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ype 1 diabetes is an autoimmune

disease that causes the body to de-

stroy insulin-producing B-cells in
the pancreas. Genetic susceptibility is a
major component of the disease patho-
genesis. Many of the genes involved in
disease susceptibility are major players in
coordinating immune response. For ex-
ample, the major histocompatibility com-
plex (MHC) class II genes, known as
human leukocyte antigens (HLAs) in hu-
mans, are the most prominent suscepti-
bility genes (1). Besides genetic factors,
there is strong evidence suggesting that
environment contributes to the develop-
ment of type 1 diabetes (2). The most
striking example being that the incidence
of diabetes differs in monozygotic twins
(3). Other examples include the geo-
graphic distribution of type 1 diabetes
and immigrants exhibiting the incidence
prevalent in their new country of resi-
dence (4). Even if it may be a difficult task,
efforts to find environmental causes are
necessary as part of a potential future pre-
vention program (5).

In humans, the accumulation of islet
antibodies with differential specificities
for B-cell proteins, in combination with
genotyping for susceptibility alleles, can
predict the risk to develop clinical diabe-
tes. However, we are still unable to arrest
B-cell destruction in pre-diabetic pa-
tients, even though a lot of evidence col-
lected from preclinical studies using
various therapeutic regimens in different
animal models for type 1 diabetes has
been successful in preventing type 1 dia-
betes (6). Some compounds (anti-CD3
antibodies, GAD of 65 kDa [GAD65],

Diapep277, and anti-thymocyte globulin
[ATG]) that reestablished long-term tol-
erance in animal models after new-onset
type 1 diabetes show promising effects in
reducing (-cell decline in phase I and II
clinical trials in humans with recently di-
agnosed type 1 diabetes, but none of them
was able to cure the disease (7). We have
to ask, what are the current hurdles that
make translation from animal models to
humans so difficult and how can we build
better preclinical models to facilitate the
transition from bench to bedside?

CURRENT RODENT MODELS
FOR TYPE 1 DIABETES

Advantages and difficulties

It is now commonly accepted that animal
models are required to investigate the
fundamental disease mechanisms leading
to type 1 diabetes as well as to evaluate
new therapeutic avenues. A major reason
is the inability to access the human pan-
creas and islets directly and document the
events taking place during diabetogen-
esis. Although some more recent efforts
will tackle this issue (for example, see the
online Network for Pancreatic Organ Do-
nors with Diabetes, www.nPOD.jdrf.
org), the need for utilizing animal models
will not be circumvented very soon; their
relevance to human diabetes has been the
focus of many debates and disagreements
over the years (8—13). To date, the fore-
most question is not whether animal
models are needed but rather how to best
employ them in order to improve our un-
derstanding of the human pathogenesis of
type 1 diabetes and increase our success
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rate in the development of therapies. It is
important to understand that likely none
of the current models will perfectly repro-
duce the human situation. We should
therefore ask, what makes one animal
model better suited than another to an-
swer a specific question, teach us about a
specific stage of human type 1 diabetes,
and evaluate new therapies?

Nonobese diabetic models

The nonobese diabetic (NOD) model has
proven to be an important tool for dissect-
ing both central and peripheral tolerance
mechanisms that contribute to spontane-
ous autoimmune diabetes (14,15). This
mouse model is unique in the sense that
diabetes occurs spontaneously driven by
a number of immune defects and alter-
ations that contribute the lack of control
for the activation of autoreactive effector
T-cells. Among the main lessons we have
learned from this mouse model, the fol-
lowing can be highlighted: Undoubtedly,
environment plays an important role in
the development of type 1 diabetes. Dis-
ease penetrance in NOD mice is optimal
in specific pathogen—free conditions and
decreases drastically in a less clean, con-
ventional environment. This observation
together with the fact that human diabetes
incidence is increased in industrialized
countries lead to the “hygiene hypothesis”
(16), which proposes that a lack of early
childhood exposure to infectious agents
increases susceptibility to autoimmune
and allergic diseases later on in life.

