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Abstract

DNase II enzymes are acidic endonucleases that have been implicated in mediating apoptotic DNA degradation, a critical
cell death execution event. C. elegans genome contains three DNase II homologues, NUC-1, CRN-6, and CRN-7, but their
expression patterns, acting sites, and roles in apoptotic DNA degradation and development are unclear. We have conducted
a comprehensive analysis of three C. elegans DNase II genes and found that nuc-1 plays a major role, crn-6 plays an auxiliary
role, and crn-7 plays a negligible role in resolving 39 OH DNA breaks generated in apoptotic cells. Promoter swapping
experiments suggest that crn-6 but not crn-7 can partially substitute for nuc-1 in mediating apoptotic DNA degradation and
both fail to replace nuc-1 in degrading bacterial DNA in intestine. Despite of their restricted and largely non-overlapping
expression patterns, both CRN-6 and NUC-1 can mediate apoptotic DNA degradation in many cells, suggesting that they are
likely secreted nucleases that are retaken up by other cells to exert DNA degradation functions. Removal or disruption of
NUC-1 secretion signal eliminates NUC-1’s ability to mediate DNA degradation across its expression border. Furthermore,
blocking cell corpse engulfment does not affect apoptotic DNA degradation mediated by nuc-1, suggesting that NUC-1 acts
in apoptotic cells rather than in phagocytes to resolve 39 OH DNA breaks. Our study illustrates how multiple DNase II
nucleases play differential roles in apoptotic DNA degradation and development and reveals an unexpected mode of DNase
II action in mediating DNA degradation.
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Introduction

Programmed cell death, or apoptosis, is a conserved cellular

process critical for animal development and tissue homeostasis.

During apoptosis, a series of morphological changes occur due to

the activation of the cell killing caspases, including chromatin

condensation and fragmentation.[1,2] The cleavage of chromatin

into nucleosomal fragments is a hallmark of apoptosis and has

been shown to promote cell killing [1,3].

Multiple nucleases have been identified to catalyze fragmen-

tation of chromosomal DNA during apoptosis. DFF40 (40 kDa

DNA fragmentation factor) or CAD (caspase-activated DNase)

plays a major role in generating internucleosomal DNA ladders

during mammalian apoptosis [4,5]. DFF40/CAD is kept in

check in normal cells by its cognate inhibitor DFF45 (45 kDa

DNA fragmentation factor) or ICAD (inhibitor of CAD) but

unleashed to fragment chromosomal DNA when DFF45 is

cleaved and inactivated by caspases such as caspase-3 during

apoptosis [6]. DFF40 acts in a neutral pH environment but

needs Mg2+ for optimal activity to generate DNA fragments

with 39 hydroxyl ends (39OH) [7]. Apoptotic cells from mice

deficient in DFF45/ICAD or CAD are resistant to DNA

fragmentation [8,9]. However, DNA degradation still occurs

after phagocytosis of CAD 2/2 apoptotic cells by macrophages

from wild type mice but not from deoxyribonuclease II (DNase

II) deficient mice, suggesting that DNase II in phagocytes can

contribute to degradation of chromosomal DNA in apoptotic

cells [10].

In contrast to DFF40/CAD, DNase II is Ca2+/Mg2+-indepen-

dent and has maximum activity at acidic conditions (pH 5.0–6.0)

[11]. During apoptosis, apoptotic cells are acidified, which may

activate acidic DNases including DNase II to degrade chromo-

some DNA [11,12]. DNase II is known to digest double stranded

DNA to generate 39 phosphate and 59 OH DNA breaks [11,13–

16]. Analysis of the DNase II expression patterns in mammals

reveals that DNase IIa is ubiquitously expressed, whereas DNase

IIb mRNA is highly expressed in the salivary gland, eye lens and

liver but is expressed at low levels in other tissues [16–19]. Mice

deficient in DNase IIa die before birth due to anemia, indicating

that DNase IIa is required for definitive erythropoiesis [20].

DNase IIb knockout mice develop cataracts of the nucleus lentis,

which is caused by undigested nuclear DNA during lens cell

differentiation [21]. Therefore, DNase II nucleases are also

important for animal development.
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In C. elegans, no DFF40/CAD or DFF45/ICAD homologues

have been identified [3]. However, NUC-1, a DNase II

homologue, and CPS-6, a homologue of the human mitochondrial

endonuclease G [22], are found to be important for apoptotic

DNA degradation [23,24]. In nuc-1 and cps-6 loss-of-function (lf)

mutants, increased numbers of apoptotic cells are stained by

TUNEL, which specifically labels 39 OH DNA breaks, suggesting

that NUC-1 and CPS-6 play a role in resolving DNA fragments

with 39 OH ends in apoptotic cells. Interestingly, loss of cps-6

delays progression of apoptosis and can even block cell death in

sensitized genetic backgrounds [24], whereas loss of nuc-1 does not

seem to affect cell killing or the kinetics of cell death [23,24]. These

observations suggest that nuc-1 and cps-6 play different roles in

apoptosis, with cps-6 acting early during apoptosis and nuc-1

functioning at a later stage of apoptosis. Moreover, in an RNAi-

based functional genomic screen, seven additional cell death-

related nucleases (CRNs) have been identified [25]. Most of these

CRN nucleases affect normal progression of apoptosis and some

appear to form a DNA degradation complex (degradeosome) with

CPS-6 to promote apoptotic DNA degradation [25].

In addition to NUC-1, there are two other DNase II

homologues in C. elegans, CRN-6 (K04H4.6) and CRN-7

(F09G8.2). crn-6(RNAi) causes increased number of TUNEL-

positive cells in wild-type C. elegans embryos as well as in nuc-1(lf)

embryos, suggesting that CRN-6 acts in parallel to NUC-1 to

promote apoptotic DNA degradation [25]. Unlike cps-6 and other

crn genes, crn-6 does not affect cell killing or the kinetics of

apoptosis and may act at a later stage of apoptosis like nuc-1 [25].

The role of crn-7 in apoptotic DNA degradation is unclear. In

addition to its role in apoptosis, nuc-1 plays a role in degrading

DNA of ingested bacteria in the intestinal lumen [23,26].

To investigate the roles of three DNase II genes in C. elegans

apoptosis and development, we analyze their expression patterns,

their mutant phenotypes, their activities in mediating DNA

degradation in promoter swapping experiments, and the impor-

tance of their secretion to their DNA degradation functions. Our

results indicate that three C. elegans DNase II genes play differential

roles in C. elegans apoptosis and development and provide unique

mechanistic insights into how DNase II nucleases mediate

apoptotic DNA degradation.

Results

nuc-1, crn-6 and crn-7 affect apoptotic DNA degradation
but do not affect the activation or the kinetics of
apoptosis

Chromosomal DNA fragments generated during apoptosis

often contain 39 OH ends that can be labeled by the terminal

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)

technique [27–29]. Since DNase II generates DNA fragments with

39 phosphate ends that are not labeled by TUNEL [11,13–16],

DNase II may play a role in resolving TUNEL-positive DNA ends

generated by upstream nuclease(s). Indeed, TUNEL-positive

signals accumulate in the nuc-1(lf) mutants as well as in crn-6(RNAi)

animals [23,25], suggesting that NUC-1 and CRN-6, two DNase

II homologues, are involved in resolving TUNEL-positive DNA

ends. Sequence alignment of NUC-1, CRN-6 and CRN-7, the

third worm DNase II homologue, with human DNase IIa and

DNase IIb reveals an overall sequence similarity, including the

identical residues around the active site Histidine (Figure S1A). In

addition, all these proteins contain a secretion signal at the amino

terminus based on the SignaIP program analysis.

