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SUMMARY
Tissue Microarrays (TMAs) measure tumor-specific protein expression via high-density
immunohistochemical staining assays. They provide a proteomic platform for validating cancer
biomarkers emerging from large-scale DNA microarray studies. Repeated observations within each
tumor result in substantial biological and experimental variability. This variability is usually ignored
when associating the TMA expression data with patient survival outcome. It generates biased
estimates of hazard ratio in proportional hazards models. We propose a Latent Expression Index
(LEI) as a surrogate protein expression estimate in a two-stage analysis. Several estimators of LEI
are compared: an Empirical Bayes (EB), a Full Bayes (FB), and a Varying Replicate Number (VRN)
estimator. In addition, we jointly model survival and TMA expression data via a shared random
effects model. Bayesian estimation is carried out using a Markov Chain Monte Carlo (MCMC)
method. Simulation studies were conducted to compare the two-stage methods and the joint analysis
in estimating the Cox regression coefficient. We show the two-stage methods reduce bias relative to
the naive approach, but still lead to under-estimated hazard ratios. The joint model consistently
outperforms the two-stage methods in terms of both bias and coverage property in various simulation
scenarios. In case studies using prostate cancer TMA data sets, the two stage methods yields a good
approximation in one data set while an insufficient one in the other. A general advice is to use the
joint model inference whenever results differ between the two-stage methods and the joint analysis.
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1. Introduction
DNA microarray technology has enabled expression measurement of thousands of genes
simultaneously, providing a platform for rapid screening of genomic biomarkers in cancer.
Translating these discovery-type findings into clinical relevance is a more challenging task.
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Gene expression profiling studies using spotted cDNA arrays or Affymetrix GeneChip arrays
often yield a few hundred candidate cancer genes that are associated with a phenotype. Only
a small portion of these will be eventually validated for the corresponding expression changes
at the protein level. The advent of Tissue Microarray (TMA) technology has provided a
proteomic platform for such validation studies to find clinically useful biomarkers. TMA
experiments measure tumor-specific protein expression via high-density
immunohistochemical staining assays, allowing simultaneous evaluation of hundreds of
patient samples in a single experiment [1]. Since their initial development, TMA-based
expression studies have quickly become an integral part of cancer biomarker development
[2-4].

A typical tissue array slide comprises up to 1000 tiny biopsy tissue elements, which we will
refer to as cores, with multiple cores corresponding to repeated sampling from the same tumor.
Expression measures on these replicate cores constitute the TMA core-level data. These can
display substantial within-subject variability for both biological and experimental reasons.
Biologically, for tumors that are highly infiltrative and heterogeneous in nature (e.g., prostate
tumors), protein expression pattern can be quite variable. For example, cell proliferation genes
often exhibit localized high expression within a tumor, indicating elevated aggressiveness and
metastatic potential in the corresponding areas. Replicate sampling from various regions of the
tumor is therefore important in capturing the underlying heterogeneity within a tumor.
Experimental sources of the variability can come from a combination of probe affinity,
measurement imprecision, and further missing data due to insufficient sampling. Without
appropriately accounting for these variabilities, the noise-prone measurements tend to attenuate
the prognostic value of a potential biomarker in predicting disease outcome. The lack of a
model-based approach for TMA core-level expression data to effectively model the intra-tumor
variation has motivated us to carry out a full investigation.

A good analogy for understanding TMA data structure is from probe-level data generated by
the Affymetrix GeneChip arrays. GeneChip arrays measure gene expression at the mRNA
transcripts level. The probe-level data refer to the replicate expression measures on a set of
16-20 small oligonucleotide probe sets derived for a target gene. The biological variation comes
primarily from these oligonucleotide probe sequence variants, while experimental variations
arise during the process of slide printing, hybridization and optical reading. Li et al. [6] reported
that the variation of a specific probe across multiple arrays could be considerably smaller than
the variance across probes within a probe set. Modeling Affymetrix probe-level data has
generated much attention [6,7] as the technology has become more mature and widely used.

