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Abstract

Trypanosoma cruzi is the etiologic agent of Chagas disease, which affects millions of people in Latin
America and has become a public health concern in the United States and areas of Europe. The
possibility that kinase inhibitors represent novel anti-parasitic agents is currently being explored.
However, fundamental understanding of the cell signaling networks requires the detailed analysis of
the involved phosphorylated proteins. Here, we have performed a comprehensive mass spectrometry
(MS)-based phosphorylation mapping of phosphoproteins from T. cruzi epimastigote forms. Our
liquid chromatography (LC)-tandem MS (MS/MS, MS/MS/MS, and multistage activation) analysis
has identified 237 phosphopeptides from 119 distinct proteins. Furthermore, 220 phosphorylation
sites were unambiguously mapped: 148 on serine, 57 on threonine, and 8 on tyrosine. In addition,
immunoprecipitation and Western blotting analysis confirmed the presence of at least seven tyrosine-
phosphorylated proteins in T. cruzi. The identified phosphoproteins were subjected to Gene
Ontology, InterPro, and BLAST analysis, and categorized based on their role in cell structure,
motility, transportation, metabolism, pathogenesis, DNA/RNA/protein turnover, and signaling.
Taken together our phosphoproteomic data provide new insights into the molecular mechanisms
governed by protein kinases and phosphatases in T. cruzi. We discuss the potential roles of the
identified phosphoproteins in parasite physiology and drug development.
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1 Introduction

Chagas disease or American trypanosomiasis is one of the most prevalent tropical illnesses
with an estimated 11 million people infected and approximately 120 million people living in
high risk areas. Chagas disease is a major public health problem in Latin America, where up
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to 50,000 people may die every year due to complications in the acute or chronic phases of the
disease [1,2]. In addition, due to the migration of chronically infected, asymptomatic people
from endemic areas and lack of screening in blood banks, Chagas disease has become a public
health concern in United States and certain areas of Europe, such as Catalonia [3,4].

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, which is naturally
transmitted by hematophagous Reduviidae insects, popular known as kissing bugs. The
parasite, however, may also be transmitted congenitally or via blood transfusion or organ
transplantation [1]. The T. cruzi life cycle comprises two stages in the insect vector and two
stages in the human host. In the insect vector, epimastigote forms replicate in the midgut,
whereas in the more distal portion of the gut, they are transformed into infective metacyclic
trypomastigotes under nutritional stress. These metacyclic forms are expelled together with
the insect’s excreta during a bloodmeal, and reach the host bloodstream through the bite wound
or exposed ocular or oral mucosa. Inside the host, the parasite can infect different types of
nucleated cells, where they immediately escape the parasitophorous vacuole and differentiate
into amastigote forms, which reproduce freely in the cytoplasm by binary fission. After several
divisions, amastigotes transform into trypomastigote forms, which are eventually released into
the extracellular milieu and reach the bloodstream, where they can be taken up by the infect
host cells or an insect vector, thus completing the natural life cycle [5].

The treatment of Chagas disease is currently restricted to two drugs, nifurtimox and
benznidazole, which have limited efficacy and cause severe side effects [6,7]. In addition, there
is no human vaccine against T. cruzi [8,9]. Therefore, there is a critical need to develop new
therapeutic strategies for preventing or treating Chagas disease.

In line with the current interest in protein kinases as molecular targets for the treatment of a
variety of diseases [10-13], the possibility that kinase inhibitors represent novel anti-parasitic
agents is currently being explored [14]. Reversible protein phosphorylation is a key mechanism
for the regulation of major biological processes including proliferation and differentiation.
Approximately 2% of the T. cruzi genome encodes protein kinases, suggesting a major
regulatory role in controlling parasite development and function [15]. A comparative study of
the kinomes of trypanosomatids showed that T. brucei, T. cruzi, and Leishmania major have
176, 190, and 199 protein kinase genes, respectively [15,16]. Of these kinases, approximately
12% are unique to trypanosomatids [15,16]. Among the protein phosphatases, T. brucei, T.
cruzi, and L. major have 78, 86, and 88 genes, respectively. About 40% of these phosphatase
genes were atypical with no clear orthologs in other eukaryote genomes [17]. Taken all
together, the significant differences between T. cruzi and host-cell protein kinases suggest that
parasite specific inhibition can be achieved and, therefore, may represent a viable therapeutic
approach to control Chagas disease.

