
during movement by applying a small, randomized force perturbation. As with previous
experiments, the subjects were given instructions not to intervene voluntarily during
perturbations.

The method described by Perreault et al. [14] used small stochastic force perturbations to
estimate the impedance transfer function matrix and subsystem impulse response functions in
the presence of output measurement noise and input coupling (via linear and nonlinear
numerical simulations). Unlike the previous methods, a model structure was not assumed,
although the system was assumed to behave linearly for small perturbations. System properties
were estimated by using a previously developed multiple-input, single-output (MISO) system
identification technique [15] applied to each output simultaneously, resulting in a multiple-
input, multiple-output (MIMO) methodology. The unpredictable magnitude and direction of
stochastic perturbations make it difficult for subjects to generate forces equal in magnitude and
opposite in direction, hence minimize the likelihood of voluntary reactions [14], though
compensatory actions such as muscle cocontraction or relaxation may still occur. However,
random perturbations are also desirable as they obviate the need for separate measurements in
different directions and provide a frequency-rich input to the subject in a relatively short time
frame, rendering them more attractive for use with patients. This research group later modified
their method and applied stochastic position perturbations instead of force perturbations [16].
However, given the extreme vulnerability of patients’ joints, we believe it would be unwise to
apply position perturbations that might impose excessive forces on the limbs.

Impedance measurement in persons with stroke is complicated by their special circumstances,
which may include hypertonicity, profound muscle weakness due to central denervation, tissue
atrophy due to disuse of the hemiplegic limb, and concomitant vulnerability of the
musculoskeletal system to externally applied forces [3]. For example, the shoulder joint is
especially vulnerable in patients with upper-limb paresis, and joint pain and shoulder-hand
syndrome are common side-effects of conventional physiotherapy. Nevertheless, because of
the clinical importance of muscle tone, we have developed a new method to estimate limb
impedance during stroke rehabilitation treatment.

In this paper, we present a methodology to estimate impedance that is tailored for clinical use.
In addition to the application of force perturbations, a simple proportional-derivative (PD)
controller is used to gently bring the patient's arm to a test location and limit large-scale
deviations from that location. Although unimpaired subjects are able to relax their arm at a
given location, the hemiplegic arms of patients often exhibit hypertonicity, causing their arms
to substantially drift in the workspace. Two methods to reduce the impact of the human-
machine interaction on the impedance estimate are introduced—an experimental method that
modifies the commanded perturbation and an analytical method that improves the numerical
conditioning of the estimate. The stochastic estimation method is validated using a mechanical
spring array and results from a patient are presented.
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Il. Spectral Estimation of Human Arm Impedance

A. Apparatus

MIT-MANUS, a robot designed for clinical neurological applications, is configured for safe,
stable, and compliant operation in close physical contact with humans [7], [17]. It was designed
to have low intrinsic endpoint impedance (i.e., to be back-drivable), with low and nearly
isotropic inertia (1 + 0.33 kg; maximum anisotropy 2:1) and friction (0.84 £ 0.28 N; maximum
anisotropy 2:1); its actuators are capable of producing a predetermined range of forces (0—45
N) and impedances (0-2000 N/m)? (71, [17]. The angular displacements of the motors were
measured by 16-bit resolvers3 and a forward kinematic transformation was used to define the
Cartesian coordinates of the robot workspace, i.e., (x, y). Velocities were approximated by
computing backward differences of the displacement values and then filtering the differences
with a first-order Butterworth filter (cut-off frequency of 20 Hz). An ATI Gamma force
transducer (ATI Industrial Automation, Inc., Apex, NC) was mounted to the end-effector to
measure the interaction forces and torques between the robot and subject. Perturbation
commands were generated at a sampling rate of 500 Hz by filtering a set of uniformly
distributed random numbers with an eighth-order Butterworth filter that had a cutoff frequency
of 15 Hz (selected to exceed the natural frequency of the human arm, ~2 to 3 Hz). Tests with
the end-effector of MIT-MANUS bolted to ground verified that it had sufficient bandwidth to
deliver the desired force perturbations. The seed of the random number generator was varied
to find a pair of signals with low coherence.