Similarly in TMA experiments, modeling within-tumor protein expression heterogeneity is an
important problem. In these tissue-based experiments, the variation across core samples within
a tumor can be substantially larger than the variation observed across subjects. Etzioni et al.
[5] used a compositional analysis to model such heterogeneity, and compared the proportion
of cells stained at different intensity levels between normal and tumorous tissues. In this study,
we focus on the effect of modeling intra-tumor variation in the context of predicting patient
survival outcome. In a latent variable modeling framework, we assume that an underlying ̀ true'
expression value predicts survival. In real experiments, this `true' expression can not be
precisely measured due to sampling variabilities and measurement imprecision. Instead, we
observe the core-level expression measurements that are subject to these measurement errors.
In a two-stage method, we adapt ideas from measurement error modeling and propose a latent
expression index (LEI) to approximate the underlying true value, and focus on its behavior in
proportional hazards models. We adapt an empirical Bayes estimator [8] to 1) incorporate
important clinical parameters such as Gleason score and pathological stage of the tumor and
2) adjust for the varying number of cores. We further establish a joint model for TMA core-
level data and survival outcome via a shared random effect. There is a large literature on joint
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modeling of longitudinal data and survival [9-16]. These methods have been developed
predominantly for modeling survival and CD4 counts in AIDS patients; here their application
to Tissue Microarray data in cancer biomarker studies is novel. Using both simulations and
two published TMA data sets, we compare the performances of the naive, two-stage LEI, and
the joint model approach in obtaining parameter estimates and associated inference.

The article is organized as follows. Section 2 specifies notation and models for the TMA core-
level expression data and for the patient survival data. Section 3 introduces LEI and its use in
a two-stage method. Section 4 presents the joint modeling approach and the Bayesian
estimation framework. Simulation results to compare the performances of these methods are
then discussed in Section 5. Case studies using two prostate cancer TMA data sets are presented
in Section 6. Further discussion can be found in Section 7.

2. Model specification
Measurement model for the TMA core-level data

Let  be the latent expression value for a biomarker in tumor i, i = 1, … , n. Assuming the
observed TMA core-level measurement for the jth core in the ith tumor is

(2.1)

where we assume . The mean μx* is a linear function of clinical covariates:
, where Zi = (Z1i, Z2i, …,Zpi) constitutes a row vector of p clinical parameters

characterizing histologic and pathologic features of the tumor; and θ = (θ1, … , θp) is the
associated p-dimensional row vector of effect sizes. In this model, Uij represents the variation
of the ri core-level expression measurements about the “true” value . We assume Uij is i.i.d.

 and independent of .

Survival model
Let the observed survival time for patient i (i = 1, …, n) be Ti = min(Yi, Ci), where Yi is the
time from diagnosis to disease recurrence; Ci is the time to censoring which is independent of
Yi, and δi = 1{Yi < Ci} is the censoring indicator. Under the Cox proportional hazards model,
the hazard rate for patient i is

(2.2)

where λ0(t) is the baseline hazard function, β* is the regression coefficient associated with the
`true' protein expression, and b = (b1, … , bp) is the row vector of coefficients associated with
the vector of clinical variables . We also consider a parametric Weibull regression model
with the following form for the hazard function:

(2.3)

3. Two-stage plug-in method
Given the rare disease assumption and the assumption that the measurement error Uij has no

predictive value, i.e.,  Prentice (1982) introduced the induced hazard rate
function for Cox regression model with covariates measured with error. When normality is
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assumed for the error distribution, a first-order bias-correction method is to replace  with its
conditional mean

(3.1)

and estimate β* by maximizing the corresponding partial likelihood. Here
 denotes the vector of observed expression measures for tumor i. Note

that the regression calibration model in (3.1) is an approximation to the true model in (2.2) due
to the rare disease assumption and the omission of a higher order term implicit in (2.2). Details
of such first-order bias-correction methods can be found in [17,18]. Define the Latent

Expression Index (LEI) to be an estimate of the conditional mean, , for each
subject i. A two-stage plug-in method can be described by the following algorithm: 1) Compute
LEIi (i = 1, …, n) as a surrogate expression estimate that adjusts for measurement error; and
2) Apply the Cox or Weibull regression model using LEIi to obtain an estimate of β* and the
associated standard error.

In the next section, we describe methods for computing LEI for tissue microarray data. These
include an empirical Bayes estimator conditional on clinical covariates, a full Bayes approach
and a Varying Replicate Number (VRN) method as an extension to adjust for the number of
cores per tumor.

3.1. Methods for computing LEI
3.1.1. The Empirical Bayes and full Bayes estimator—Express (2.1) as a mixed effects
model

(3.2)

where . To make a connection between (3.2) and (2.1),  is the unobserved “true”
protein expression level, which can be expressed as . Subsequently, νi, which is
normally distributed with mean zero and variance, has the interpretation of a mean centered
“true” protein expression level. The empirical Bayes estimator can then be derived as

(3.3)

where  is the attenuation factor [18]. Parameter estimates

 can be obtained by fitting a mixed effects model as described in (3.2), using a
restricted maximum likelihood (REML) approach [19,20].