Despite the importance of protein phosphorylation in many cellular processes, few studies have
identified phosphorylation sites in trypanosomatid proteins. Recently, proteomic analysis of
promastigote and amastigote forms of Leishmania donovani identified 73 phosphoproteins
with diverse biological functions, however the specific phosphorylation sites (or phosphosites)
were not identified [18]. Another proteomic study in L. donovani was able to identify 18
phosphosites from 16 distinct phosphopeptides [19]. However, to our knowledge the only
phosphorylation site thus far determined in a T. cruzi protein is serine phosphorylation of the
linker histone H1 [20]. In order to gain insight into the signaling networks that govern parasite
function, we analyzed the phosphoproteome of T. cruzi at the non-infective, insect-derived
epimastigote stage. We have chosen to initially perform the analysis of this stage, instead of
the three other stages (i.e., metacyclic trypomastigote, amastigote, and trypomastigote), to
better standardize the T. cruzi phosphoproteomic methodology, using a parasite form that can
be obtained in large amounts in cell-free medium. Total epimastigote lysate was digested with
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trypsin, followed by the enrichment of phosphopeptides by strong-cation exchange (SCX) and
immobilized metal-affinity chromatography (IMAC), and analysis by tandem LC-MS. Here,
we show a comprehensive phosphorylation mapping study and discuss the potential roles of

the identified phosphoproteins in parasite physiology and drug development.

2 Materials and Methods

2.1 Cell culture and protein extraction

T. cruzi epimastigotes (Y stain) were grown in liver infusion tryptose medium containing 10%
fetal bovine serum at 28°C for 3—4 days [21]. The parasites were harvested and washed 3 times
with phosphate-buffered saline (PBS), pH 7.4. Epimastigotes (2.4 x 1019) were lysed with 3
ml 8 M urea, 400 mM NH4HCO3, containing phosphatase inhibitor cocktail (Sigma-Aldrich),
by vigorous vortexing for approximately 5 min. Disulfide bonds were reduced with 5 mM
dithiothreitol for 15 min at 50°C, and the free thiol groups were alkylated with 10 mM
iodoacetamide for 30 min at room temperature and protected from light. Protein content was
measured by the Micro BCA assay (Pierce), according to the manufacturer’s protocol.

2.2 Trypsin Digestion

After BCA quantification, an equivalent of 10 mg total protein extract was diluted to 10 ml
with 100 mM NH4HCOg3 and digested with 100 pg sequencing-grade trypsin (Promega) for
24 h at 37°C. After the digestion, peptides were acidified by adding 100 ul formic acid (FA)
and desalted in a C18 cartridge (DSC-18, Supelco, Sigma-Aldrich). The cartridge was activated
with 4 ml methanol and equilibrated with 4 ml 0.05% trifluoroacetic acid (TFA). After loading
and washing with 4 ml 0.05% TFA, the sample was eluted with 2 ml 80% ACN/0.05% TFA
and dried in a vacuum centrifuge (VVacufuge, Eppendorf).

2.3 Strong Cation-Exchange (SCX) Chromatography

SCX fractionation was performed with 100 ul POROS HS 50 resin (Applied Biosystems)
placed in a SPE support cartridge. After equilibrating the column with 25% ACN/0.5% FA
(SCX buffer), the samples were loaded and eluted with 1 ml 0, 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 150, 250, and 500 mM NaCl dissolved in SCX buffer. The fractions were dried in a
vacuum centrifuge, dissolved in 200 pl 0.05% TFA, desalted in POROS R2 50 ziptips as
described by Jurado et al. [22], and dried again.

2.4 Immobilized Metal-Affinity Chromatography (IMAC)

Fifty microliters of IMAC resin (PHOS Select Iron Affinity Gel, Sigma-Aldrich) was washed
2X with 450 pul 0.25 M acetic acid/30% ACN (IMAC buffer). Each fraction from SCX
chromatography was redissolved in 100 pl IMAC buffer and incubated with the resin for 60
min with constant shaking. After the incubation, the resin was loaded onto ziptips, washed 5X
with 100 pl IMAC buffer and eluted 2X with 100 pl 5% TFA/45% ACN. Samples were dried
in a vacuum centrifuge prior to LC-MS analysis.