During the impedance measurement, patients were seated in the same configuration as the robot
therapy sessions. Custom-made forearm troughs connected the subject's limb to the robot end-
effector; the subject grasped a conical section of the trough while Velcro straps immobilized
the wrist by securing the forearm to the trough [17]. Three-point seat-belts were used to
minimize movement of the subject's trunk so that the therapy and impedance measurement
focused on the subject's shoulder and elbow joints/muscles [17]. Trials lasted for 50 s (25 000
data points) allowing a number of sequential epochs of data to be averaged to reduce random
error while allowing an acceptable spectral resolution. Patients were instructed to “simply relax
and allow the robot to shake your arm” during the trials (six 50 s trials separated by 30 s of
rest). The following section describes how a spectral estimate of impedance was computed
using the force and displacement measurements.

B. Direct Estimate Using Stochastic Force Perturbations

Although assuming a linear structure with second-order dynamics in each degree-of-freedom
is appealing from intuitive and pedagogical standpoints (e.g., Dolan et al. [12], Tsuji et al.
[13]), it is difficult to justify for the biological system being studied as it would neglect the
higher-order dynamics of neuromuscular excitation, reflex action, and excitation-contraction
coupling [6]. Frequency-domain MISO and MIMO system-identification algorithms assume
the system behaves linearly for small perturbations, but otherwise do not assume any explicit
structure. Fig. 1 displays a block diagram of the structure used to represent a linear impedance
transfer function matrix, i.e.,

HIERH
y Cr Cyr,, F ’ (1)

2InMotion2 is capable of delivering a far larger range of impedances (0—5000 N/m).
InMotion2 employs 16-hit virtual absolute encoders instead of resolvers.
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To simplify notation, the dependence of (1) on frequency f (or Laplace variable s) is implied.
Spectral analysis of general MISO and MIMO systems is described in detail in Bendat and
Piersol [15]. The spectral equations used to estimate impedance are defined in Palazzolo
[18].

Partial and multiple coherence functions were used to assess the performance of the stochastic
method [15]. Partial coherence measures the linear dependency of one input on a particular
output and is equivalent to ordinary coherence after the effect of the other input has been
removed. For example, the partial coherence from Fy to x after the effect of F has been removed

is denoted as Vf, Four partial coherence functions for the impedance spectral estimate

2 2 2 2 " .
(Yrwory Yepera Yeory, and Vi) are defined in Palazzolo [18].

Multiple coherence functions measure how well a given output can be predicted from both of
the inputs. They can also determine over what frequency range a linear model can accurately
describe the system dynamics. Low multiple coherence values indicate insufficient input

power, system nonlinearities, noise, and/or contributions from unmeasured inputs [14], [15].

The multiple coherence functions for the impedance spectral estimate (y%F and YEF) are defined
in Palazzolo [18]. Although the analytical foundation of spectral estimation is well established,
preliminary trials revealed that it would require modification to be applied to patients, as
described next.

C. Compensating for Hypertonicity of Persons With Stroke

A pilot study* conducted with three persons with stroke at The Burke Medical Research
Institute, White Plains, NY revealed one difficulty that usually does not arise with unimpaired
subjects, namely, their inability to relax at a given position. The hemiplegic arms of patients
exhibiting flexor hypertonicity may curl towards the fetal position because their flexors
contract more than their extensors. Therefore, although a patient's arm was brought to a desired
position in the workspace and patients were instructed to “simply relax and allow the robot to
shake your arm,” the limb often drifted from that position.

Eighteen trials (three patients, six trials each) were conducted in which a clinician manually
moved the patient's arm to the desired test location, released it, and initiated the robot trial. The
robot controller applied perturbations, but did not attempt to prevent drift. On average, patients
drifted 7.8 cm (standard deviation 2.9 cm, minimum 4.4 cm, maximum 12.3 cm) during the
test. Since arm impedance parameters vary significantly throughout the workspace this could
result in significant nonlinearity or a nonstationary process, either or both of which would
invalidate assumptions underlying the stochastic methods to be used. To prevent this, a simple
PD controller was added to the robot control

Fe=Fa =k, (d — daes) — kav (2)

where F¢ is the vector of commanded forces at the robot manipulandum, F, is the vector of
commanded force perturbations, d = [x, y]T is the vector of measured Cartesian coordinates in

4Although accepted into a robotic study, patients had not yet begun their protocol and had no prior experience with the robot or robotic
therapy. The institutional review boards of the Burke Rehabilitation Hospital and the Massachusetts Institute of Technology approved
the protocol. Written informed consent was obtained from all patients. Selection criteria: Patients had hemiparesis or hemiplegia of the
upper extremity after a single stroke (identified by neuroimaging) that had occurred at least eight months prior to the initial assessment.
Sensory or visual field impairment, aphasia, and cognitive impairment were not exclusion criteria, but the patients needed to be able to
follow simple instructions.
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the robot workspace, dges is the desired test location, v is the first time derivative of d, k is
the controller proportional gain, and kg is the derivative gain.