The empirical Bayes estimator conditions on the set of parameter estimates derived from the
data. The uncertainty of these estimates are not accounted for in LEIeb. For this reason, we also

consider a full Bayesian estimator, , where standard conjugate hyperprior distributions
are adopted: . The full Bayes estimator
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is then based on the posterior inference from model (3.2) where  are the posterior
means given the data.

3.1.2. The Varying Replicate Number (VRN) method—In a typical TMA construction,
Ki cores are placed on the array for each tumor i. However, not all of the measurements

 are available. Several reasons contribute to a varying number of replicate
measure. These include heterogeneous tissue composition and technical defects such as image
corruption. The expression measurement from non-tumorous tissue types or a corrupted image
is typically considered unsuitable for an outcome analysis and excluded. Let Mij = 0, j = 1,
… ,Ki indicate that the jth core from the ith tumor is lost due to the aforementioned reasons

and Mij = 1 if it is available. Expression measures are retained for  cores, where
ri varies across tumor samples and possibly depends on covariate Zi. We consider ri to follow
a Binomial distribution given Ki and P(Mij = 1) with possible over-dispersion. Assuming
independence and homogeneity across j for Mij, we adopt a logistic mixed effects model:

(3.4)

where , Zi = (Z1i, Z2i, …,Zgi) is the vector of g clinical covariates that can be the
same or different from those in (3.2), and ψ = (ψ1, ψ2, …, ψg) is the associated vector of
coefficients. Therefore

(3.5)

The expression index under the VRN model is then derived by averaging over all the possible
values of (ri, Ki). In particular,

(3.6)

Here R is taken to be maxi Ki. An additional assumption for the above is that the expression

measures do not correlate with ri or Ki. Parameter estimates  can be obtained by
fitting a mixed effects model as described in (3.2). A logistic mixed effects model in the form

of (3.4) was fitted to obtain . Estimation is via methods described in [21] and [22]. The
empirical proportions were used for .

In a relatively balanced TMA array where the number of replicate measures ri does not vary

much across subjects,  is an approximately constant adjustment factor.
The amount of shrinkage in LEIeb toward the overall mean depends primarily on the ratio of
the within- to between-subject variation in that particular data set. In our example, however,
ri is a highly variable quantity. It exerts a larger role in determining how much weight 
gives to a particular subject's data relative to the estimated population mean. The motivation
for LEIvrn is to provide a replicate number-averaged expression estimate that alleviates the
variability induced by ri in the empirical Bayes estimator.
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4. Joint Modeling of survival and TMA core-level data
The two-stage approaches described above are attractive for their simplicity and
straightforward interpretation. They require minimal computation and can be easily
implemented using existing statistical packages. However, there are major limitations for the
two-stage method [23]. First, the two-stage method involves a first order approximation and

ignores the second-order term  in the induced hazard rate function (3.1). As we
will illustrate in the simulation study, such approximation works well when β* is close to zero,
but otherwise lead to sizeable bias in . Second, parameter estimates in the second stage do
not account for the uncertainty in estimating LEI in the first stage. The associated standard
error for  will be over-optimistic. Given these considerations, it is desirable to make inference
based on the joint likelihood of the failure time and TMA expression data. In this article, we
adopt a shared random effect model to induce correlation between the TMA data and the
survival outcome.

Given the measurement model specified in (3.2) for the TMA data, we write the proportional
hazards model for the survival outcome as

(4.1)

The parameter νi constitutes a shared random effect that connects the measurement model (3.2)
and the survival outcome model (4.1). The expression data and survival times are then assumed
to be independent given νi. The joint likelihood of the observed data {Ti, δi, Xi and the random
effects νi is therefore

(4.2)

where

(4.3)

We used a piecewise constant hazards model in which the time axis is partitioned into L disjoint
intervals, I1, …, IL, where Il = [al-1, al) with a0 < ti and aL > ti for all i = 1, …, n. Assume a
constant baseline hazard in the lth interval, λ0(t) = λl for t ∈ Il. Rl is the set at risk at the beginning
of interval l; dl is the number of failures in interval l; and Δil = min(ti, al) - al-1.

Alternatively, a parametric Weibull model can be assumed for the survival outcome using the
following hazard function:

(4.4)
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When γ = 1, the above reduces to exponential distribution with constant failure rate

. The survival time component of the joint likelihood in (4.3) is then replaced
by

(4.5)

In a Bayesian estimation framework, the following prior distributions are specified for the
model parameters:

(4.6)

The prior choices in (4.6) render proper noninformative prior distributions with the
hyperparameters chosen to achieve large variances (wide spread). In particular,

. The values of r0 and γ0 are set to be small to impose
noninformativeness (although there have been criticisms that the resulting posterior
distributions remain highly sensitive to the choice of r0 and γ0). We had tested different sets
of values for r0 and γ0: (0.1, 0.1), (0.01, 0.01), and (0.001, 0.001). When the sample size is
moderate to large, the variance estimates,  and , are well-behaved and not significantly
affected by the choice of r0 and γ0. Samples from the posterior distribution are obtained using
Markov Chain Monte Carlo (MCMC) methods. In the likelihood function of (4.2), the Bayesian
estimation procedure treats νi as missing data and imputes it at each MCMC iteration via
posterior sampling from the conditional distribution of νi given the rest of the variables. One
then proceeds with the likelihood function in (4.2) as if νi were observed.