To understand the functions of three C. elegans DNase II

homolgues, we analyzed the loss-of-function phenotypes of these

genes. We isolated an 843 bp deletion mutation (tm890) in crn-6 that

removes exons 3–6 of crn-6 and is likely a null allele. We also

obtained a 527 bp deletion (ok866) in crn-7 that removes one third of

exon 2 and almost all intron 2 (Figure S1B). For nuc-1, the e1392

strong loss-of-function mutation that results in an early stop codon

at amino acid 59 was used [23]. TUNEL assays were performed on

wild type (N2) embryos as well as on nuc-1, crn-6 and crn-7 mutant

embryos (see Materials and Methods). nuc-1(e1392), crn-6(tm890)

and crn-7(ok866) mutant embryos all had more TUNEL-positive

signals than N2 embryos (Figure 1A). Compared with wild type

embryos that had an average 3.1, 3.7 and 0.5 TUNEL-positive cells

at the comma, 1.5-fold, and 4-fold stages, respectively, the nuc-

1(e1392) mutant embryos had approximately 30 TUNEL-positive

signals at these three embryonic stages (Figure 1A)[23]. Since few

cells die in late embryonic stages (3-fold and 4-fold stages), the

TUNEL-reactive signals seen in 4-fold nuc-1 mutant embryos must

be DNA breaks that were generated during early embryonic stages

and persisted through the late embryonic stages [23,30]. In

comparison, crn-6(tm890) mutant embryos had an average 10.2,

11.0 and 0.7 TUNEL-positive signals, whereas crn-7(ok866) mutant

embryos had only 6.0, 6.9 and 0.4 TUNEL-positive nuclei, at the

comma, 1.5-fold, and 4-fold embryonic stages, respectively. The

increased TUNEL-positive signals observed in crn-6 and crn-7

mutant embryos were completely abolished by a ced-3(n2433lf)

mutation (Figure 1B), which blocks almost all cell deaths in C. elegans

[31,32], indicating that the TUNEL-positive cells observed in crn-6

and crn-7 mutants are apoptotic cells and that CRN-6 and CRN-7

participate in apoptotic DNA degradation but play a lesser role in

degrading DNA.

We also examined whether loss of nuc-1, crn-6 or crn-7 affects the

kinetics of apoptosis as in some mutants that are defective in other

apoptotic nucleases. We found that the numbers of apoptotic cell

corpses in various embryonic stages were similar among N2, nuc-

1(e1392), crn-6(tm890), and crn-7(ok866) single mutant, and the crn-

7 crn-6; nuc-1 triple mutant (Figure 1C), suggesting that loss of all

three DNase II genes in C. elegans does not affect the activation or

progression of cell death and that these three DNase II genes likely

act at a late stage of apoptosis.

CRN-6 plays an auxiliary role to NUC-1 in degrading
chromosomal DNA during apoptosis

To investigate whether crn-6, crn-7 and nuc-1 act redundantly or

synergistically to promote apoptotic DNA degradation, we

analyzed TUNEL staining in crn-6; nuc-1 and crn-7; nuc-1 double

mutants and the crn-7 crn-6; nuc-1 triple mutant (Figure 1A). The

crn-6(tm890); nuc-1(e1392) double mutant exhibited a modest

increase in TUNEL- positive signals in 1.5-fold embryos but

contained 58% more TUNEL-positive cells (52 TUNEL signals) in

4-fold embryos than nuc-1(e1392) 4-fold embryos (33 TUNEL

signals; Figure 1A). In comparison, crn-6(tm890) 4-fold embryos

had an average of 0.7 TUNEL signal. This observation suggests

that CRN-6 plays an auxiliary role to NUC-1 in degrading

chromosomal DNA during apoptosis, especially in late embryonic

stages. No obvious difference in TUNEL staining was seen

between nuc-1(e1392) and crn-7(ok866); nuc-1(e1392) embryos and

between crn-6(tm890); nuc-1(e1392) and crn-7(ok866) crn-6(tm890);

nuc-1(e1392) embryos (Figure 1A), suggesting that CRN-7 plays an

insignificant role in apoptotic DNA degradation.

NUC-1 constitutes the major DNase II activity in
C. elegans

We next performed an in vitro DNA degradation assay to

measure acidic DNase II activity in C. elegans and to assess the

Roles of DNaseII in C. elegans
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Figure 1. Analyses of animals deficient in three C. elegans DNase II genes. A and B) TUNEL staining. TUNEL signals were scored in comma,
1.5-fold, and 4-fold stage embryos of the indicated genotypes. At least 20 embryos at each embryonic stage were scored. Error bars indicate standard
error of mean (SEM). The significance of differences in two different genetic backgrounds indicated by brackets was determined by student t test.
** P,0.01, *** P,0.001. C) Cell corpse analysis. The numbers of cell corpses in embryos of the indicated genotypes at five different embryonic stages
were scored. 15 embryos were counted for each embryonic stage. Error bars indicate SEM. In A–C, crn-6(tm890), crn-7(ok866), and nuc-1(e1392) were
the alleles used. D) Acidic DNase activity assay. Upper panel: 1 mg of worm lysate were incubated with 750 ng of pSL1190 plasmid DNA at 37uC for
10 min (in 50 mM acetic acid, pH 5.0)(see Materials and Methods). Lane 1, no lysate; lane 2, lysate from N2 animals; lane 3, lysate from nuc-1(e1392)
animals; lane 4, lysate from crn-6(tm890) animals; lane 5, lysate from crn-7(ok866) animals; lane 6, lysate from crn-6(tm890); nuc-1(e1392) animals; lane
7, lysate from crn-7(ok866) crn-6(tm890); nuc-1(e1392) animals. SC, L and NC indicate the supercoiled, linear and nicked circular form of plasmid DNA,
respectively. Lower Panel: a western blot analysis using anti-CstF-64 antibody reveals that similar amounts of lysate were loaded for the DNase
activity assay shown above. Arrow indicates the CstF-64 protein band.
doi:10.1371/journal.pone.0007348.g001

Roles of DNaseII in C. elegans
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relative contribution of NUC-1, CRN-6 and CRN-7 to this

activity [33]. Worm lysate from N2 animals, nuc-1(e1392), crn-

6(tm890), and crn-7(ok866) single mutants, and their double or

triple mutants was prepared and incubated with a supercoiled

plasmid DNA in an acidic condition (pH 5.0) (see Materials and

Methods). N2, crn-6(tm890), or crn-7(ok866) worm lysate displayed

a strong endonuclease activity, resulting in complete digestion of

the plasmid DNA in 10 minutes at 37uC (Figure 1D, lanes 2, 4, 5).

In nuc-1(e1392) lysate (Figure 1D, lane 3), the nuclease activity was

greatly reduced and the plasmid DNA was mainly in linear (L) and

nicked circular (NC) forms, a result of limited cleavage by the

residual nuclease activity. In lysate from crn-6(tm890); nuc-1(e1392)

animals or crn-7(ok866) crn-6(tm890); nuc-1(e1392) animals, this

residual nuclease activity was lost (Figure 1D, lanes 6 and 7),

suggesting that CRN-6 likely provides this residual nuclease

activity in the absence of NUC-1 and that CRN-7 contributes a

minimal nuclease activity. Altogether, these results indicate that

under the acidic pH condition tested (pH 5.0), NUC-1 provides

the major DNase II activity and CRN-6 provides the minor

DNase II activity in C. elegans. This conclusion is consistent with

our in vivo observation that CRN-6 plays an auxiliary role to NUC-

1 in degrading chromosomal DNA during apoptosis.

The different expression patterns of the three DNase II
genes

To understand how three DNase II genes might play

differential roles in apoptotic DNA degradation, we examined

their expression patterns in C. elegans. Transcriptional reporter

constructs containing the promoter of the DNase II gene fused to

GFP with four tandem copies of the nuclear localization signal

(NLS) were made and injected into wild-type animals (see

Materials and Methods). In Pnuc-14xNLS::GFP transgenic

embryos, GFP was observed exclusively in the head region of

comma and 1.5-fold stage embryos. In 3-fold or 4-fold embryos,

in addition to the head region, GFP was also observed in anterior

intestinal cells (Figure 2A–C). In Pnuc-14xNLS::GFP transgenic

larvae and adults, GFP was strongly expressed in anterior and

posterior intestinal cells, and occasionally, in all intestinal cells

(data not shown). Weak GFP expression was also detected in the

vulva, head and body wall muscle cells (Figure 2J–O). In Pcrn-6

4xNLS::GFP transgenic embryos, GFP was observed almost

exclusively in intestinal precursor cells, but very weak GFP

signals were also observed in some posterior cells of early

embryos. In late stage Pcrn-64xNLS::GFP embryos, GFP was only

observed in a few intestinal cells (Figure 2D–F). In Pcrn-6

4xNLS::GFP larvae or adults, GFP was consistently detected in

intestinal cells, especially in two pairs of the most anterior

intestinal cells. Occasionally, GFP was also seen in two pairs of

the most posterior intestinal cells (Figure 2P–R). No GFP was

detected in Pcrn-74xNLS::GFP transgenic embryos (Figure 2G–I),

however, GFP signals were observed in the head muscle and

body wall muscle cells in Pcrn-74xNLS::GFP larvae (Figure 2S–V).

Therefore, except for a few anterior intestinal cells in 4-fold

embryos, the embryonic expression patterns of the three DNase

II genes in C. elegans do not seem to overlap. In larvae and adults,

however, both nuc-1 and crn-6 are expressed in some intestinal

cells and there is partial overlap of nuc-1 and crn-7 expression in

the head and body wall muscle cells.