The robot delivered the desired force perturbations in an open-loop manner (i.e., without
feedback of the measured interaction forces). This avoided the difficult coupled instability
problems that accompany the use of force feedback, an important consideration for patient
safety. However, the closed-loop PD controller that was used to eliminate patient drift in the
robot workspace also affected how much of the commanded perturbation was transmitted to
the patient'sarm. As the PD controller gains increased, the allowable deviation from dges, along
with the magnitude of the transmitted force, decreased. In addition, although the commanded
perturbations were specified to have low coherence, the measured interaction forces exhibited
a linear dependency in some frequency ranges, apparently because the interaction between
robot and human introduced coupling between the x- and y-axes. Since the commanded
perturbations are known and the interaction forces are measured, it is possible to estimate the
transfer function matrix from F, to F denoted as T in Fig. 2.

To gain a deeper understanding of this transfer function matrix, a state-space model of the
human—machine interaction was defined by linearizing a nonlinear model of the robot
interacting with a linear model of the human arm through a virtual force transducer [18]. The
state space system relating F, to F, is defined as

q =A,q+B,F,
F =C,q+D,Fx 3)

where AT, B1, CT, and D are the state space matrices of Tmogel(S) = C1(Slgxg — A7) BT +
D1, 4 =[6s, e, 0,,0.,%.Y. %, 7 is the state vector of absolute robot joint angles (6s,0¢) and
Cartesian hand coordinates (x, y) along with their first derivatives. This model suggested an
experimental method to compensate for the human—machine interaction, discussed next.

D. Experimental Compensation of Human-Machine Interaction—Modified Perturbation

Commands

The dynamics of the human-machine interaction may explain how the interaction forces Fy
and Fy could exhibit high coherence even though the commanded perturbations Fx x and
Fa,y were specified with low coherence. If the gains of Ty, Tyy, and Tyy (elements of T relating
Faxand Fpy to Fyand Fy y to Fy) were approximately equal and significantly larger than the
gain of Ty (element of T relating F x to Fy), then [Fy(f) = [Txx()Fa x(f) + Tyy(f)Fa ([ would
be linearly related to |Fy(f) = Ty (f)Fa y(f)] since both depend on Fy .

The ideal transfer function matrix from F, to F is the identity matrix, i.e., T(f) = loxp,Vf. To

achieve this, a new set of experimental perturbations may be defined by premultiplying the
original commanded perturbations by the inverse of Togel

_r-1
FA.new—Tmodcl FA.old- (4)

When the modified perturbations are commanded, the originally intended set of perturbations
will be delivered to the patient

F=TFp new=T (T;LdCIFA.OId) = Faold- (5)
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Two drawbacks of this approach are that Tgel requires an estimated linear model of the
human arm and, since Togel depends on the operating condition, (4) must be applied at each
test location individually. An analytical approach that attempted to improve the numerical
conditioning of the spectral calculations by defining the inputs as F, instead of F to estimate
C(s) is presented next.

E. Analytical Compensation of Human-Machine Interaction—Derived Estimate

An alternative estimate of C(s) can be derived based on the three systems shown in Figs. 2 and
3. Since F,, F, and d are known at the same instant in time, we can define the MIMO structures
in Figs. 2 and 3 as

F=TF, ®)
d=CF (7)
d=RF,. ®

The inputs for the spectral estimates in (6) and (8) are the commanded perturbations (which,
by design, have low coherence), whereas the inputs for the estimate in (7) are the measured
interaction forces (which may have high coherence). By computing the spectral estimates for
R and T, a “derived” estimate for C(s) can be defined that only requires low-coherence inputs
because d = CF = CTF, RF, = CT = R. Specifically, at each frequency f

Cyer=RT L. C)
Furthermore, by assuming the noise output spectrum for the derived estimate is equal to the

noise output spectrum of the direct estimate, partial and multiple coherences for Cqer(S) can
be defined analogously to those defined for C(s) [18].