2.5 Liquid Chromatography-Mass Spectrometry (LC-MS)

Following IMAC purification each fraction was redissolved in 30 pl 0.05% TFA and 8 ul were
used for each injection. The peptides were loaded in a C18 trap column (0.25 ul, Opti-Pak,
Optimized Technologies) coupled to a nanoHPLC system (NanoLC-1DPlus, Eksigent). The
separation was carried in a capillary reverse phase (RP) column (Acclaim, 3 um C18, 75 um
x 25 cm, LC Packings, Dionex) in a gradient of 2-33.2% ACN/0.1% FA for 120 min. The
eluted peptides were analyzed online in a linear ion trap mass spectrometer (LTQ XL/ETD,
Thermo Fisher Scientific). The five most abundant ions were submitted to data-dependent
collision-induced dissociation (CID) MS/MS, multistage activation (MSA), or MS/MS/MS
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fragmentation before being dynamically excluded for 2 min. The CID was set to 40%
normalized collision energy. The MSA was set at —98.0, —49.0, and —32.6 Thompson (Th)
relative to the precursor ion, and MS/MS/MS scans were triggered by the appearance of
phosphate neutral loss (—98.0, —49.0, and —32.6 Th) in the MS2 scan event.

2.6 Bioinformatics analysis

MS/MS spectra were converted to DTA files using Bioworks (v3.3.1, Thermo Fisher
Scientific) with the following criteria: peptide masses from 800 to 3500 Da, at least 15 ions,
and a minimum of 10 counts. TurboSequest searches were done against the forward and reverse
T. cruzi, bovine, human keratin, and porcine trypsin sequences (total 191,762 sequences,
downloaded on March 171, 2008, from GenBank). The parameters for database search were:
fully trypsin digestion; up to 1 missed cleavage site; 2 Da for peptide mass tolerance; 1 Da for
fragment mass tolerance; cysteine carbamidomethylation (+57 Da) as fixed modification; and
methionine oxidation (+16 Da) and serine, tyrosine and threonine phosphorylation (+80 Da
for MS/MS and —18 Da for MS/MS/MS) as variable modifications. The datasets were filtered
with DCn > 0.05, peptide probability < 0.1, and Xcorr of 1.5, 2.2, and 2.7 (2.8 only for MS/
MS/MS data) for singly-, doubly-, and triply-charged peptides, respectively. All
phosphopeptide spectra were carefully examined for diagnostic b and y fragments to determine
the exact modification site. For phosphorylation sites that could not be determined, the all
possible modified amino acid residues were indicated by lower cap and the number of
phosphate groups in parenthesis. The phosphorylation motifs were searched using Phosida
phosphorylation site database (http://www.phosida.com/) [23]. All valid phosphoproteins were
submitted to Gene Ontology (GO), Blast (e-value < 1e-5) and InterPro annotations using
Blast2go algorithm (February 11™, 2009, http://www.blast2go.de/) [24].

2.7 Immunoprecipitation and Western blot analysis

An equivalent of 1.2 x 10° epimastigote cells were solubilized in Triton lysis buffer (10 mM
Tris-HCI (pH 7.6), 5 mM EDTA (pH 8.0), 50 mM NaCl, 30 mM Na4P,07, 50 mM NaF, 1 mM
NazVOy, 1% Triton X-100) containing 1 mM phenylmethylsulfonyl fluoride, 5 ug/ml
aprotinin, 2 ug/ml leupeptin, 1 ug/ml pepstatin A, and clarified by centrifugation (16,000 x g,
10 min, 4°C). The supernatants were rotated with 10 ug of anti-phosphotyrosine monoclonal
antibody (4G10, Upstate) for 2 h at 4 °C. The immune complex was captured by incubation
with protein A-Sepharose beads (Rockland Immunochemicals), for 1 h at 4°C. The beads were
then washed 3 times with cold lysis buffer and eluted by boiling in 2x SDS sample buffer (50
mM Tris-HCI (pH 6.8), 100 mM dithiothreitol, 2% SDS, 0.02% bromophenol blue, 10%
glycerol, pH 6.8). Samples were resolved by 10% SDS-PAGE and transferred to PVDF
membrane (Amersham Biosciences, GE Healthcare Life Sciences). After blocking with 1%
BSA, the membrane was incubated overnight with anti-phosphotyrosine monoclonal antibody
(4G10, Upstate), followed by 2 h incubation with horseradish peroxidase-conjugated goat anti-
mouse 1gG (H+L) (KPL), and visualized by using enhancedchemiluminescence reagent (ECL)
and X-ray film (Phenix Research Products).