5. Simulation
5.1. Simulation Setup

The additive measurement error model in (3.2) with one covariate Z1i is used to simulate the
expression measure Xij, i = 1, …, n, and j = 1, …, ri. In this model, θ0 = 0 and θ1 = 1. Furthermore,
νi ~ N(0, 1), Uij ~ N(0, 0.5). The covariate Z1i is simulated from a N(0, 1) distribution. The total
number of cores sampled, Ki, takes values in {1, 2, …, 12} with P(Ki = 6) = 0.4, P(Ki = 1) =
… = P(Ki = 5) = 0.1, and P(Ki = 7) = … = P(Ki = 12) = 1/60, mimicking the proportions from
the actual tissue array data set used in this study. We simulate the number of repeated measures

 from a Binomial(Ki, pi), where pi = 1 - π1/Ki such that the missing proportion
equals π. The survival time Ti is simulated from a proportional hazards model in the form of
(2.2) with λ0(t) ≡ 1 and β* = 1 or 2. An additional covariate Z1i is further assumed to associate
with Ti with the coefficient being one. The censoring time is simulated from an independent
exponential distribution that results in a 30% censoring proportion. Results are summarized
over 100 such simulated data sets each of a sample size n = 200. In general, we assigned
parameter values in the simulation to mimic those for the real data sets.

Computation of LEIeb, LEIvrn were carried out using the PROC MIXED and the IML procedure
in SAS (SAS Institute, Cary, NC). LEIfb and the joint models were implemented using
OpenBUGS via the R interface BRugs [24,25]. We ran two chains with 1000 burn-in and 1000
updates per chain for the MCMC convergence.
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5.2. Simulation Results
The simulation results are summarized in Table I. For β* = 1 in the survival models, the naive
approach (using  as a surrogate expression) attenuates the true effect size by around 25%.
The coverage probability of a nominal 95% confidence interval of  is 0.10 at best. The two
stage methods (LEI) achieved a considerable bias correction by adjusting for the measurement
error in the LEI imputation. The joint modeling approach gives the best estimate  and
a coverage probability of 95% compared to the truth.

Next a larger effect size is simulated (β* = 2). The bias in the two-stage approaches due to the
first-order approximation is evident. Overall the two-stage methods generate less biased 
compared to the naive estimate. Nevertheless, these are 15-25% smaller than the true β*. The
coverages are poor for the two-stage approaches. The joint modeling approach should be
advocated in this scenario for inference. Notice that the joint model estimates of β* are slightly
bigger than 2, especially under the Weibull distribution. This may be driven by the prior
distributions adopted for the parameters under the Bayesian estimation scheme. We have
observed that such a difference disappears when the sample size gets larger.

6. Case study in prostate cancer
6.1. Data description

In this study, we consider two prostate tumor tissue microarray data sets. The α-Methylacyl
CoA racemase (AMACR) is a peroxisomal and mitochondrial enzyme that plays an important
role in fatty acid metabolism. AMACR has been shown to consistently overexpress in prostate
tumors [26]. Rubin et al. [4] profiled AMACR protein expression using a TMA constructed
on 203 prostate tumors from a surgical cohort who underwent radical prostatectomy at the
University of Michigan as a primary therapy for clinically localized prostate cancer diagnosed
between 1994 and 1998. They found AMACR is a significant predictor of the Prostate Specific
Antigen (PSA) failure in these 203 patients.

The second biomarker evaluated in this study is BM28. BM28 encodes a highly conserved
mini-chromosome maintenance protein (MCM) that is involved in the initiation of genome
replication. Bismar et al. [27] profiled a total of 41 genes (including BM28) in a TMA-based
proteomic study. They identified a 12-gene model showing the expression combination of the
twelve genes significantly associates with tumor progression and PSA failure in a set of 79
men following surgery for clinically localized prostate cancer. The expression level of BM28
however did not show significant prognostic value in their analysis. We chose BM28 to
evaluate the possibility of its being a false negative biomarker due to measurement error.