lll. Experimental Results

A. Validation Via Mechanical Spring Array

Although using stochastic inputs to estimate the frequency response of a system is an
established technology [14], [15], tests were conducted on mechanical systems to validate the
experimental and analytical procedures [18]. A top view of the apparatus used is shown in Fig.
4. MIT-MANUS was mounted on a patient workstation and the outer fixture of the mechanical
assembly was bolted to a bracket clamped to the workstation table. The inner fixture was bolted
to the top of a handle used for therapy, which was bolted to the force transducer on the end-
effector of the robot. Both the square outer fixture and the square inner fixture have four bolts
located at their corners and four bolts at the midpoints of their sides to mount extension springs
that generate a stiffness field at the end-effector of the robot. Thus, eight springs could be
mounted between bolts on the inner and outer spring array fixtures to generate a variety of
stiffness fields. The locations of the spring mounts along the perimeter of the inner and outer
fixtures were specified to ensure the springs would always be in tension during testing.

For comparison with the spectral estimates, a linearized model of the test apparatus was
developed. The nonlinear restoring forces generated by the spring array were derived and then
linearized to obtain an expression for the stiffness matrix K [18]. The magnitude of the linear
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restoring forces can be visualized by multiplying K by a unit vector that is rotated from 0° to
360°. Fig. 5 depicts stiffness ellipses for the nine test configurations (denoted sal to sa9) used
during the validation study. Quasi-static calibration trials confirmed the linearized stiffness
matrices were within the £10% manufacturing tolerances of the mechanical spring constants.
The mass of the handle and inner fixture was measured on a precision scale to be 0.429 kg.
Although mechanical springs are close to ideal energy storage devices, some energy is
dissipated during this process, e.g., internal damping present in the springs. Therefore, viscous
damping was included in the model. The diagonal elements of the viscous damping matrix
were defined such that the damping coefficient { was equal to 0.01, whereas the off-diagonal
elements were set to zero.

Six trials of each test configuration were run in succession. Welch's periodogram method was
used to estimate the power spectral density and coherence functions needed to calculate
Cder(s) [15], [18]. Two sets of parameters were defined to investigate the variation of the
estimate with the spectral analysis parameters (the number of data points included in the FFT
calculation, NggT, the length of the Hanning windowing function, Nywnp, and the number of
overlapped samples, Noy ). The first set (Ngpt = 8192, Nywwnp = 8192, and Ngy. = 4096)
resulted in N\ns = 5 overlapping segments of data to be used to calculate the power spectral
density and coherence functions, whereas the second set (Nget = 8192, Nywnp = 2048, and
NovL = 1536) resulted in Npns = 45. Although increasing Npyns from 5 to 45 decreases the
random error by 70% (e.g., for Cyg,(s), exr, = (1 — yFxx-Fy)/(2(Nwins — 1)yFux-Fy) Y2, e,
exFy & 1/(Npns — 1)Y/2), the minimum resolvable frequency of the windowed FFT calculation
increases from 0.061 to 0.244 Hz. The mean spectral estimates for six trials of test configuration
sal are shown in Fig. 6 and the corresponding mean partial and multiple coherence functions
are shown in Fig. 7. The expected behavior (based on the linearized model) is depicted by solid
gray lines, the spectral estimate with Nyyns = 5 by dashed lines, and the spectral estimate with
Nmns = 45 by dash—dotted lines.

Two different measures (defined in Appendix) were used to evaluate the quality of the
impedance estimates. Variance Accounted For (V AF € [0%, 100%]) describes how close each
of the estimated frequency responses come to the modeled frequency responses. The
correlation coefficient squared (R2 € [0, 1]) is a composite measure of the goodness of fit of
all four elements of the transfer function matrix. Results for all six trials at each configuration
(sal to sa9) with Nypns = 5 and Nyns = 45 over the frequency ranges of 0-5 Hz and 0—10 Hz
are shown in Fig. 8. Aside from a small region in the vicinity of the resonant peak (where the
phase angle changes rapidly), both measures indicate excellent agreement between measured
and estimated behavior, validating the method.