3 Results and Discussion

3.1 Phosphopeptide enrichment and phosphorylation site mapping

The identification of phosphoproteins can be limited due to their low abundance and the low
stoichiometry of phosphorylation. In order to map the phosphorylation sites in T. cruzi proteins,
whole epimastigote extracts were digested with trypsin, fractionated by SCX chromatography,
and the resulting phosphopeptides enriched using IMAC. The enriched fractions were analyzed
by LC-MS/MS, phosphate neutral loss-triggered LC-MS/MS/MS, or LC-MSA. It is well
documented that MS/MS fragmentation of phosphopeptides results in a strong neutral loss of
the phosphate group [25]. In many cases, the resulting spectra do not provide sufficient
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fragments to determine the phosphopeptide sequences. To circumvent this problem, neutral
loss-triggered MS/MS/MS [26] and MSA (also known as pseudo-MS3) [27] were developed.
To increase the phosphoproteome coverage, we applied all three dissociation strategies that
resulted in the identification of similar numbers of non-phosphorylated peptides (Table 1).
However, the MSA approach led to the identification of more phosphopeptides (n=160) as
compared to the MS/MS (n=51) or MS/MS/MS (n=84) approach (Table 1,Supplementary
Figures 1-3). In addition, only 17 peptides were sequenced using all three MSn acquisition
regimens (Fig. 1), indicating that these regimens are complementary. It is noteworthy that the
MS/MS/MS regimen led to an increased false-discovery rate (FDR), thus the Xcorr threshold
had to be increased to validate the sequences. Two recent reports have compared the use of
MS/MS, MS/MS/MS, and MSA for the analysis of phosphopeptides using high resolution mass
spectrometers (Orbitrap-MS or FT-ICR-MS) for the first MS stage [28,29]. On the one hand,
Villen et al. showed no significant differences in the number of phosphopeptides identified
and performance to locate the modification sites using all three methods of fragmentation
[29]. On the other hand, Ulintz et al. reported that the MSA method outperformed the two other
strategies [28]. The results shown herein indicate that indeed MSA had a superior performance
compared to the other MSn strategies. These results suggest that the MSA-provided higher
quality spectra [27] are more crucial for the analysis of phosphopeptides when lower resolution
data is recorded in the first MS stage.

In our analyses, 237 phosphopeptides were sequenced from 221 phosphorylation sites in 119
proteins from T. cruzi (Table 1, Supplementary Table 1). Of those 221 newly identified
phosphorylation sites, 148 (65.5%) were on serine, 57 (25.2%) on threonine, and 8 (3.5%) on
tyrosine (Table 1). Eight phosphorylation sites could not be assigned to specific amino acid
residues, 7 on serine or threonine and 1 on serine or tyrosine (Table 1). From the identified
phosphoproteins, approximately 40% had multiple phosphorylation sites (Table 1,
Supplementary Table 1). The identification of these phosphoproteins further supports the
notion that kinase-mediated signal transduction pathways are important in the regulation of
parasite biological processes. Unlike metazoa and yeast, which utilize regulated transcription
factors to direct the expression of certain genes, trypanosomatids indiscriminately transcribe
most genes in large polycistronic units, thus emphasizing the critical role of posttranslational
modifications (PTM) in the regulation of T. cruzi proteins.

3.2 Annotation of phosphorylation motifs

The specificity of protein kinases is determined by the amino acid residues adjacent to the
phosphosite and is termed the consensus phosphorylation motif. To determine the potential
kinase(s) responsible for modification of the identified phosphosites, the phosphorylation
motifs were annotated using the Phosida search algorithm [15]. The most abundant motifs are
those from CAMK?2 (13.9%), CK1 (11.1%), PKA (8.71%), CK2 (7.7%), GSK3 (7.0%), ERK
(5.9%), and CDK1 (4.2%) (Table 2). Fifty-seven (19.9%) phosphorylation sites did not match
any known motif (Table 2), which may be due to kinases with undetermined specificity or
atypical kinases that might only be present in trypanosomatids [15,16]. As expected, there was
a significant amount of redundancy among the identified motifs; therefore, more motifs
(n=287) were present compared to phosphorylation sites (n=221). In these cases, it is probable
that specificity is achieved by different spatial and temporal expression of the kinase(s).
Intriguingly, a number of tyrosine-kinase phosphorylation motifs (ALK, SRC, and EGFR)
were identified (Table 2). A key difference between host and parasite kinomes is the absence
of receptor-linked and cytoplasmic tyrosine kinases in trypanosomatids [15]; however, the
presence of protein-tyrosine phosphatases indicates that tyrosine phosphorylation is a key
regulatory mechanism in T. cruzi [17]. It has been proposed that atypical tyrosine kinases such
as Weel and dual-specificity kinases such as the DYRKSs and CLKs, which are all present in
the T. cruzi genome, are responsible for this activity [15].
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To determine whether any motif was over- or under-represented, the distribution of motifs of
epimastigote phosphoproteome was compared to that of the entire T. cruzi database. The
CAMKZ2, ERK, and CDK1 motifs were significantly over-represented (p < 0.01 by Fisher’s
exact test), whereas the CK1, NEK6, PLK1, and ALK maotifs were under-represented (p <0.01)
(Table 2).