NUC-1 and CRN-6 affect apoptotic DNA degradation in
many cells despite restricted expression patterns

Since nuc-1 and crn-6 are expressed in different regions of

embryos (anterior and posterior embryos, respectively), we

examined whether they mediate apoptotic DNA degradation in

the regions where they are expressed, by scoring TUNEL signals

in the head and tail regions of nuc-1(e1392), crn-6(tm890), and crn-6;

nuc-1 double mutant embryos. In both nuc-1(e1392) and crn-

6(tm890) embryos, the majority of TUNEL signals were seen in the

head region and some were seen in the tail region (Figure 3).

Similarly, in 1.5-fold and 4-fold crn-6(tm890); nuc-1(e1392)

embryos, the increased TUNEL signals caused by crn-6(tm890)

over those of the nuc-1(e1392) mutant were seen mostly in the head

region and some in the tail region. These results indicate that nuc-1

and crn-6 affect apoptotic DNA degradation in both anterior and

posterior regions of embryos, despite their restricted expression

patterns in the anterior and the posterior regions of the embryo,

respectively. This finding is also consistent with the observation

that most C. elegans embryonic cell deaths occur in the anterior

region of the embryo [30] and thus most TUNEL-positive signals

are seen in the head region of the nuc-1 and crn-6 mutant embryos.

The fact that both NUC-1 and CRN-6 affect apoptotic cells

outside of their expression areas suggests that these two nucleases

may be secreted (as predicted from their sequences; Figure S1A)

and diffuse to other regions of the embryo to affect apoptotic DNA

degradation.

NUC-1, but not CRN-6 or CRN-7, mediates degradation of
chromosome DNA in ventral cord apoptotic cells and
bacterial DNA in intestine

In addition to causing accumulation of TUNEL-positive

signals in embryos, loss of nuc-1 results in abnormally persistent

DNA in the ventral cord and undigested bacterial DNA in the

lumen of intestine [26], both of which can be stained by a vital

DNA dye, Syto 11 [23] (see Materials and Methods). For

example, nuc-1(e1392) L2 larvae treated with Syto 11 showed

strong staining of intestine and multiple apoptotic cells in the

ventral nerve cord (Figure S2A), which is not seen in wild-type

animals treated with Syto 11 (Figure S2B). The ventral cord

nuclei strongly stained by Syto 11 are known as ‘‘pycnotic

nuclei’’ because of their highly condensed DNA content [26,31]

and derive from cells that undergo apoptosis in the W and P1-

P12 neuroblast lineages in hermaphrodites [34]. Seven of these

pycnotic nuclei posterior to the vulva are from P9-P12 lineages

and were scored for Syto 11 staining in this study. nuc-1(e1392)

late L1 to early L3 larvae had an average 6.5 pycnotic nuclei and

89% of L3-L4 larvae had strong gut staining (Table 1). In

contrast, wild type, crn-6(tm890), crn-7(ok866), or crn-7(ok866)

crn-6(tm890) larvae did not contain pycnotic nuclei in the ventral

cord and few of them had strong gut staining when stained with

Syto 11 (Table 1). These results suggest that NUC-1 is the major

nuclease, if not the only nuclease, involved in degrading DNA of

apoptotic cells in the ventral cord and DNA of ingested bacteria.

Consistent with this conclusion, we did not observe any further

increase in pycnotic nuclei or increased number of animals with

strong gut staining in crn-6(tm890) crn-7(ok866), crn-6(tm890);

nuc-1(e1392), crn-7(ok866); nuc-1(e1392), or crn-7(ok866) crn-

6(tm890); nuc-1(e1392) animals (Table 1). Nor did we observe

any pycnotic nuclei or increased number of animals with strong

gut staining in crn-6(tm890); nuc-1(e1392)/+ or crn-7(ok866) crn-

6(tm890); nuc-1(e1392)/+ animals (Table 1), in which the nuc-

1(e1392)/+ heterozygosity could provide a sensitized back-

ground for revealing the potential contribution of crn-6 and crn-7

to these two DNA degradation events. Therefore, NUC-1

appears to be the only DNase II nuclease that has a function in

degrading DNA in post-embryonic apoptotic cells and bacterial

DNA in intestine.

Roles of DNaseII in C. elegans
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Figure 2. The transcriptional expression patterns of three C. elegans DNase II genes. A–I) DIC and GFP images of Pnuc-14xNLS::GFP,
Pcrn-64xNLS::GFP and Pcrn-74xNLS::GFP embryos at comma, 1.5-fold and 4-fold stages (from top to bottom). Scale bars indicate 5 mm. J–V) DIC and
GFP images of Pnuc-14xNLS::GFP, Pcrn-64xNLS::GFP, and Pcrn-74xNLS::GFP larvae. The regions indicated by squares in J are enlarged in K–M. The region
indicated by a square in P is enlarged in Q. The regions indicated by squares in S are enlarged in T and U. Arrows in K and Q indicate the anterior
intestine cells and arrows in M and R indicate the posterior intestine cells. Arrows in L indicate vulva muscle cells, arrows in N indicate body muscle
cells in head, and arrows in U and V indicate body wall muscle cells. The GFP signals in O are from muscle cells and neurons in the head and the GFP
signals in T from pharyngeal muscle cells. Scale bars indicate 5 mm except J, P, S (50 mm) and T, V (12.5 mm).
doi:10.1371/journal.pone.0007348.g002

Roles of DNaseII in C. elegans
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CRN-6, but not CRN-7, can partially substitute for NUC-1
in mediating apoptotic DNA degradation

We next tested whether three C. elegans DNase II homologues can

functionally substitute for one another. We generated transgenes

that drive the expression of NUC-1::GFP, CRN-6::GFP, or CRN-

7::GFP under the control of the nuc-1 promoter (Pnuc-1) and then

examined whether these fusion proteins can rescue the nuc-1(e1392)

defects (Table S1 and Materials and Methods). To avoid

overexpressing these fusion proteins in C. elegans, we used the

ballistic bombardment technique to integrate these expression

constructs into C. elegans genome, generating low-copy integrated

lines with varying GFP expression intensities (Table S1).

In two Pnuc-1nuc-1::gfp lines (smIs170 and smIs172), no GFP was

detected in embryos but weak GFP signals could be observed in

the two anterior intestinal cells in larvae (Table S1). Both

transgenes completely rescued the TUNEL defect of nuc-

1(e1392) embryos (Figure 4A), indicating that the nuc-1 promoter

used in the transgenes is sufficient to drive nuc-1::gfp expression to

rescue the TUNEL defect of the nuc-1(e1392) mutant. In two Pnuc-1

crn-6::gfp lines (smIs173 and smIs175), CRN-6::GFP was seen in the

head region of embryos (Figure S3A–D). In transgenic larvae, GFP

was detected in the anterior and posterior intestine cells, vulva

muscle, many cells in the head region, and intestinal lumen (Figure

S3E–H). The GFP expression patterns of Pnuc-1crn-6::gfp transgenes

are similar to those seen in Pnuc-14xNLS::GFP animals (Figure 2A–

C, J–O), except that CRN-6::GFP was excluded from nuclei in

Pnuc-1crn-6::gfp transgenic animals. smIs173 (with 31–32 copies of

the construct) exhibited significant rescue of the TUNEL defect of

the nuc-1(e1392) mutant in all three embryonic stages, whereas

smIs175 (with 7–8 copies) showed mild rescue in comma and 1.5-

fold nuc-1(e1392) embryos and no rescue in 4-fold nuc-1(e1392)

embryos (Figure 4A). These results indicate that CRN-6 can

partially substitute for NUC-1 in resolving 39 OH DNA breaks

generated in apoptotic cells when expressed from the nuc-1

promoter. However, the nuclease activity of CRN-6 appears to be

much weaker than that of NUC-1, as suggested by the nuclease

activity assay (Figure 1D). As a result, the Pnuc-1crn-6::gfp transgene

(smIs173) with a higher copy number (31–32 copies) and stronger

GFP fusion expression than either Pnuc-1nuc-1::gfp transgenes

(smIs170 and smIs172) only achieved partial rescue of the nuc-1

mutant. In three Pnuc-1crn-7::gfp transgenic lines, smIs209–211 (with

7–8, 3–4 and 1–2 copies, respectively), we did not detect obvious

GFP signals in embryos or in larvae (Table S1). All three

transgenes failed to rescue the nuc-1 TUNEL defect (Figure 4A;

data not shown). In animals carrying a high copy number

extrachromosomal array (smEx4085) that contains Pnuc-1crn-7::gfp,

although we observed bright CRN-7::GFP signals in the anterior

region of the transgenic embryos, we failed to detect rescue of the

nuc-1 TUNEL defect (Figure 4A and Table S1). These results

indicate that CRN-7 cannot substitute for NUC-1 to mediate

apoptotic DNA degradation.