B. Sample Results From the Hemiplegic Arm of a Person With Stroke

Similar to Fig. 6, the mean spectral estimates for six trials of a patient's left hemiplegic arm®
are shown in Fig. 9 and the corresponding mean partial and multiple coherence functions are
shown in Fig. 10. The data was also fit to a second-order linear model of impedance using the
MATLAB function Isgnonlin to determine optimal inertia, damping, and stiffness matrices.
The cost function for the nonlinear least-squares problem is defined in Appendix. The resulting
impedance (mean of six trials) is depicted by solid gray lines, the spectral estimate with
Nmns = 5 by dashed lines, and the spectral estimate with Nyns = 45 by dash-dotted lines.
Though the spectral estimates are remarkably similar to the best-fit linear model (especially
below 5 Hz), the coherence plots below the resonance frequency are substantially lower than
those achieved with the mechanical spring array.

SMale, age 77, left hemiplegia, Total MAS of 12 (nine muscle groups (maximum 45): shoulder internal rotator, elbow flexor/extensor,
forearm pronator/supinator, wrist pronator/supinator, digit flexor/extensor).
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V. Discussion

Although the primary purpose for MIT-MANUS is to deliver rehabilitation therapy, its ability
to deliver forces while measuring the resulting motion may be usable to assess muscle tone
objectively. Estimates of impedance can be added to robotic evaluation and treatment sessions,
and may complement clinical measures of tone such as the MAS [2], [4], [5]. The work
presented here provides a basis for a test that can be used in a clinical setting and has been
shown to reliably and accurately identify inertial and stiffness components of impedance.6

A stochastic estimation method was chosen for technical reasons outlined above but another
consideration is that the duration of the test (50 s) is short enough that clinicians can measure
patients during treatment sessions. It is also long enough to investigate the trade-off between
random error and spectral resolution. Patient comfort and tolerance of the procedure is another
important consideration. Not only have patients exposed to the measurement procedure
tolerated it, they also seem to like the random nature of the test and liken it to a vibrating
massage.

Although voluntary reactions to random inputs are unlikely, patients could still exhibit
compensatory muscle activations, e.g. tensing up or relaxing. However, a close examination
of the data indicated that the three patients in the pilot study did not change their muscle
activation levels significantly during the three test runs. To check for stationarity, mean square
values of the commanded perturbations and the interaction forces (minus their mean values)
were calculated over equal time intervals [15]. The variation of the mean square values between
Fy and F, y were similar, but the input coupling along the x-axis caused the variation Fy to be
influenced by the variation of both F, x and Fj y. However, differences in the variation of Fy

between the three tests were small (R?,Fz =R§|r3 =Rirz =0.96) implying those variations were
due to input coupling and not patient compensatory muscle activations. The normalized
instantaneous values (e.g., Fa x — #)/o, where u and ¢ are the mean and standard deviation of
F x) of the measured interaction force data were also checked for normality using MATLAB's
normplot function. Deviations from a normal distribution were small throughout the probability
range 0.05 to 0.95 with the largest deviations below 0.01 and above 0.99. Finally, the force
and displacement time histories for the three experimental test runs were similar throughout
_2 _2 _2 _2
the test (R, =0.96, R, =0.95,R,=0.98,R,=0.96 where ]}2 is the average correlation coefficient

between signals 1 & 2, 1 & 3, and 2 & 3).

Least-squares fitting of a linear impedance model with second-order dynamics in each degree
of freedom showed that the spectral method, which assumed no model structure, resulted in a
remarkably similar estimate for the arm's impedance, especially for frequencies below 5 Hz
(Fig. 9, f <5 Hz). However, the coherence plots indicate that this observation must be
interpreted with caution. Even putting aside the region close to the system resonant frequency,
which yielded low coherence even with the mechanical spring array, for frequencies below 1
Hz the coherence is generally about 0.8 or less. This indicated that, despite appearances, the
patient's arm impedance behavior deviated measurably from linearity. Although random data
methods do not assume a model structure, they do assume that the system behaves linearly for
small perturbations, i.e., that the quantity being measured is a smooth function in the Lipschitz
sense. However, nonsmooth nonlinearities abound in biological systems. For example, when
active wrist muscles were cyclically stretched and shortened, Gillard et al. [19] showed that
hysteresis in angle-torque curves was caused by short-range stiffness effects [20]. Within this
range, actin-myosin cross-bridges are thought to remain attached and deform elastically;

6Although not reported here, trials were also conducted with different masses confirming that the method was able to discriminate
impedance at both low frequencies (stiffness) and high frequencies (inertia) [18].
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outside of this range, the cross-bridges detach and the stiffness decreases as the muscle
lengthens [21]. Due to the cyclical nature of stochastic perturbations, a similar hysteresis may
occur within the hypertonic arm muscles of patients. Further study with a larger patient
population is needed to explore this question.