The NOD strain carries multiple au-
toimmune susceptibility genes that pro-
vide a fertile background for several
autoimmune syndromes. However, the
major contributor to type 1 diabetes sus-
ceptibility is the MHC class II molecule
itself (I-Ag7). Interestingly, the genetic in-
troduction of alternative MHC genes pro-
tects from diabetes but confers
susceptibility to alternative autoimmune
syndromes (17). Therefore, the MHC lo-
cus is paramount for driving the patho-
genic process leading to type 1 diabetes
and other autoimmune diseases.

More than 200 immune interventions
have been described to prevent type 1 di-
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abetes in NOD mice (6). Although few
interventions can reverse recent-onset
type 1 diabetes (anti-CD3, ATG, combi-
nation therapies, Diapep277, and proin-
sulin DNA vaccine), some are now being
tested in humans with some success (i.e.,
preservation of C-peptide for up to 24
months) (18-20). The discrepancy be-
tween the ease of curing rodent diabetes
and the difficulty of translating this to
cure human type 1 diabetes could be at-
tributed to the fact that rodents are less
prone to exhibit symptoms from immu-
nosuppression, the difficulty of translat-
ing dosing regimens from mice to
humans, the possibility that human
B-cells are less able to regenerate or rep-
licate (21), and the fact that mice only live
for 2 years, which in the end might equate
only 2 human years of life and is actually
reflected in the duration of the protective
effect in current trials.

We would also like to draw attention to
the following issues. First, even though
NOD mice are in fact multiple copies of a
single individual, under an identical
germ-free environment, they will not de-
velop diabetes with the same rate, and
nearly 20% of the females and 50% of the
males will never develop the disease.
Therefore, we should study in depth the
animals that do not develop type 1 diabe-
tes and understand the reasons for such a
discrepancy in order to shed new lights
on mechanisms driving type 1 diabetes
pathogenesis. Second, the NOD model
alone has been ineffective to predict effi-
cacy of preventive therapies when trans-
lated into humans. One should consider
using differential models that highlight
different pathways to type 1 diabetes
pathogenesis when testing future treat-
ments. For instance, development of an-
tigen-based therapies will certainly profit
from the use of novel humanized MHC
class II mouse models (22-25). Last, in
order to select the most potent therapeu-
tics to be tested in humans, one has to test
each treatment under the most stringent
conditions (for instance after and not be-
fore onset of hyperglycemia). In addition,
we would benefit from routinely provid-
ing separate dose/efficacy measurements
in correlation with the different blood
glucose values at the onset of treatment.

Knockout models

The knockout models of spontaneous
type 1 diabetes or other autoimmune de-
fects (mice in which one or more genes
have been turned off through a gene
knockout) may identify a new set(s) of

genes/mutations in the development of
human type 1 diabetes. However, auto-
immunity resulting from specific known
mutations or pathway defects in mouse
models might not always be relevant for
the human situation. Thus, each pathway
identified by these models needs to be
specifically assessed in humans in order
to appropriately validate such disease
phenotypes.

Humanized murine models

The humanized murine models (mice car-
rying functioning human genes), gener-
ated by introduction of MHC, T-cell
receptor (TCR), and costimulatory genes
from humans into NOD/severe combined
immunodeficiency disease (NOD/SCID)
mice, constitute a great value for better
understanding certain unexplored as-
pects of the human condition. Such mod-
els are well-suited 1) mechanistically, to
address the questions of which T-cells
and antigens drive the diabetogenic re-
sponse, and 2) therapeutically, to test the
efficacy of antigen-specific interventions
and induction of regulatory versus effec-
tor T-cell responses in the context of hu-
manized MHC. But one must stress that
these mice are only partially humanized.
As a result, recapitulation of in vivo prop-
erties (i.e., cell expansion, homing, and
interaction with matrix and tissues) might
be impacted by biased interactions be-
tween human and murine molecules,
leading to erroneous interpretations.