In transgenic larvae carrying the Pnuc-1nuc-1::gfp transgenes,

smIs170 and smIs172, NUC-1::GFP completely rescued the pycnotic

nuclei phenotype of the nuc-1 mutant (Table 2). No pycnotic nuclei

were seen in nuc-1(e1392); smIs170 or nuc-1(e1392); smIs172 larvae,

whereas an average of 6.7, 6.3, 6.4, and 5.5 pycnotic nuclei

posterior to the vulva were observed in different larval stages of the

nuc-1(e1392) mutant (late L1, L2, early L3, and L3–L4). Partial

rescue of the ‘‘pycnotic nuclei’’ phenotype was observed in nuc-

1(e1392) animals carrying a higher copy number of the Pnuc-1crn-

6::gfp transgene (smIs173), especially in the late larval stages (Table 2).

Only 1.0 pycnotic nucleus was seen in L3-L4 stage, compared with

5.5 pycnotic nuclei observed in nuc-1(e1392) animals at the same

stage. Poor or no rescue of the ‘‘pycnotic nuclei’’ phenotype was

observed in nuc-1(e1392) animals with a lower copy number of the

Pnuc-1crn-6::gfp transgene (smIs175) or with four different Pnuc-1crn-

7::gfp transgenes (smIs209-211, smEx4085; Table 2). Taken together,

these results suggest that CRN-6, but not CRN-7, can partially

substitute for NUC-1 in mediating embryonic and post-embryonic

apoptotic DNA degradation.

Neither CRN-6 nor CRN-7 can substitute for NUC-1 in
digesting bacterial DNA in intestine

We also tested whether the above transgenes can restore

degradation of bacterial DNA in the intestine of nuc-1(e1392)

animals. Two Pnuc-1nuc-1::gfp transgenes, smIs170 and smIs172, can

Figure 3. TUNEL signals at the head and tail regions of
embryos deficient in three DNase II genes. An arbitrary line at
the bottom of the pharynx was used to separate the embryo into two
regions, head and tail. TUNEL signals were scored in both regions in
different mutants. The combined TUNEL signals from both head and tail
regions (sum) were also indicated. crn-6(tm890), crn-7(ok866), and nuc-
1(e1392) were the alleles used. At least 24 embryos from each stage
were scored. Error bars indicate SEM.
doi:10.1371/journal.pone.0007348.g003

Table 1. nuc-1, but not crn-6 or crn-7, mediates degradation
of DNA in ventral cord apoptotic cells and DNA of ingested
bacteria.

Genotype
No. of pycnotic
nucleia (n)

Strong gut
stainingb (n)

N2 0.160.7 (30) 4% (120)

nuc-1(e1392) 6.560.7 (75) 89% (115)

crn-6(tm890) 0.060.0 (30) 7% (105)

crn-7(ok866) 0.060.0 (60) 3% (60)

crn-7(ok866) crn-6(tm890) 0.0460.3 (72) 7% (57)

crn-6(tm890); nuc-1(e1392) 6.360.7 (56) 86% (107)

crn-7(ok866); nuc-1(e1392) 6.260.8 (64) 83% (64)

crn-7(ok866) crn-6(tm890); nuc-1(e1392) 6.360.8 (72) 85% (62)

nuc-1(e1392)/+c 0.060.0 (42) 2% (46)

crn-6(tm890); nuc-1(e1392)/+c 0.060.0 (41) 2% (46)

crn-7(ok866) crn-6(tm890); nuc-1(e1392)/+c 0.060.0 (42) 0% (38)

Syto 11 staining was carried out as described in Materials and Methods.
aMixed stage larval animals (late L1 to early L3) were scored for the number of
ventral cord pycnotic nuclei posterior to the vulva. ‘‘n’’ indicates the number of
animals scored. The data shown are mean6SD (standard deviation).

bStrong gut staining that represents undigested bacterial DNA in intestine was
scored at L3–L4 larval stages. ‘‘n’’ indicates the number of animals scored.

cnuc-1/+ heterozygote is actually nuc-1/axIs36. See Materials and Methods for
details.

doi:10.1371/journal.pone.0007348.t001

Roles of DNaseII in C. elegans

PLoS ONE | www.plosone.org 6 October 2009 | Volume 4 | Issue 10 | e7348



strongly rescue the defect in digesting bacterial DNA (Table 2),

whereas none of the Pnuc-1crn-6::gfp and Pnuc-1crn-7::gfp transgenes

displayed obvious rescuing activity, despite of the secretion of

CRN-6::GFP into the intestine (Figure S3H). These results suggest

that CRN-6 and CRN-7 cannot substitute for NUC-1 in digesting

bacterial DNA in intestine and that only NUC-1 has this activity.

Interestingly, when NUC-1::GFP was expressed under the

control of the crn-6 gene promoter (Pcrn-6nuc-1::gfp), one transgene

(smIs195, 5–6 copies) showed strong rescue of the gut staining in

the nuc-1(e1392) mutant (Table 2). However, a second transgene

with a lower copy number (smIs199, 2–3 copies) failed to do so.

Therefore, the crn-6 promoter is capable of directing the

expression of NUC-1 to mediate degradation of bacterial DNA

in intestine but the level of NUC-1 expression appears to be

critical for this function.

nuc-1 can still promote apoptotic DNA degradation in
both embryos and larvae when its expression is
restricted to intestine cells

Since the expression patterns of crn-6 and nuc-1 do not overlap

in embryos (except a few cells at the 4-fold stage embryos) and

CRN-6 is expressed specifically in the posterior half of embryos

(Figure 2A–F), we examined how NUC-1 expressed under the

control of the crn-6 promoter (Pcrn-6nuc-1::gfp) affects DNA

degradation in apoptotic cells, which occur mostly in the anterior

half of the embryos. In animals carrying two Pcrn-6nuc-1::gfp

transgenes (smIs195 and smIs199), no obvious GFP signal was

observed in embryos and only weak GFP signals could be seen in

the two anterior intestinal cells. In contrast, in animals carrying

two Pcrn-6crn-6::gfp transgenes (smIs187 and smIs189) that fully

rescued the TUNEL defect of crn-6(tm890) embryos (Figure S4A),

strong GFP signals were detected exclusively in cytoplasm of

intestinal cells throughout the embryonic stages and in two pairs of

anterior intestinal cells in larvae and adults (Figure S4B–F; data

not shown). This CRN-6::GFP expression pattern is similar to the

GFP expression pattern in Pcrn-64xNLS-GFP transgenic animals

(Figure 2D–F, P–R). The significantly stronger GFP intensity

observed in Pcrn-6crn-6::gfp transgenic lines than in Pcrn-6nuc-1::gfp

lines and stronger GFP intensity observed in Pnuc-1crn-6::gfp

transgenic lines than in Pnuc-1nuc-1::gfp lines (Table S1) indicate

that NUC-1::GFP is either poorly expressed or unstable in worm

embryos. Despite of the very low expression level of NUC-1::GFP,

Figure 4. TUNEL assays in embryos expressing three DNase II genes under the control of different promoters. A) TUNEL staining of
transgenic nuc-1(e1392) embryos carrying different integrated transgenes that express three DNase II genes under the control of the nuc-1 promoter.
smIs170 and smIs172 are Pnuc-1nuc-1::gfp transgenic lines. smIs173 and smIs175 are Pnuc-1crn-6::gfp transgenic lines. smIs209 is the Pnuc-1crn-7::gfp
transgenic line. smEx4085 is an extrachromosomal transgenic line containing Pnuc-1crn-7::gfp and Pmyo-2gfp as a transgenic marker. smEx4085
transgenic embryos were doubly stained with TUNEL and anti-GFP antibody (to identify transgenic embryos). Only 4-fold embryos were scored, since
GFP expression derived from Pmyo-2gfp was not observed until late embryonic stages. B) TUNEL staining of transgenic nuc-1(e1392) embryos carrying
different integrated transgenes that express nuc-1::gfp under the control of the nuc-1 or the crn-6 promoter. smIs195 and smIs199 are Pcrn-6nuc-1::gfp
transgenic lines. C) Loss of the cell corpse engulfment gene ced-2 or ced-6 or both does not affect the rescue of the nuc-1(e1392) TUNEL defect by
smIs195. ced-2(e1752) and ced-6(n2095) alleles were used to construct various strains. In all experiments, at least 25 embryos at each embryonic stage
were scored. Error bars indicate SEM. In A and B, the significance of differences in two different genetic backgrounds was determined by student t
test. * P,0.05, *** P,0.001.
doi:10.1371/journal.pone.0007348.g004
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smIs195 (5–6 copies of Pcrn-6nuc-1::gfp) still resulted in 50%

reduction of the TUNEL signals in nuc-1(e1392) comma and

1.5-fold embryos and almost completely rescued the TUNEL

defect of nuc-1(e1392) 4-fold embryos (Figure 4B). Even in the line

with a lower copy number of Pcrn-6nuc-1::gfp (smIs199, 2–3 copies),

partial rescue of the TUNEL defect of nuc-1(e1392) embryos was

detected (Figure 4B). These results indicate that NUC-1 can still

function to resolve 39 OH DNA breaks in apoptotic cells of the

whole embryo, even though its expression is restricted to intestine

cells at the posterior region of the embryo under the crn-6

promoter. These observations further suggest that NUC-1 is

secreted and then taken up by cells in the whole embryo to achieve

its widespread DNA degradation activity.