Above 5 Hz, the spectral estimate of impedance phase begins to roll off (Fig. 9, 5 <f<10 Hz),
again indicating a deviation from second-order behavior. However, in this case the coherences
remain high, indicating that arm impedance behavior remains close to linear in this frequency
range. The fact that the impedance magnitude remains close to that of the linear model while
the phase differs suggests the effect of a time delay, possibly due to reflex action. Again, further
study with a larger patient population is needed to clarify this matter. Nevertheless, these data
indicate the sensitivity of the spectral method and its potential to provide finely resolved
measurements of how stroke affects arm impedance.

Although force perturbations with low coherence were commanded, initial tests showed that
the resulting interaction forces were linearly dependent, which would compromise the fidelity

of the estimate. Inverting a model human-machine interaction (F=T (T;,de,FA) = Fa) may
improve input signal coherence but a problematic aspect of this approach is that T yoqel depends
on the operating condition, on the properties of the robot, and, most importantly, on the human
arm impedance properties to be estimated. Using parameters representing an average of a wide
range of patients and/or unimpaired subjects may be acceptable but, ata minimum, a sensitivity
analysis would be required to determine whether this would adversely affect the estimates.
Another alternative may be to use a high-impedance robot to deliver position perturbations. In
a clinical setting, however, one must take special care so that high forces are not delivered to
a patient whose musculo-skeletal system may be substantially more fragile than an unimpaired
subject's. Common side-effects of therapy after stroke are joint and tendon pain in the shoulder,
wrist, and hand, as well as shoulder-hand syndrome, characterized by burning pain and swelling
of the fingers and hand, skin atrophy, and a painful, stiff shoulder. Clinical trials with MIT-
MANUS and InMotion2 have resulted in a reduction of these afflictions [1], [17], [22], [23].
This suggests that force perturbations with a low-impedance robot are advantageous, and
perhaps required, for this application. The alternative method presented above, based on
simultaneously estimating two transfer function matrices (between commanded and applied
force, and between commanded force and observed motion), seems more appropriate for
clinical work.

Although the present study focused on estimating impedance in the plane, the stochastic method
can be easily generalized to any number of inputs and outputs [15]. For example, our research
group has also developed a robot for wrist rehabilitation [24], [25] that senses and actuates the
wrist in pronation/supination, abduction/adduction, and flexion/extension. Thus, by
commanding three stochastic perturbations with low coherence, the impedance of the wrist can
be estimated. Furthermore, given a measure of limb segment lengths and initial arm pose, the
kinematic equations relating hand motion to joint motion may be formulated. If those equations
are invertible (e.g., if the arm motion and the hand motion have the same number of degrees
of freedom), it is straightforward to project the measured impedance at the hand to the
corresponding impedance of the arm, e.g., about the shoulder and elbow joints, and this may
have additional clinical value.

V. Conclusion

An arm impedance test suitable for clinical use was developed by adapting previous methods
to the special requirements of this application. Experimental trials are currently underway to
determine whether the spectral estimate can discriminate a reduction in tone (correlating to the
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MAS clinical evaluations) and provide further insight into the process of motor recovery from
stroke.
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Appendix Definition of VAF and R?

In an attempt to weight the inertial and stiffness properties equally, calculations were conducted
on the impedance (input velocity, output force) rather than dynamic stiffness (input
displacement, output force). Instead of a frequency response that is constant at low frequencies
and has a slope of +40 db/decade at high frequencies, the frequency response for impedance
has slopes of — 20 and +20 db/decade at low (stiffness-dominated) and high (inertia-dominated)
frequencies.