3.3 Functional categorization of identified phosphoproteins

Of 119 sequenced phosphoproteins, 68 (57%) were annotated in the GenBank database as
hypothetical proteins, making it difficult to infer their biological function (Table 3). Therefore,
we submitted all identified phosphoproteins to automated Blast, InterPro and Gene Ontology
(GO) analysis (see Material and Methods for details). Since the majority of T. cruzi sequences
were compiled in 2005 with the completion of the genome project [30], new entries in the
GenBank database could help in the annotation of the identified sequences. Indeed, Blast
analysis resulted in the annotation of 21 sequences previously described as hypothetical
proteins (Table 3, Supplementary Table 2). In addition, InterPro analysis resulted in 74 entries,
25 of which were previously annotated as hypothetical proteins (Table 3, Supplementary Table
3). Finally, GO analysis generated 69 annotations, 22 of which were previously annotated as
hypothetical proteins (Table 3, Supplementary Table 4). Taken together, Blast, InterPro and
GO analyses, assigned 35 (51%) of the 68 hypothetical sequences to a predicted biological
function (Table 3). The overall function of the identified phosphoproteins is discussed in more
detail in the following subsections.

3.3.1 Gene ontology analysis—The overall functional distribution of the identified
phosphoproteins, as determined by GO analysis (Supplementary Tables 4-5), is shown in
Figure 2. The majority of proposed functions involved molecular interactions with proteins,
nucleic acid, nucleotide, ions, and lipids. Enzymatic or catalytic activity and transport functions
were also prevalent (Fig. 2, Supplementary Tables 4-5). The most abundant cellular
components were intracellular, membrane bound, and localized in organelles (Fig. 2,
Supplementary Tables 4-5). For the biological process category, a large proportion of the
phosphoproteins were related to metabolism and other physiological processes. There were
also proteins related to cell reproduction, development, differentiation and death, cell
communication, response to stimulus, and locomotion (Fig. 2, Supplementary Tables 4-5).
Overall, GO analysis further illustrates that protein phosphorylation is a significant regulatory
mechanism governing a variety of T. cruzi biological functions.

3.3.2 Signaling transduction-related proteins—Signal transduction pathways are
highly dynamic protein networks that integrate information from various stimuli. Sixteen of
the identified proteins are proposed to be cell signaling modulators. Of these, six (37.5%) are
classified as either protein kinases or phosphatases by Blast, InterPro, or GO analysis (Table
3), suggesting a number of signaling pathways are active. Indeed, calcium-binding proteins
such as calmodulin and EF-hand domain-containing phosphoproteins were identified.
Consistent with these observations, 13.9% of the phosphorylation motifs were characterized
as CAMK2 consensus sites, indicating Ca2* might play an important role in the regulation of
many processes in T. cruzi physiology. Interestingly, a number of WD40 domain-containing
phosphoproteins were identified. WD40 domain is an amino acid repeat with conserved
tryptophan and aspartic acid residues [31]. This repeat has been shown to bind to
phosphoserine/threonine and to act as a adaptor motif to anchor ubiquitin ligase, thus playing
an important role in phosphorylation-dependent protein degradation pathways [32]. WD40
repeats are also present in several proteins from Chlamydomonas reinhardtii intraflagellar
transport system [31], indicating that these proteins might also be involved in phosphorylation/
ubiquitination-regulated cellular trafficking. Taken together, we have established a functional
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relationship between the proposed signaling molecules that provides unique insights into
parasite biology with relevance to future drug development.

3.3.3 Cytoskeleton, flagellum, and trafficking proteins—Fifteen of the identified

phosphoproteins were annotated as cytoskeleton, flagellum, and trafficking proteins (Table 3).
In mammalian sperm, hyperactivated motility is mediated by Ca2* [33]; however, it remains
unclear whether the same phenomenon occurs in trypanosomatid flagellum. The presence of
Ca?* sensors in Trypanosoma sp. flagellum, such as calmodulin and flagellar calcium-binding
protein (FCaBP), suggest that this phenomenon does occur in these protozoa [33-35]. We

found that one paraflagellar rod protein (PAR1b) and one protein with orthologs in mammalian
sperm are phosphorylated in a CAMK2 consensus motif, supporting the role of Ca?*-mediated
protein phosphorylation in the regulation of matility in trypanosomes. In agreement with this
data, tyrosine phosphorylation was recently shown to be enriched in T. brucei flagellum [36].