Similar to what was observed in the embryo, smIs195 partially

rescued the pycnotic nuclei phenotype in nuc-1(e1392) larvae,

especially in later larval stages (Table 2). For example, an average

of 1.6 pycnotic nuclei were seen in smIs195; nuc-1(e1392) L3–L4

larvae, compared with 5.5 pycnotic nuclei seen in nuc-1(e1392)

larvae at the same stage (Table 2). In contrast, a lower copy

number of Pcrn-6nuc-1::gfp transgene (smIs199, 2–3 copies) failed to

rescue the pycnotic nuclei phenotype of nuc-1(e1392) larvae.

NUC-1 expressed in the head can mediate apoptotic
DNA degradation in the posterior ventral cord

To assess how NUC-1 affects DNA degradation in apoptotic

cells where NUC-1 is not expressed, we expressed NUC-1 under

the control of the myo-2 gene promoter, which drives gene

expression exclusively in the pharyngeal muscle in the head (upper

panel, Figure 5A)[35]. Remarkably, in animals carrying Pmyo-2

NUC-1, all three transgenic lines completely rescued the pycnotic

nuclei phenotype of the nuc-1(e1392) mutant and partially rescued

the defect in degrading intestinal bacterial DNA (Figure 5B). This

result suggests that NUC-1 synthesized in the pharynx must be

secreted, travel more than half the distance of the animal’s body

length, and be retaken up by cells in the posterior ventral cord to

mediate DNA degradation (see cartoon in Figure 5B). Indeed, we

barely detected any NUC-1::GFP in the pharynx of animals

carrying Pmyo-2NUC-1::GFP (middle panel, Figure 5A) but

observed strong NUC-1::GFP in the pharynx of animals carrying

Pmyo-2NUC-1(22–375)::GFP (bottom panel, Figure 5A), in which

the NUC-1 signal peptide (amino acids 1–21) was deleted and the

mutant NUC-1 protein was not secreted. Importantly, Pmyo-2NUC-

1(22–375) failed to rescue the pycnotic nuclei phenotype and the

defect in degrading intestinal bacterial DNA in the nuc-1(e1392)

mutant (Figure 5B), indicating that secretion of NUC-1 is critical

for its activity in mediating degradation of DNA in apoptotic cells

of the posterior ventral cord and in intestinal lumen. Similarly,

expression of another non-secretory NUC-1 mutant, NUC-1(L9E,

I10E, F11E), did not rescue of the DNA degradation defects of the

nuc-1(e1392) mutant (Figure 5B). On the other hand, expression of

a NUC-1 mutant, NUC-1(A21V, A22V), which is predicted to

remain secretory, fully rescued the pycnotic nuclei phenotype of

the nuc-1(e1392) mutant (Figure 5B). Altogether, these results

indicate that NUC-1 is secreted and transported to, or diffuses to

distant regions, where it is retaken up by cells to mediate DNA

degradation.

NUC-1 can act in apoptotic cells to resolve 39 OH DNA
breaks

In mammals, DNase II is thought to act in engulfing cells,

whereas in C. elegans NUC-1 is implicated to function in apoptotic

cells [9,23]. To address this critical issue, we take advantage of the

observation that nuc-1 expressed in posterior intestine cells under

the control of the crn-6 promoter can still promote apoptotic DNA

degradation in the anterior region of the embryo (Figure 4B). This

finding indicates that NUC-1 must be secreted and retaken up by

cells in the anterior region of the embryo to mediate DNA

degradation. We then tested whether blocking cell corpse

engulfment affects NUC-1-mediated DNA degradation. As shown

in Figure 4C, NUC-1 expressed from the smIs195 transgene (Pcrn-6

nuc-1::gfp) still rescued the TUNEL defect in ced-2(e1752); nuc-

1(e1392) or ced-6(n2095); nuc-1(e1392) embryos, in which cell

corpse engulfment is severely compromised, or the TUNEL defect

of the ced-6(n2095); ced-2(e1752); nuc-1(e1392) triple mutant, in

which both engulfment pathways are blocked and few apoptotic

cells are engulfed by phagocytes [36]. These results indicate that

Table 2. CRN-6 can partially substitute for NUC-1 in mediating degradation of DNA in ventral cord apoptotic cells.

Genotypea N. P. C. in late L1b N. P. C. in L2b N. P. C. in early L3b N. P. C. in L3–4b Strong gut stainingc (n)

nuc-1 6.760.6 (27) 6.360.8 (22) 6.460.6 (26) 5.561.2 (22) 89% (115)

smIs170 0.561.0 (24) 0.060.0 (22) 0.060.0 (21) 0.060.0 (24) 14% (43)

smIs172 0.060.0 (24) 0.060.0 (26) 0.060.0 (24) 0.060.0 (24) 5% (44)

smIs173 5.061.4 (22) 2.561.2 (34) 1.361.4 (38) 1.061.1 (58) 76% (67)

smIs175 6.161.0 (29) 5.860.8 (29) 5.461.0 (32) 4.460.9 (35) 78% (83)

smIs209 5.861.9 (4) 5.860.9 (24) 5.961.0 (16) 4.661.0 (37) 80% (64)

smIs210 6.760.5 (9) 6.360.8 (27) 6.060.9 (6) N. D. 78% (46)

smIs211 6.560.5 (10) 5.961.1 (23) 5.061.8 (8) N. D. 91% (23)

smIs195 5.960.8 (16) 4.561.2 (18) 2.661.4 (18) 1.661.3 (43) 13% (53)

smIs199 6.360.9 (26) 6.160.9 (29) 5.660.8 (28) 5.061.7 (26) 88% (52)

smEx4085d 6.360.6 (11) 6.360.7 (23) 6.560.5 (13) N.D. 88% (42)

aAll strains except nuc-1(e1392) were in unc-119(ed3); nuc-1(e1392) background. smIs170 and smIs172 are Pnuc-1nuc-1::gfp transgenic lines. smIs173 and smIs175 are
Pnuc-1crn-6::gfp transgenic lines. smIs209-smIs211 are Pnuc-1crn-7::gfp transgenic lines. smIs195 and smIs199 are Pcrn-6nuc-1::gfp transgenic lines (see Table S1 for details).

bN. P. C. indicates the number of ventral cord pycnotic nuclei, which were scored at different larval stages. ‘‘n’’ indicates the number of animals scored. The data shown
are mean6SD.

cAll gut staining was scored at L3–L4 stages. ‘‘n’’ indicates the number of animals scored.
dsmEx4085 is an extrachromosomal transgene array containing Pnuc-1crn-7::gfp and Pmyo-2gfp.
doi:10.1371/journal.pone.0007348.t002
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the nuc-1 rescuing activity is not contributed by neighboring

engulfing cells. Instead, NUC-1 can act in apoptotic cells to digest

39OH DNA breaks.

Discussion

DNase II enzymes are the major acidic nucleases in cells and

have been shown to play important roles in apoptosis and animal

development [15]. In both mammals and C. elegans, multiple

DNase II nucleases exist but their relative contributions to

apoptosis and animal development remain unclear. Moreover,

how DNase II enzymes act to promote apoptotic DNA

degradation remain controversial. In this study, we carried out

comprehensive analysis of nuc-1, crn-6, and crn-7, three genes that

encode C. elegans DNase II enzymes. Our results indicate that three

C. elegans DNase II homologues play differential roles in both

apoptotic and non-apoptotic DNA degradation. Strikingly, we

discover that NUC-1 is a secreted nuclease that can travel a long

distance and be retaken up at distant sites to mediate DNA

degradation in apoptotic cells.