Transgenic models

The first transgenic mouse models for
type 1 diabetes were generated almost 20
years ago. In these models, the mouse ge-
nome is genetically engineered to express
proteins from diabetes-unrelated agents
(such as ovalbumin, lymphocytic chorio-
meningitis virus [LCMV], influenza, etc.)
in the pancreatic 3-cells under the control
of insulin promoters (26-28). These
models, where the initiating antigen is
well defined, are very valuable for testing
different modalities of antigen-specific in-
terventions. Antigen-derived therapies
are advantageous because they avoid gen-
eral immunosuppression by acting site-
specific within the pancreatic tissue and
can dampen multiple autoaggressive re-
sponses by a phenomenon called infec-
tious tolerance (29). In particular, they
offer the opportunity to test interventions
on diverse genetic backgrounds, which
may be important for designing and ana-
lyzing future antigen-based clinical trials,
where responsiveness to immunotherapy

might vary from patient to patient, har-
boring various MHC molecules.

BioBreeding diabetes-prone models

The BioBreeding diabetes-prone (BB-DP)
rat constitutes a unique model for study-
ing type 1 diabetes. BB-DP rats express
and share susceptibility genes with hu-
man type 1 diabetes (30,31) and develop
spontaneous diabetes at about 12 weeks
of age. These characteristics make the
BB-DP rats a good experimental model to
investigate type 1 diabetes pathogenesis
and test novel therapeutics, as it allows
the manipulation of a larger animal model
from a different genus (rat vs. mouse).

FROM PRECLINICAL

STUDIES TO HUMAN

TRIALS

Many prevention and intervention trials
have been conducted to evaluate the po-
tential of various compounds to induce
tolerance in type 1 diabetes (Table 1). Pre-
vention trials, aiming at treating suscepti-
ble individuals before onset, have tested
nicotinamide or various forms and routes
of administration of human insulin (32—
35). Intervention trials have attempted to
preserve B-cell function in newly diag-
nosed type 1 diabetic patients by using
systemic immune modulators (such as cy-
closporine A, non-Fc binding anti-CD3,
anti-CD20, DiaPep277, etc.) or antigen-
specific therapies (insulin, GAD65, and
altered peptide ligand derived from the
insulin peptide B9-23) (18-20,36-42).
So far, only a handful of trials using the
drugs anti-CD3, Diapep277, anti-CD20,
or GADG65 have showed efficacy in pre-
serving C-peptide (from 12 to 30 months
posttreatment) in individuals with re-
cently diagnosed type 1 diabetes, even
though they were unable to cure the dis-
ease. In the best case scenario, a preserva-
tion of C-peptide levels over a 24-month
period was reported in the majority of
treated patients. However, to date, none
of the 87 patients enrolled in these “suc-
cessful” trials has achieved euglycemia.
Overall, one can conclude that systemic
immune modulators without antigen-
specific induction of tolerance or active
immune regulation have showed the most
robust yet temporarily limited preserva-
tion of B-cell function. Only one antigen-
based immune intervention, the Diamyd
GADG5 trial, has been shown to preserve
residual insulin secretion in patients with
recent-onset type 1 diabetes (20), and the
longevity of the effect is still under fol-
low-up observation. The reason for the
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A- Deletion of effector T cells and/or induction of multi-specific Tregs with systemic immuno-interventions

Regulatory T cells

" |islet-specific Tregs
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Multi-specific Tregs
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B- Deletion of effector T cells and/or expansion of islet-specific Tregs with combination therapies

Systemic

immuno-interventions
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Islet autoanti
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Islet-specific Tregs