3.3.4 Transporters—We found 8 transporters in our analysis, 3 ABC, 1 acetate- and 4 ion-
transporters. The ABC transporters are widely correlated with multidrug resistance from
bacteria to humans [37]. The T. cruzi genome has 33 ABC transporter genes [38]. Two ABC-
related transporters (tcpgpl and tcpgp2) were characterized in T. cruzi, but their expression
was not correlated with the efflux of nifurtimox or benznidazole [37]. Lara et al. proposed that
the heme uptake by epimastigotes was dependent on ABC transporters [39]. More research is
necessary to elucidate the ABC transporter functions in drug resistance, nutrient uptake, and
metabolic secretion, and the role of phosphorylation in these processes.

3.3.5 DNA, RNA, and protein turnover—We have found two phosphoproteins with
functions corresponding to nucleosome and chromatin assembly (i.e., histone H2B,
nucleosome assembly protein). Marques Porto et al. showed by 32P-labeling the
phosphorylation of T. cruzi histone H1 and H2B [40]. Although we have previously mapped
the phosphorylation of histone H1 and now report herein the phosphorylation of histone H2B,
the phospho-histone H1 was not detected in the current analysis. This could be because the
phosphopeptide derived from histone H1 has an acetylated N-terminus and several miscleaved
sites by trypsin digestion [20], thus they were not considered in current our analysis.
Identification of heterogeneous nuclear ribonucleoprotein H/F, ATP-dependent RNA helicase,
and pabl binding protein (poly-A binding) suggests phosphorylation-mediated signal
transduction pathways play a key role in T. cruzi RNA synthesis, processing, and degradation.
Additionally, identification of protein synthesis modulators such as translation elongation
factor and tRNA synthase as well as protein folding and processing modulators such as calpain
indicates that phosphorylation may play a role in the regulation of these processes in T.
cruzi.

3.3.6 Metabolism—Among the metabolic proteins, we identified enzymes involved in the
late stages of the glycolytic pathway (i.e., pyruvate phosphate dikinase and pyruvate
dehydrogenase E1 alpha subunit) (Table 3). Two phosphoproteins involved in nucleotide
synthesis (i.e., ribose-phosphate pyrophosphokinase and phosphoribosylpyrophosphate
synthetase) were also identified. These results suggest that these highly active metabolic
pathways may be controlled at least in part by phosphorylation, thus feeding the machinery
responsible for parasite cell growth and proliferation.

3.3.7 Pathogenesis—Although epimastigotes are noninfective forms, we found several
proteins known to be related to pathogenesis of T. cruzi. For instance, five phosphoproteins
belonging to two protein families (i.e., trans-sialidase (TS) and dispersed gene family (DGF))
were identified (Table 3). TS is a well known virulence factor [41] and comprises a protein
superfamily (TS/gp85) encoded by about 1400 genes in T. cruzi genome [30]. Members of the
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TS/gp85 superfamily have the enzymatic activity to transfer sialic acid residues from the host
to parasite glycoconjugates, which is related to protection against the host immune response
[42]. Other members have been related to host cell recognition and invasion to protect the
parasite from the host complement system [43]. DGF protein 1 is a multigene family that was
recently shown to be expressed on the surface of bloodstream trypomastigotes [44]. DGF
protein 1 was also reported to be N-glycosylated [45]. Here, we show that members of this
family are also phosphorylated. The InterPro annotation suggests a pectin-lyase fold/virulence
factor function, but its role in T. cruzi virulence yet remains to be elucidated (Table 3).