Figure 5. NUC-1 expressed in and secreted from the head can rescue the Nuc-1 defect in the tail cells. A) Removal of the NUC-1 signal
peptide prevents NUC-1 from being secreted and transported out of the pharynx. DIC, GFP, and merge images of L2 larvae from Pmyo-2GFP, Pmyo-2NUC-
1::GFP, and Pmyo-2NUC-1(22–375)::GFP transgenic animals are shown. In Pmyo-2NUC-1(22–375)::GFP, the first 21 amino acids of NUC-1, the predicted signal
peptide, is deleted. The exposure time of the GFP image is 4 ms for Pmyo-2GFP, 160 ms for Pmyo-2NUC-1::GFP, and 40 ms for Pmyo-2NUC-1(22–375)::GFP,
respectively. Scale bars indicate 12.5 mm. B) Secretion of NUC-1 expressed in the pharynx is important for rescuing DNA degradation defect in apoptotic
cells of the posterior ventral cord. The apoptotic cells scored in the posterior ventral cord are indicated with circles and arrowheads. NUC-1 or various
NUC-1 mutants is expressed specifically in the pharynx (shown in green) under the control of the myo-2 gene promoter. Some of the proteins [NUC-1 or
NUC-1(A21V, A22V)] are likely secreted and transported out of the pharynx to the posterior end of the animals (green dash lines), where they are retaken
up by the apoptotic cells indicated to mediate DNA degradation. In NUC-1 (L9E, I10E, F11E), three key hydrophobic amino acids in the signal peptide are
replaced by charged residues, Glutamates. Both NUC-1(22–375) and NUC-1(L9E, I10E, F11E) are predicted to be non-secretory by the SignalP 3.0 program
(see Figure S1 for details). In NUC-1 (A21V, A22V), two Alanine residues are replaced by Valines but the protein is predicted to remain secretory by the
SignalP 3.0 program. The number of pycnotic nuclei was scored in the posterior ventral cord of mixed stage larvae (late L1 to early L3). Gut staining was
scored at L3–L4 stages. ‘‘n’’ indicates the number of animals scored. The data shown are mean6SD.
doi:10.1371/journal.pone.0007348.g005
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NUC-1, CRN-6 and CRN-7 do not affect activation or
timing of apoptosis but play differential roles in
mediating both apoptotic and non-apoptotic DNA
degradation

The identification of multiple DNase II homologues in C. elegans

and mammals has raised two important questions regarding how

they might act to promote DNA degradation [15]. 1) Are they

expressed in different cells or tissues? and 2) Do they play different

or redundant roles in DNA degradation? To address these

questions, we analyzed the expression patterns of transcriptional

reporters that express 4xNLS::GFP under the control of the three

C. elegans DNase II gene promoters. We found that the embryonic

expression patterns of the three DNase II genes in C. elegans do not

overlap, except for a few anterior intestinal cells in 4-fold embryos.

In larvae and adults, both nuc-1 and crn-6 are expressed in some

intestinal cells and there is partial overlap in nuc-1 and crn-7

expression in the head and body wall muscle cells (Figure 2). The

largely non-overlapping expression patterns of C. elegans DNase II

genes differ from those of human DNase II enzymes, which either

is ubiquitously expressed (DNase IIa) or has restricted expression

in a few cell types (DNase IIb) [17–19]. Such expression patterns

also raise the interesting question of whether they play different

roles in C. elegans.

In TUNEL assays that detect 39 OH DNA breaks generated

during apoptosis, loss of either nuc-1, crn-6, or crn-7 causes

increased number of TUNEL-positive cells in mutant embryos

(Figure 1A and 1B), suggesting that all three genes contribute to

resolving 39 OH DNA breaks generated in apoptotic cells.

Moreover, NUC-1 and CRN-6 appear to act synergistically to

promote apoptotic DNA degradation, as increased numbers of

TUNEL-positive cells are seen in the crn-6; nuc-1 double mutant,

especially in the late embryonic stages (Figure 1A). However, like

nuc-1, crn-6, or crn-7 single mutants, loss of all three DNase II genes

in the crn-7 crn-6; nuc-1 triple mutant fails to affect either the timing

of apoptosis or the activation of apoptosis (Figure 1C). This

observation rules out the possibility that genetic redundancy masks

a role of DNase II genes in cell death activation or in regulating

the kinetics of apoptosis and is consistent with the model that

DNase II genes act at a later stage of apoptosis after cell death

activation and execution have occurred [3]. This is also the first

genetic analysis of defects caused by loss of all DNase II genes in

animals.

The TUNEL analysis of the nuc-1, crn-6 or crn-7 single mutants

as well as their double or triple mutants also reveals that three

DNase II genes contribute differentially to the apoptotic DNA

degradation process, with NUC-1 playing a major role, CRN-6

playing an auxiliary role, and CRN-7 playing a negligible role in

apoptotic DNA degradation during embryo development

(Figure 1A). The results of Syto 11 DNA dye staining of C. elegans

larvae suggest that NUC-1, but not CRN-6 or CRN-7, is solely

responsible for degrading chromosomal DNA in ventral cord

apoptotic cells and for degrading DNA of ingested bacteria in the

intestine (Table 1). These results point to a dominant role of NUC-

1 in all three facets of DNA degradation mediated by acidic

nucleases in C. elegans and are consistent with our nuclease activity

assays (Figure 1D) and our promoter swapping experiments

(Figure 4A and Table 2), which clearly indicate that NUC-1

provides the major acidic nuclease activity in C. elegans and CRN-6

contributes minor acidic nuclease activity.

Although we did not observe an obvious role for CRN-7 in any

of the DNA degradation events, loss of crn-7 does cause a

significant reduction in animal brood size when combined with

crn-6 and nuc-1 lf mutations. For example, the brood size of the crn-

6(tm890); nuc-1(e1392) double mutant is approximately 87% of

that in wild type animals or 75–85% of that in individual crn-6,

nuc-1, or crn-7 single mutants (Table S2). In contrast, the brood size

of the crn-7 crn-6; nuc-1 triple mutant is less than 50% of that in

wild type animals or crn-6, nuc-1 or crn-7 single mutants. The brood

size reduction observed in the crn-7 crn-6; nuc-1 triple mutant is not

suppressed by a strong loss-of-function mutation in ced-3 (n2433),

suggesting that this defect is not related to apoptosis and that the

three DNase II enzymes might have a redundant but important

role in germ line development.

CRN-6 but not CRN-7 can partially substitute for NUC-1 in
mediating apoptotic DNA degradation

In an effort to assess the functional interchangeability of three C.

elegans DNase II genes, we expressed them under the control of the

nuc-1 promoter and examined the ability of each transgene in

rescuing the nuc-1(e1392) defects. Despite of an overall sequence

similarity between CRN-6 and NUC-1, especially at the catalytic

site (Figure S1A), and despite of stronger CRN-6::GFP expression

than NUC-1::GFP expression under the control of the same nuc-1

promoter (Figure S3), CRN-6 only partially rescues the TUNEL

defect and the pycnotic nuclei phenotype of the nuc-1(e1392)

mutant and completely fails to rescue the defect in degrading

bacterial DNA in intestine (Figure 4A and Table 2), whereas

NUC-1 completely rescues all nuc-1 defects. In addition, CRN-7

fails to rescue any of the nuc-1 defects when expressed under the

control of the nuc-1 promoter. Since all three DNase II genes were

expressed under the same nuc-1 promoter and hence were

expressed in the same cells with the same pH environment, the

drastically different in vivo rescuing activities most likely reflect

different intrinsic nuclease activities of the three DNase II enzymes

and correlate well with their acid nuclease activities revealed by

the in vitro nuclease activity assays.

NUC-1 is a secreted nuclease that can travel a long
distance and be retaken up at distant sites to mediate
DNA degradation in apoptotic cells

It has been suggested that the acting site of DNase II in

mammals and Drosophila is in phagocytes where DNA of

internalized apoptotic cells or bacteria is degraded by DNase II

localized in lysosomes [10,37,38]. On the other hand, genetic

analysis in C. elegans suggests that blocking cell corpse engulfment

by engulfment defective mutations such as ced-2(lf) or ced-6(lf)

mutations clearly does not affect apoptotic DNA degradation

mediated by nuc-1 [23], arguing that NUC-1 may act in apoptotic

cells to promote DNA degradation. Interestingly, almost all DNase

II genes are predicted to encode proteins with a signal peptide

[15,39], and some, such as the human DNase II, has been shown

to be secreted into the media when expressed in cultured cells [40].