Muiti-specific Tregs
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Figure 1—Combination of systemic and antigen (islet)-specific immunotherapies to expand/invigorate islet-specific regulatory T-cells (Tregs) for
treating type 1 diabetes. A: Systematic immunointerventions can be used after new-onset type 1 diabetes to delete/block autoreactive T-cells and/or
expand multispecific Tregs (among these Tregs a small proportion will recognize islet-autoantigen and mediate bystander suppression). B: Com-
bining systemic and islet-specific immunotherapies (CT) has already proven to be effective in expanding/invigorating a higher number of islet-specific
Tregs than monotherapies given alone (46), which in return increases treatment efficacy.

fact that preservation of C-peptide is only
limited in duration is likely the recurrence
of the autoimmune response mediated by
autoaggressive memory cells, which has
been recently well documented in clinical
trials of islet transplantation (43,44).
Eliminating all autoimmune memory via
immunosuppression alone is very diffi-
cult to achieve; this is illustrated by the
observation that even after autologous
nonmyeoloablative bone marrow trans-
plantation (45), insulin independence is
limited in duration. In our opinion, it will
be instrumental to secure long-term tol-
erance and control of autoreactive mem-
ory T-cells by inducing islet antigen—
specific immune regulation, which can
likely be long lived and is inducible with-
out systemic adverse effects. The Diamyd
GADG65 trial (see above) is possibly the
first step in this direction, although in-

duction of GAD65-specific T regulatory
cells (Tregs) will still have to be clearly
shown. Present data indicate that this
might have been the case, as elevated T
helper 2 (Th2) and interleukin (IL)-10 cy-
tokine levels were found in patients im-
munized with GAD65 (20). Ultimately,
combination therapies that involve a
short-term course of an immunosuppres-
sive drug such as anti-CD3 or anti-CD20
to eliminate autoreactive memory T-cells
followed by an islet antigen—specific ther-
apy to induce Tregs that could maintain
long-term tolerance might be the best so-
lution (Fig. 1). Our experimental data in-
dicate that this is indeed possible (46).
In view of the completed clinical
trials, positive outcomes were solely
observed when treatments were adminis-
tered after recent-onset of type 1 diabetes.
One might find this unusual, since, based

on observations in animal models, pre-
vention is much easier to achieve than in-
tervention. However, several reasons
account for this: First, safety, as well as
economical considerations, makes it
more suitable to test new immune-based
interventions first in individuals with re-
cent-onset type 1 diabetes or already es-
tablished disease. Second, we still lack
suitable biomarkers or other tools (i.e.,
computer-based models) that would al-
low us to choose the correct dose and
administration schedule for immunother-
apies (especially islet antigen—based
ones). Indeed, we now possess powerful
tools to predict type 1 diabetes in suscep-
tible individuals based on measurements
of serum autoantibodies (aAbs) (anti-
insulin, anti-GAD65, and anti—IA-2 aAbs)
and HLA background. However, reliable
biomarkers to predict therapeutic success
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following the intervention are still lack-
ing. The following issues need to be better
understood to optimize the design of fu-
ture prevention trials; in the last two sec-
tions of this article, we offer some future
strategies to tackle these issues:

1) Oral administration of human in-
sulin has been shown to induce IL-4—
secreting CD4™" T-cells with suppressive
activities in NOD mice when co-injected
with diabetogenic cells into recipients
(47,48). Other studies described that a
similar treatment regimen was more effec-
tive when administered early in NOD life
(starting at 3—4 weeks of age) (49,50).
Efficacy was further increased when NOD
neonates were fed with human insulin
(49). Protection from diabetes at a late
stage in NOD mice (after 12 weeks of age)
was ameliorated when human insulin was
administered subcutaneously (51). Con-
sequently, many variables may influence
the efficacy of human insulin (or other
autoantigen [aAg]) therapy, including the
dosage, frequency of administration, and
stage of the disease. As a result, more ef-
fort should be put into understanding the
effect of these variables on tolerance and
Treg induction in order to correctly
scale-up such preventions from mice to
humans and define the optimal moment
to detect Tregs in peripheral blood mono-
nuclear cells.