3.3.8 Proteins with other functions—A number of the phosphoproteins identified in our
analysis seem to bind ions and other proteins; however, their exact functions are unknown. In
addition, several of the identified phosphoproteins are from the retrotransposon hot spot (RHS)
family. RHS is encoded by a large multigene family localized mainly in telomeric regions of
trypanosomal chromosomes, and it is believed to be involved in gene duplication of multigene
families, including virulence factors such as mucins and TS/gp85 glycoproteins [46,47]. The
finding that several members of RHS family are phosphorylated suggests that these gene
products may be highly active, which accelerates gene duplication and evolution [46,47]. This
might explain the high divergence and differences in virulence between T. cruzi strains and
phylogenetic lineages [47,48].

of phosphotyrosine proteome

It has previously been estimated that 30% of all eukaryotic proteins contain covalently bound
phosphate at any given time [49]. Furthermore, the proportion of pSer, pThr, and pTyr was
recently reported in HeLa cells to be approximately 86.4%, 11.8%, and 1.8%, respectively
[50]. The rarity of phosphorylation on tyrosine residues suggests there is a higher gain in
signaling pathways because they are more tightly regulated. A genome-wise prediction of
protein kinases of trypanosomatid parasites (T. cruzi, T. brucei, and Leishmania major) has
shown that these protozoa lack typical tyrosine kinases; however, the presence of tyrosine
phosphorylated proteins has been reported by a number of research groups [51,52]. Das et al.
showed that the major T. brucei tyrosine-phosphorylated protein is a nuclear RNA-binding
protein (Nopp44/46) [51]. Recently, Nett et al. described the tyrosine phosphoproteome of T.
brucei procyclic forms, where they mapped the tyrosine-phosphorylation sites of 34 proteins.
Using anti-phosphotyrosine antibodies and immunofluorescence microscopy these authors
showed that the tyrosine phosphorylated proteins were mostly localized at the basal body,
flagellum, and nucleolus, indicating that tyrosine phosphorylation may play a central role in
guiding signaling molecules to specific parasite locations. In T. cruzi, a 175-kDa protein is
tyrosine-phosphorylated upon contact with the host cells, but the identity and the function of
this protein during host cell invasion remains unknown [52].

As described above, our MS/MS analysis identified 8 tyrosine phosphorylation sites from 6
distinct proteins: protein kinase (glycogen synthase kinase 3, GSK3); tyrosine
aminotransferase; mitochondrial DNA polymerase | protein D; and three hypothetical proteins
(EANB4292.1, EAN94368.1, and EAN95748.1) (Table 1 and Supplementary Table 1). The
Figure 3A illustrates the identification of the tyrosine phosphorylated peptide
LSPSEPNVAYPpICSR from protein kinase GSK3. Initially, we observed an intense fragment
corresponding to the neutral loss of phosphoric acid at m/z 788.38 ([M — H3POy4 + 2H]%).
After detailed analysis of remainder MS/MS fragments, we unambiguously mapped the
phosphorylation to the Tyr10. Phosphorylation of Ser2, Ser4, or Serl3 was discarded based
on the identification of fragment series b3 5 and bg_g (for Ser2 and Ser4) and y,_4 (for Ser13).
Furthermore, the presence of fragment series y5_1g corroborates the phosphorylation on Tyr10.
Contrary to what has been reported for triple-quadrupole [53] and Q-TOF [54] mass
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spectrometers, intense neutral loss of the phosphate group from tyrosine phosphopeptides was
previously observed by positive-ion mode MS/MS fragmentation in ion-trap instrument [25].

To further investigate tyrosine phosphorylation in T. cruzi, we performed an
immunoprecipitation experiment using a monoclonal anti-phosphotyrosine antibody (see
Material and Methods for details). Indeed, Western blotting analysis revealed 7 distinct
tyrosine-phosphorylated proteins; p250, p150, p90, p55, p50, p45, and p35, which were
assigned names according to their relative molecular masses (Fig. 3B). Interestingly, except
for the p250, the predicted molecular masses of the tyrosine phosphorylated proteins identified
by MS/MS seemed to closely correspond to those of the phosphoproteins detected by Western
blotting: protein kinase (GSK3) (40.4 kDa), tyrosine aminotransferase (46.1 kDa),
mitochondrial DNA polymerase | protein D (26.1 kDa), EAN84292.1 (103 kDa), EAN94368.1
(61.3 kDa), and EAN95748.1 (60 kDa). However, since other PTMs could alter the relative
mobility of proteins on SDS-PAGE, the identity of the phosphorylated proteins observed on
Western blot could not be inferred. Also, the low abundance of these proteins on the SDS-
PAGE (as assessed by Coomassie blue staining) precluded their identification by LC-MS/MS.