However, it is unclear why DNase II enzymes are secreted,

whether they are indeed secreted in vivo, and how secretion of

DNase II might affect its in vivo DNA degradation functions. In our

analysis of crn-6 and nuc-1 expression patterns through transcrip-

tional reporters, crn-6 transcription is found to occur specifically in

the posterior half of the embryo, whereas nuc-1 is transcribed

specifically in the anterior half of the embryo in a largely non-

overlapping fashion (Figure 2). Yet both genes affect apoptotic

DNA degradation in both the head and the tail regions of the

embryo (Figure 3), suggesting that NUC-1 and CRN-6 can cross

their expression borders to affect apoptotic cells in other regions,

which is a typical feature of secreted proteins. Similarly, in one of

our promoter swapping experiments (Pcrn-6nuc-1::gfp), nuc-1 was

expressed in the posterior half of embryos under the control of the
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crn-6 promoter, yet one of the Pcrn-6nuc-1::gfp transgenes (smIs195)

almost completely rescued the TUNEL defect of the nuc-1(lf) 4-

fold embryos (Figure 4B), suggesting that in smIs195 embryos

NUC-1 was secreted and diffused into the anterior half of the

embryos to affect apoptotic DNA degradation there. The strongest

evidence supporting a critical role of NUC-1 secretion for its in vivo

DNA degradation functions comes from the observations that

NUC-1 expressed in pharyngeal muscle cells in the head can

rescue the nuc-1(lf) DNA degradation defect in apoptotic cells of

the posterior ventral cord, which are situated far apart, more than

half of the body length, from the head region (Figure 5B), and that

removal or disruption of the NUC-1 signal peptide eliminates such

a long-range rescuing activity that is typical of secreted and

diffusing molecules (Figure 5B). These results thus reveal a totally

unexpected and previously uncharacterized mode of DNase II

action: it is secreted from expressing cells and can travel a long

distance and be retaken up by cells at distant sites to mediate DNA

degradation.

After NUC-1 is secreted and diffuses across its expression

border into other regions of the embryo, it is likely retaken up by

either phagocytes or apoptotic cells. To find out in which cells

NUC-1 acts to promote DNA degradation, we introduced the

smIs195 transgene (Pcrn-6nuc-1::gfp) into the nuc-1(e1392) mutants

that were also defective in both cell corpse engulfment pathways.

Surprisingly, smIs195 displayed no discernable difference in

rescuing the TUNEL defect of the nuc-1(lf) and ced-6(lf); ced-2(lf);

nuc-1(lf) embryos, where cell corpse engulfment is blocked, and

completely rescued the TUNEL defect of the ced-6(lf); ced-2(lf); nuc-

1(lf) 4-fold embryos (Figure 4C). These observations indicate that

NUC-1 can mediate DNA degradation inside apoptotic cells

without the aid of neighboring phagocytes. However, these

findings do not exclude the possibility that C. elegans DNase II

can also act in phagocytes to promote apoptotic DNA degrada-

tion, when cell corpse engulfment proceeds normally. Further-

more, given the high degree similarity between C. elegans and

mammalian DNase II enzymes, it is possible that mammalian

DNase II may act similarly to promote DNA degradation.

Materials and Methods

Strains and culture conditions
C. elegans strains were cultured using standard procedures [41].

The N2 Bristol strain was used as the wild-type strain. The alleles

used in the study were: LGIII: crn-6(tm890) (this study), crn-

7(ok866) (C. elegans gene knockout consortium), ced-6(n2095) [36],

unc-119(ed3) [42]; LGIV: ced-2(e1752) [26], ced-3(n2433)[32];

LGV: unc-76(e911)[43], him-5(e1490) [44]; LGX, nuc-1(e1392)

[45], axIs36 [46].

Plasmid construction
Sequences of primers described in this section are shown in

Table S3. Primers A1 and A2 were used to amplify the nuc-1

cDNA from an N2 cDNA library. To construct the nuc-1::gfp

vector, nuc-1 coding sequence without a stop codon was PCR

amplified from the nuc-1 cDNA clone using primers A1 and A3

and inserted into the pPD95.79 vector (a gift from Andrew Fire).

The crn-7 coding sequence without a stop codon was PCR

amplified using primers B1 and B2 and a crn-7 RT-PCR product

as the template. The crn-6 coding sequence without a stop codon

was amplified using primers C1 and C2 from the EST clone

yk720e2 (a gift from Dr. Yuji Kohara). They were then cloned into

pPD95.79 to generate crn-7::gfp and crn-6::gfp fusion vectors,

respectively. All cDNAs were sequenced and confirmed to be

identical to sequences reported in the Wormbase, except that the

yk720e2 crn-6 cDNA clone contains a base substitution (A322G,

Ile108Val). To obtain the promoter sequences of three DNase II

genes, the 59 1862 bp upstream region of the crn-6 gene was PCR

amplified using primers C3 and C4 and fosmid WRM0621aA08

as a template. The 59 3227 bp upstream region of the nuc-1 gene

was PCR amplified using primers A4 and A5 and fosmid

WRM0611cG07 as a template. And the 59 818 bp upstream

region of the crn-7 gene was PCR amplified using primers B3 and

B4 and fosmid WRM0613aA03 as a template. These promoter

fragments were cloned into vector pPD122.56 to generate

4xNLS::GFP transcriptional fusions or cloned into vector

pPD95.79 to generate transcriptional GFP fusions. Primers B1

and B5 were used to detect the crn-7(ok866) deletion by PCR and

primers C5 and C6 were used to detect the crn-6(tm890) deletion.

To construct the nuc-1 cDNA clone without the signal peptide

[NUC-1(22–375)], the region encoding NUC-1(22–375) was

amplified by PCR using primers A8 and A3 and the nuc-1 cDNA

clone as a template. To construct the nuc-1 cDNA clone with a

defective signal peptide [NUC-1(L9E, I10E, F11E)] and the nuc-1

cDNA clone encoding NUC-1(A21V, A22V), we performed

quick-change mutagenesis using primers A9 and A10 and primers

A11 and A12, respectively. The plasmid L3790 was used as the

source of the myo-2 promoter. To construct plasmids for ballistic

bombardment, various coding regions tagged with GFP were fused

with different promoters and the resulting translational fusions

were then cloned into the PBSKrt2-unc-119 bombardment vector

(a gift from Dr. Min Han).

Transgenic animals
Germline transformation was performed as described previously

[47]. To study the expression pattern of CRN-6, N2 animals were

injected with Pcrn-64xNLS::GFP at 60 mg/ml and the pBluescript II

SK vector at 40 mg/ml (as carrier DNA). To study the expression

patterns of NUC-1 and CRN-7, N2 animals were injected with

Pnuc-14xNLS-GFP at 40 mg/ml or Pcrn-74xNLS::GFP at 60 mg/ml

along with pRF4 [containing the dominant marker rol-6(su1006)]

at 40 mg/ml as a transgenic marker. nuc-1(e1392) animals were

injected with 60 mg/ml of Pnuc-1crn-7::gfp and 40 mg/ml of Pmyo-2gfp

(as a transgenic marker) to generate smEx4085. To express various

NUC-1 mutants under the control of the myo-2 promoter, nuc-

1(e1392) animals were injected with Pmyo-2NUC-1 (50 mg/ml),

Pmyo-2NUC-1(22-375)::GFP (50 mg/ml), Pmyo-2 NUC-1(L9E, I10E,

F11E) (60 mg/ml), or Pmyo-2NUC-1(A21V, A22V) (50 mg/ml),

using Pmyo-2gfp (50 mg/ml) as a co-injection marker. To detect the

GFP expression patterns of Pmyo-2NUC-1::GFP and Pmyo-2NUC-

1(22-375)::GFP, N2 animals were injected with Pmyo-2NUC-1::GFP

(50 mg/ml) or Pmyo-2NUC-1(22–375)::GFP (50 mg/ml) along with

pRF4 at 50 mg/ml. Integrated transgenic lines, smIs170, smIs172,

smIs173, smIs175, smIs209–211, smIs187, smIs189, smIs195 and

smIs199 (Table S1), were generated by ballistic bombardment

using Biolistic PDS-1000/He Particle Delivery System (Bio-Rad)

[48].