It is worth noting that the amino acid
sequence of islet aAgs may also affect the
efficacy to promote tolerance in vivo. As
an example, oral porcine insulin B-chain
was able to significantly better prevent di-
abetes in both NOD and rat insulin pro-
moter (RIP)-LCMV mouse models, while
oral human insulin B-chain was less effec-
tive (52). Therefore, small structural dif-
ferences in the primary sequence (here
only one amino acid difference) can pro-
duce dramatic differences in the clinical
outcome. In this context, it is important
to notice that only human oral insulin
has been tested thus far in clinical trials
(Table 1).

2) The degree of the 3-cell function at
trial entry appeared to be crucial for a pos-
itive response in intervention trials
(19,20). Greater B-cell function (or
higher C-peptide) at onset of treatment
appears to result in better preservation of
C-peptide after therapy. Consequently,
clinical intervention trials need to be
started very early after diagnosis for opti-
mal outcome, and patients must be strat-
ified according to C-peptide levels.

3) Last, we would argue that a mono-
therapy will likely not reach sufficient ef-

ficacy or safety to maintain permanent
tolerance. The pathogenetic heterogene-
ities observed among patients (see www.
nPOD jdrf.org) might not be conducive
for the development of a monotherapeu-
tic agent that will be efficacious and safe
for all diabetic patients. To accelerate
progress, we propose to combine com-
pounds that will expand islet-specific
Tregs, curb B-cell destructive effector
cells, and help regenerate the B-cell func-
tion to halt C-peptide decline (53). Along
these lines, several clinical trials are al-
ready planned (Table 1). Our team has
previously shown that combining sys-
temic anti-CD3 with islet-aAg immuniza-
tions resulted in a synergy that specifically
expanded aAg-specific Tregs that were re-
cruited to the site of inflammation in the
pancreatic lymph nodes, where they at-
tenuated the autoimmune aggression by
effector T-cells (46). In addition, clinical
signs of diabetes often appear when a sig-
nificant percentage of B-cells (15-20%)
still remains. Consequently, combination
with further drugs is urgently needed for
promoting regeneration/invigoration of
the residual B-cells in order to restore
normoglycemia in newly diagnosed pa-
tients. So far, glucagon-like peptide 1
(GLP-1) and its long-acting analog (ex-
endin-4, also known as exenatide), or a
mixture of GLP-1 and gastrin, were the
most promising drugs for stimulating
B-cell expansion in vivo. As a result, clin-
ical trials are under way to test their effi-
cacy in a mono- or a combination therapy
with anti-CD3 based on preclinical data
4.

IN SILICO

BIOSIMULATIONS TO

SPEED UP CLINICAL
TRANSLATION FROM

BENCH TO BEDSIDE

Although a variety of immune interven-
tions have been capable of delaying or
treating type 1 diabetes in animal models
(6), few of them have showed some effi-
cacy when translated into the clinic (Fig.
1). Induction of long-term aAg-specific
tolerance remains particularly difficult. In
many cases the activation of adaptive aAg-
specific Tregs is dependent upon several
factors such as the aAg itself as well as the
dose, timing, and appropriate route of ad-
ministration. Defining an optimal regi-
men experimentally is a daunting task
and requires many years of “wet-lab”
study in animal models, which must then
be translated in scale to humans. There-

Bresson and von Herrath

fore, to guide research for the develop-
ment and mechanistic evaluation of
immune-based therapies in type 1 diabe-
tes, one must consider the use of in silico
biosimulations. The major advantage of
this approach relies on its ability to gen-
erate and analyze a large number of treat-
ment scenarios in a short period of time,
thus accelerating the generation of new
hypothesizes while lowering the research
costs. One major hurdle to overcome re-
mains the development of virtual models
closely mimicking the animal or human
disease, particularly when the disease
pathogenesis is still not fully understood
in real life.