The identification of GSK3 phosphorylation at Y187 suggests that this signaling pathway is
important in T. cruzi biology. This enzyme is conserved throughout evolution; however, the
parasite sequences are slightly truncated (353-355 residues) compared to the human, mouse,
and Arabidopsis thaliana GSK orthologs (410-420 residues) (Supplementary Fig. 4). The
amino acid sequence alignment also shows that T. cruzi GSK3 Y187 (arrow) is conserved in
each of the included species (Supplementary Fig. 4). The corresponding tyrosine residue in
human GSK3 (Y216) is in the “activation loop” of this kinase and its phosphorylation is critical
for GSK3 catalytic activity [55, 56]. The significant proportion of GSK3 consensus
phosphorylation sites (Table 2) further supports the presence of activated GSK3 in T. cruzi.
Taken together, our results support the role of GSK3 in T. cruzi physiology and a selective
inhibitor to this enzyme could potentially be used as an anti-parasitic agent. Indeed, GSK3 has
been targeted for the development of selective drugs against Plasmodium ssp. and
trypanosomatids [57, 58].

4 Concluding remarks

In this study, we have successfully mapped 237 phosphopeptides from 119 distinct proteins of
epimastigote forms of T. cruzi. The results indicate that propagation of cell-signaling cascades
by protein kinases and phosphatases play an important role in T. cruzi physiological processes,
including cell motility, metabolism, ion transport, differentiation, and survival. We are
currently analyzing the phosphoproteomes of other developmental stages of T. cruzi to expand
the fundamental knowledge of the mechanisms regulating this medically relevant protozoan
parasite. In addition to contributing to the understanding of the molecular aspects of T. cruzi
biology, the information presented here will aid in the development of potential kinase-directed
therapeutic strategies to treat Chagas disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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51 phosphopeptides 84 phosphopeptides
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158 phosphopeptides

Figure 1.
Venn diagram of T. cruzi phosphopeptides identified by MS/MS, MS/MS/MS, and MSA
analyses.
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Figure 3.

(A) MS/MS spectrum of the tyrosine-phosphorylated peptide LSPSEPNVAYpICSR from
glycogen synthase kinase 3 (GSK3). Matched b and y fragments are indicated. (B) Western
blotting analysis of tyrosine phosphorylated proteins in T. cruzi. Epimastigote extracts were
subjected to anti-phosphotyrosine immunoprecipitation and separation by 10% SDS-PAGE.
After blocking with BSA, the membrane was probed with the anti-phosphotyrosine antibody,
followed by detection with horseradish peroxidase conjugated anti-mouse 1gG and
chemiluminescent reagent. Arrows denote T. cruzi tyrosine phosphorylated proteins. Brackets
denote immunoglobulin G heavy (IgG HC) and light chains (IgG LC).
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Table 2
Distribution of kinase specific motifs in T. cruzi.
Phosphoproteome All T. cruzi Sequences
Kinase motif Number % of total Number % of total
CAMK2 (R-X-X-S/T) 40 13.94" 170873 8.53
CK1 (S-X-X-SIT, SIT-X-X-X-S) 32 11_15* 450808 22.49
PKA (R-X-S/T, R-R/K-X-S/T) 25 8.71 193369 9.65
CK2 (SIT-X-X-E) 22 7.67 183303 9.15
GSK3 (S-X-X-X-S) 20 6.97 134201 6.7
ERK (V-X-S/T-P, P-X-S/T-P) 17 592" 23114 1.15
CDK1 (S/T-P-K/R, S/T-P-X-K/R) 12 418" 30468 152
NEKS (L-X-X-S/T) 10 3.48" 250587 125
CHK1 (M/I/LIV-X-RIK-X-X-SIT) 10 3.48 81145 4.05
PKD (L/V/I-X-R/K-X-X-S/T) 9 3.14 57644 2.88
Aurora (R/K-X-S/T-1/L/V) 8 2.79 57021 2.85
CDK?2 (S/T-P-X-K/R) 6 2.09 16244 0.81
AKT (R-R/SIT-X-S/T-X-SIT, R-X-R-X-X-S/T) 5 1.74 20994 1.05
Aurora-A (R/K/N-R-X-S/T-M/L/VIT) 4 1.39 6121 0.31
EGFR (D/P/S/IA/EIN-X-Y-V/L/D/E/IIN/P) 3 1.05 69975 3.49
ALK (Y-X-X-1/LIVIM) 3 1,05* 112032 5.59
PLK1 (E/D-X-S/T-FIL/I/YIW/IVIM) 2 0.70" 91008 4.54
SRC (E/D-X-X-Y-X-X-D/E/A/G/SIT) 1 0.35 18509 0.92
CHK1/2 (L-X-R-X-X-S/T) 1 0.35 16716 0.83
Unknown motif 57 19.86 - -
Other motifs - - 19945 1
Total 287 100 2004077 100

*
p < 0.01 by Fisher’s exact test.
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