TUNEL staining and TUNEL/antibody double staining
TUNEL staining was performed as described previously [23]

with minor modifications. The same fixation solution was used

except that glutaraldehyde was omitted. After freezing embryos

with liquid nitrogen for 1 hr and fixing the embryos at room

temperature for 25 min, the embryos were washed once in 3 ml of

Tris-Triton buffer (1% Triton X-100, 100 mM Tris pH 7.4) and

twice in 3 ml PBST (1xPBS containing 0.5% Triton X-100). 40 ml

of the labeling solution in PBST and 3 ml of enzyme solution

prepared from an In Situ Cell Death Detection Kit (Roche,

Switzerland) were then incubated with embryos at 37uC for 1.5 hr.
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The stained embryos were washed twice with 1 ml of PBST and

soaked in 30 ml mounting solution containing DAPI. TUNEL

staining was scored using the 100x optic on a Zeiss Axioplan 2

microscope. For TUNEL and anti-GFP antibody double staining,

embryos were prepared and fixed as described above. After

fixation, embryos were washed once each with the Tris-Triton

buffer and PBST containing 0.1% BSA for 5 min, followed by

blocking with PBST containing 1% BSA for 5 min. Rabbit anti-

GFP antibody was used (1/200 dilution, a gift from Dr. Shu-Chan

Hsu at Rutgers University) to stain the embryos at room

temperature for 2 hrs. The embryos were then washed 3 times

with PBST containing 0.1% BSA. Next, the labeling solution and

the enzyme solution from the In Situ Cell Death Detection Kit and

the Rhodamine-conjugated secondary antibody (1/500 dilution)

were incubated with embryos at 37uC for 1 hr. After incubation,

embryos were washed 3 times with PBST containing 0.1% BSA

and soaked in 30 ml mounting solution containing DAPI. Anti-

GFP immunostaining and TUNEL staining were scored using the

100x optic on a Zeiss Axioplan 2 microscope.

Syto 11 staining
The vital DNA-binding dye Syto 11 (Invitrogen, Carlsbad, CA)

was used to stain the condensed chromosomal DNA in the ventral

cord apoptotic cells and the undigested bacteria DNA in the gut

lumen [23]. C. elegans animals were collected from plates and

washed twice with M9 buffer in a 1.5 ml microfuge tube. The

animals were soaked in M9 buffer with 10 mM Syto 11 and rocked

at room temperature for 1.5 hr in the dark. The animals were then

washed with M9 at least once and let recover on plates seeded with

OP50 at room temperature for 1 hr in the dark. After recovery,

worms were washed twice with M9 and centrifuged. Three

volumes of 30 mM NaN3 (compared with the volume of the

animals) were added into the microfuge tube to anesthetize the

worms, which were immediately observed by fluorescence

microscopy with FITC filter. The pycnotic nuclei in the posterior

ventral cord of the animals, from vulva to anus, were scored in late

L1 to early L3 larvae unless otherwise noted. For the intestine

staining, L3 to L4 larvae were scored.

DNase activity assay
The DNase activity assays from C. elegans lysates were performed

essentially as described previously [33] with minor modifications.

Lysates from different C. elegans strains were prepared by

sonication in lysis buffer (25 mM HEPES pH 7.4, 150 mM

KCl, 0.2 mM DTT, 0.1 mM EDTA, 10% glycerol) containing

protease inhibitors (Roche, Switzerland). After sonication, Triton

X-100 was added to 1% and the lysates were incubated on ice for

30 min. Protein concentrations of the supernatants derived from

the crude lysates were determined at OD595 using a Dye Reagent

Concentrate (Bio-Rad). One mg of each worm extract was

incubated with 750 ng of the pSL1190 plasmid DNA at 37uC
for 10 min (in 50 mM acetic acid pH 5.0) in a 30 ml total volume.

Samples were extracted using phenol: chloroform: isoamyl alcohol

(25:24:1) (Sigma, St. Louis, MO) to remove proteins. 20 ml of each

sample were then analyzed on a 1% agarose gel and stained with

EtBr. CstF-64 was used as a loading control, based on western blot

analysis of 30 mg of lysates using anti-CstF-64 antibody (a gift from

Tom Blumenthal).

Differential Interference Contrast (DIC) and fluorescence
microscopy

A Zeiss Axioplan 2 microscope with a 100x optic was used to

score the cell corpses in the embryos. The same 100x oil

immersion optic was used with a FITC filter to score the TUNEL

staining in embryos and the Syto 11 staining in larvae and with a

Rhodamine filter to score the anti-GFP antibody staining in

embryos. The microscope was equipped with a SenSiCam CCD

camera (PCO, Germany) and Slidebook 4.0 software (Intelligent

Imaging Inc. Denver, CO).

Quantitative PCR
Quantitative PCR was performed using a Rotor-gene 3000

machine (Corbett, Australia) and SYBR Green JumpStart (Sigma,

St. Louis, MO). Sequences of primers are described in Table S3.

Primers C7 and C8 were used to determine the copy number of

the crn-6 gene. Primers A6 and A7 were used to determine the

copy number of the nuc-1 gene. Primers B6 and B7 were used to

determine the copy number of the crn-7 gene. The lmn-1 gene

amplified by primers D1 and D2 was used as an internal control.

Supporting Information

Figure S1 Alignment of human and C. elegans DNase II genes

and schematic representation of DNase II mutants. A) Sequence

alignment of two human DNase II nucleases and three C. elegans

DNase II homologues. Residues that are identical are indicated by

red and residues that are similar are indicated by blue.

Arrowheads indicate potential cleavage sites of signal peptides as

predicted by the SignalP 3.0 program (http://www.cbs.dtu.dk/

services/SignalP/), except that the cleavage site in human DNase

IIa was determined experimentally. The box indicates the catalytic

site of DNase II [17,33]. Sequences of human DNase IIa
(accession AAC77366) and human DNase IIb (accession

CAH73126) were used for alignment. B) Schematic representation

of deletion mutations in the crn-6 and crn-7 genes and the e1392

mutation in nuc-1. Gray boxes represent exons and waved lines

indicate introns. The actual size of each deletion (tm890 also

contains an insertion) is indicated below by the black boxes.

Found at: doi:10.1371/journal.pone.0007348.s001 (1.80 MB TIF)

Figure S2 Syto 11 staining of nuc-1 and wild-type animals. DIC

and Syto 11 fluorescent images of a L2 larva are shown.

Arrowheads indicate pycnotic nuclei in the posterior ventral cord

of the nuc-1(e1392lf) animal. Black arrowhead indicates the

undigested bacterial DNA in the gut that is strongly stained by

Syto 11. Scale bars indicate 5 mm.

Found at: doi:10.1371/journal.pone.0007348.s002 (2.39 MB TIF)

Figure S3 The GFP expression patterns of Pnuc-1crn-6::gfp

animals. DIC and GFP images of smIs173 transgenic animals at

different developmental stages: (A) an early embryo, (B) a comma

stage embryo, (C) a 2-fold stage embryo, (D) a 4-fold stage embryo,

(E, F and H) larvae, and (G) adult. The head region in A–D and F

are indicated by brackets. Many GFP signals were observed in the

head region. In E and F, arrowheads indicate the two most

anterior intestinal cells and arrows indicate the most posterior

intestinal cells. Arrows in H indicates the gut lumen. The square in

G indicates the vulva region. Scale bars indicate 5 mm (12.5 mm in

E, F and H).

Found at: doi:10.1371/journal.pone.0007348.s003 (3.68 MB TIF)

Figure S4 TUNEL assay and the GFP expression patterns of

Pcrn-6crn-6::gfp animals. A) TUNEL analysis of crn-6(tm890)

embryos carrying smIs187 and smIs189 transgenes (Pcrn-6crn-

6::gfp). At least 30 embryos from each embryonic stage were

scored. Error bars indicate SEM. (B–F) The GFP expression

patterns of smIs187 animals. DIC and GFP images of smIs187

animals at various developmental stages are shown: B) an early

embryo, C) a comma embryo, D) a 2-fold embryo, E) a 4-fold
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embryo, and F) a larva. Arrowheads in E and F indicate the most

anterior intestinal cells. Scale bars indicate 5 mm.

Found at: doi:10.1371/journal.pone.0007348.s004 (8.07 MB TIF)

Table S1 Copy number and GFP expression in various

integrated lines generated by ballistic bombardment

Found at: doi:10.1371/journal.pone.0007348.s005 (0.04 MB

DOC)

Table S2 The crn-7 crn-6; nuc-1 triple mutant has a smaller

brood size than N2 animals or any of the single mutants.

Found at: doi:10.1371/journal.pone.0007348.s006 (0.03 MB

DOC)

Table S3 Primers used in this study

Found at: doi:10.1371/journal.pone.0007348.s007 (0.05 MB

DOC)
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