However, in silico modeling has al-
ready identified testable explanations that
could account for the failure or success of
type 1 diabetes therapies tested in NOD
mice (55,56). Therefore, a close collabo-
ration between “wet-lab” and “virtual-lab”
investigators may enable more rational
experimental design and accelerate the
path from basic research to clinical trials.
As an example, our laboratory recently
collaborated with Entelos, Inc., a life sci-
ences company that developed the type 1
diabetes PhysioLab platform, a predictive
in silico model of type 1 diabetes progres-
sion in the NOD mouse (57).

Entelos generated a variety of vir-
tual NOD mice to investigate the possi-
ble mechanisms underlying the efficacy
of intranasal insulin B:9-23 peptide
therapy and to evaluate the impact of
dosage, frequency of administration,
and age at treatment initiation on the
therapeutic outcome. In silico modeling
predicted that high-frequency immuni-
zations inhibited tolerance induction by
deleting Tregs before they can expand
sufficiently to provide therapeutic ben-
efit. In addition, treatment was pre-
dicted to be most effective if started at
an earlier age, relying on increased
Tregs and IL-10 levels in the islet. These
predictions were confirmed in vivo, es-
tablished an optimized immunization
frequency, and mapped the time of in-
duction of Tregs that require IL-10 as
critical parameters for translating mu-
cosal tolerance induction strategies
such as administration of nasal insulin
to humans (G. Fousteri and M.v.H., un-
published data). One can imagine that
similar predictive simulations could
guide human trial design and define op-
timal dosing regimens and the optimal
time for testing for induced T-cells (as
biomarkers).
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DEVELOPING
(IMMUNOLOGICAL)
BIOMARKERS FOR

CLINICAL TRIALS

Once a clinical trial has been initiated, bio-
markers are required to monitor and/or
predict treatment efficacy. This helps to
rule out wrong dosages and regimens and
can save substantial costs (especially in
prevention trials) because negative out-
comes can be anticipated long before clin-
ical development of type 1 diabetes.
While it is relatively easy to follow the
physiological effect of a particular treat-
ment by measuring C-peptide levels (re-
flecting B-cell function) in the peripheral
blood, no reliable immunological biomar-
ker to date successfully predicts therapeu-
tic outcomes. The lack of suitable
immunological biomarkers measurable in
peripheral blood that track therapeutic
success in both animal models and hu-
mans hampered the finding of an optimal
dose regimen for improving effectiveness
for many interventions, e.g., oral or nasal
insulin administration and subcutaneous
peptide or DNA vaccine interventions
(34-36,58—-62). Therefore, much effort
should now be put into the development
of such peripheral biomarkers (63-65).
These studies should also be conducted
in mice, where measurements in periph-
eral blood are frequently avoided be-
cause of easy access to lymphoid organs
or the pancreas itself, which facilitates the
immediate immunological readout. How-
ever, the discovery of peripheral biomar-
kers in animal models could accelerate
the translatability to the human situation
since lymphoid organs and the pancreatic
islets are not accessible. The following op-
tions should be considered.

Cytokine(s) measurement

Development of type 1 diabetes is usually
accompanied by a shift in cytokine ex-
pression from Th2 to Thl cytokines due
to a persistent inflammation in the pan-
creas (66). Therefore, tilting the balance
toward Th2 expression might be a sign of
clinical efficacy. Such an immune devia-
tion can be measured 1) in the serum of
treated patients, as observed in the anti-
CD3 hOKT3gammal(Ala-Ala) clinical
trial (Table 1) (67), or 2) after in vitro
(antigen-specific) stimulation of periph-
eral T-cells secreting IL-10, as evidenced
upon antigen-specific therapy using an
HLA-DR4 —restricted peptide epitope of
proinsulin (C19-A3) (62). Moreover, the
presence of islet antigen—specific T-cells
expressing IL-10 can discriminate be-

tween healthy and diabetic individuals
(63) and predict glycemic control in type
1 diabetic patients at diagnosis (68).