The quadratic cost function was defined in terms of the impedance gain and phase as

T T
Y. :Zg.L\'Zg-“'+zp.wzl7~“' (A1)

where zg4,y and z, , are vectors of differences between the estimated [subscript e in (A.2)] and
modeled [subscript m in (A.2)] impedance gains (db) and phases (deg) that are weighted
[subscript w in (A.1) and (A.2)] by the corresponding partial coherence function (y.) at each
frequency data point, i.e.,

Tgw= 10y, (ZgAe - ng) (A.2a)

Ipw=7Ye (Zp.e - Zp.m) . (A.2b)

Since partial coherence functions indicate whether the relationship between the input and
output is linear, weighting by this function will devalue differences between the estimated and
expected frequency responses when the partial coherence is close to zero. An additional factor
of 10 was used in (A.2a) to weight differences in gain higher than differences in phase (the

T
MATLAB function Isgnonlin uses the vector to | Zgwlg_wl to define , and to search for the
optimum parameter values). The gain and phase of the impedance of the second-order model
were used to normalize the value of , in order to define VAF and R2. Specifically

_7T T
L R L (A3)

lgw' = lO’Yng.m (A.4a)
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Zpw' =Yelpm- (A.4b)
Next, the VAF matrix and R2 were defined as

— ‘ll.\‘.\ W xy.n
VAF—IOO%(I —| = o l]

X,z Wz

[ - (A.5)
Rz -1— Uxxz +’/’.x}‘,: +l!’yx,: 'H»byy,:
Yxxn +l//x_\'.n +l/’)‘x.11 'Hp_vy.n ' (A.6)
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extending from biology to engineering; it has made significant contributions to motor
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uroscience, rehabilitation engineering and robotics, but its focus converges on an emerging

class of machines designed to cooperate physically with humans. Recent work pioneered the
creation of robots sufficiently gentle to provide physiotherapy to frail and elderly patients
recovering from neurological injury such as stroke, a novel therapy that has already proven its
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Fig. 1.
Block diagram of linear MIMO impedance structure: Cyg, (s) and Cyr, (s) are the transfer
. . X : y
functions from the interaction forces, Fy and Fy, to the displacement x: Cyg, (s) and CX,:y ()
are the transfer functions from the interaction forces to the displacement the displacement y.
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Fig. 2.

Block diagram of linear MIMO structures using vector and matrix notation: T(s) is the transfer
function matrix from the commanded force perturbations, F,, to the interaction forces, F; C
(s) is the transfer function matrix from the interaction forces to the displacements, d.
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Fig. 3.

Block diagram of linear MIMO structure using vector and matrix notation: R(S) is the transfer
function matrix from the commanded force perturbations, F,, to the displacements, d.

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2009 September 26.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

Palazzolo et al. Page 21

MIT-MANUS Inner fixture

Fig. 4.

Top view of MIT-MANUS and the mechanical spring array used to validate the impedance
spectral estimation method. In this test configuration (sal), six extension springs are connected
between the inner and outer fixtures to generate an elliptical stiffness field whose major and
minor axes are different from the x- and y-axes.
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Fig. 5.
Stiffness ellipses for the nine test configurations (sal to sa9) that were defined to validate the
analytical and experimental procedures in the impedance spectral estimation method.
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Expected behavior (based on linearized model) and mean spectral estimates for six trials of
test configuration sal. Both sets of spectral analysis parameters result in excellent estimates
of the expected impedance frequency response.
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Mean partial and multiple coherence functions for six trials of test configuration sal that
correspond to the spectral estimates shown in Fig. 6. Decreases in the partial and multiple
coherences occur near the system resonances. Decreases in the off-diagonal elements of the
partial coherence also occur at higher frequencies (inertia is isotropic and the off-diagonal
elements are identically equal to zero).
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Fig. 8.

Summary of the VAF values for each element of the impedance spectral estimate and the R?
values of the entire estimate for test configurations sal to sa9. Off-diagonal elements of
VAF for sa4 and sa5 are numerically ill-conditioned because the inertia and stiffness matrices
are isotropic (ideally, the off-diagonal elements are identically equal to zero).
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Fig. 9.

Modeled behavior (based on linear second-order model) and mean spectral estimates for six
trials of a patient's hemiplegic left arm. The modeled frequency response elements capture the
gain of both estimates throughout the frequency range shown, whereas the phase of both
estimates deviates from the model for f > 5 Hz.
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Mean partial and multiple coherence functions for six trials of a patient's hemiplegic left arm
that correspond to the spectral estimates shown in Fig. 9. Decreases in the partial and multiple
coherences occur near the system resonances. The partial coherence functions are close to 1 at

higher frequencies.
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