Anti-islet autoantibodies

The presence of multiple aAbs (anti-
insulin, anti-GAD65, and anti-IA2) has
the highest positive predictive value for
type 1 diabetes (69). However, their in-
volvement in human type 1 diabetes
pathogenesis remains unclear (70), but
they could facilitate antigen presentation
(71). Consequently, variation(s) in serum
aAb levels could be more relevant as a
marker for efficacy in prevention rather
than intervention trials (72). Thus far
none of the intervention trials showing
positive outcomes (19,20,38) or islet
transplantation trials under immunosup-
pressive regimen have provided direct ev-
idence for the relevance of aAbs in
predicting clinical efficacy (18,20,73).

Tracking autoreactive T-cells ex vivo
In a clinical setting, one could envision
tracking either autoaggressive islet-
specific T-cells or (antigen-induced)
Tregs upon treatment. To do so, two
widely used protocols exist. The enzyme-
linked immunosorbent spot (ELISPOT)
assay that informs on the antigen specific-
ity and number, as well as the cytokine
expressed by CD4" or CD8" T-cells.
Other techniques, such as cell surface
staining using recombinant MHC/HLA
class T or II tetramers followed flow cy-
tometry analysis, enumerate the number
of antigen (epitope)-specific CD8" or
CD4" T-cells, respectively. While the
ELISPOT assays can detect even low
numbers of antigen-specific T-cells, the
use of tetramer staining has been ham-
pered by difficulties in developing func-
tional MHC/HLA class 11 tetramers with
binding avidity high enough to track
CD4™" T-cells. However, both techniques
have shown great progress (74-78), and
it should be possible in the future to eval-
uate fluctuations in the number of anti-
gen-specific T-cells in longitudinal
prospective studies following immune in-
terventions. Detection of antigen-induced
Tregs (62,73) or autoaggressive islet-
specific T-cells (79,80) has been reported.
Nevertheless, it is still possible that T-cell
receptor usage is heterogeneous even
within a given individual, which would
strongly reduce the feasibility of tracking
autoaggressive T cells with one or few
specificities as biomarkers for disease pro-
gression or therapeutic success.

In vivo imaging

Measuring 3-cell mass by in vivo imaging
has proved to be challenging over the
years. However, this approach is vital to
directly assess the effect of a treatment on
pancreatic B-cells, gain further knowl-
edge of disease kinetics, and move toward
a better management of type 1 diabetes.
Several technical advances have emerged,
such as magnetic resonance imaging,
positron emission tomography, or biolu-
minescence imaging, and have been suc-
cessfully used to detect murine and rat
islets (81-83). Unfortunately, thus far no
direct and reliable technique enables the
detection and accurate measurement of
living 8-cells in humans. We would argue
that more efforts should be put into de-
veloping in vivo imaging of pancreatic
B-cell mass for clinical use.

CONCLUSIONS — Realizing im-
mune-based interventions for human
type 1 diabetes will be necessary, even if
an unlimited source of new islets can be
obtained from stem cells or other sources,
because autoimmune memory cells will
have to be controlled to avoid continued
loss of B-cells over time. The key issue
that must be tackled is achieving a toler-
able balance between immunosuppres-
sion and the associated side-effects and
long-term tolerance. In our opinion, the
likelihood that monotherapies with sys-
temically acting immunomodulators will
achieve this is low because, even in the
best case scenario, side effects will emerge
after 20-30 years, as has been seen with
Immunosuppressive regimens in trans-
plantation (84). Therefore, adaptive Tregs
that recognize B-cell antigens, proliferate
in the pancreatic lymph nodes (85,86),
and can, at least in multiple animal
models, mediate islet-specific immuno-
suppression should be induced in con-
junction with systemic immunomodulatory
therapies, for example by immunization
with GAD65, (pro)insulin, (pro)insulin
peptides, or DNA vaccines. To optimize
dosing regimens, in silico modeling ap-
proaches could be used together with an-
imal experimentation and reliable
biomarkers that can predict successful in-
duction of adaptive Tregs following aAg
immunization must be established.
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