For the AMACR data, an average of Ki =5.5 (range: 2 to 12) tissue core specimens were taken
from each tumor sample and put on a tissue array for immunohistochemical staining. After
initial diagnostic evaluation of each core, an average of 29% (range: 0-86%) of the cores were
excluded due to reasons discussed earlier, leading to 5.5% missing subjects. The BM28 data
has a similar tissue array design. A quantitative imaging analysis of the staining intensity was
obtained using the ACIS II (Chromavision, San Juan Capistrano, CA) system. The intensity
level ranges from 0 to 255 chromogen intensity units, and is transformed using the natural
logarithm (one unit added to avoid taking logarithm of 0) and normalized to have mean zero
and standard deviation one. Disease recurrence is defined as a serum PSA increase >0.2ng/mL
after radical prostatectomy. Censored observations are those free of the recurrence at the time
of last follow-up.
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6.2. Measurement error and regression attenuation in TMA data analysis
Figure 1 illustrates a considerable amount of measurement error in the core-level expression
data from the two TMA experiments. In the AMACR data, methods-of-moments estimates of
the variance components are  and . In the BM28 data, the methods-of-
moments estimates of the variance components are  and . The within-subject
variation is almost three times the between-subject variation.

In a Cox proportional hazards model context, we did a simple simulation where ,

β* = 1. A naive estimator  —the average core-level expression for tumor i—
is used as the surrogate expression to replace  in (2.2). We simulate situations where

measurement error is small , moderate , and large . Figure 2 shows
various degrees of regression attenuation in the estimate of β* as a function of replicate number
ri and the amount of error . When the parameter values are set to resemble the AMACR data,
the naive estimate of β* is approximately 30% smaller than the true value. With the current
TMA construction protocol specifying three cores per subject due to economic and tissue-
preservation reasons, and a great amount of within-subject variability routinely observed in
the core-level expression data, Figure 2 effectively conveys the importance of modeling
measurement error in TMA data. In the following two sections, we implement the measurement
error models to demonstrate how statistical inference differs from the previous results.

6.3. AMACR expression and biochemical recurrence in prostate cancer
In prostate cancer, Gleason score, pathologic stage and tumor size are among the most
important clinical parameters. We include these as clinical covariates Zi to adjust in the
measurement model (3.2), the replicate number model (3.4), and the survival outcome model
(4.1). In the measurement model,  with an associated standard error of 0.13,
indicating a marginal association of tumor size with AMACR expression level. In the replicate
number model,  with an associated standard error of 0.16, which is consistent with
our expectation that a larger tumor sample provides more abundant number of cores.

Table II lists the estimates and associated standard errors (posterior standard deviation) of β*
in the outcome model. The measurement error adjustment has significantly improved upon the

naive estimate. The error-adjusted  is around 0.75 , approximately 31% larger

in absolute value than the naive estimate which is 0.57 . The amount of attenuation
in β* is quite consistent with what we conclude from the simulated datasets in the previous
section. In this dataset, the two-stage methods (LEIeb, LEIfb, LEIvrn) perform equally well as
the joint modeling approach. The simplicity and computational efficiency of LEI serves as a
satisfactory core-level expression index for AMACR. However as mentioned earlier, the two-
stage methods are based on a first-order approximation, the accuracy of which is largely driven
by the size of β* and the ratio of within- and between-subject variation. As will be shown in
the other data example, the two-stage methods will not be always a suitable approach.

Kaplan-Meier curves are useful as a graphical representation of the prognostic value of a
biomarker. We examined these plots by dividing the subjects into different risk groups based
on the values of AMACR expression estimates derived under each method. In Figure 3(a),
subjects with AMACR high, median, and low expression groups based on LEIvrn and the joint
model estimates (C and D respectively) are significantly better separated in terms of probability
of recurrence-free survival, when compared to that using the naive mean estimates (A).
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6.4. BM28 expression and biochemical recurrence in prostate cancer
The measurement model indicates a marginal association of pathologic stage of the tumor with

BM28 expression: . The replicate number model again suggests a
strong dependence on the size of the tumor: .

In Table II, the differences under various models are more discernable in this datasets. First,
the Weibull and piecewise exponential model overall generate slightly different results given
a small sample size (n=52). Second, the empirical Bayes estimate differs substantially from
the full Bayes LEI estimate. It is likely due to the large uncertainties in the parameter estimates
that determine LEIeb. Finally, the bias introduced by the first-order approximation is prominent
here. Both the coefficient β* and the noise ratio in this dataset are much larger in magnitude
compared to the AMACR data example. In this case, the two-stage methods alleviate regression
attenuation, only to a limited extent. The joint model should be used for parameter estimation
and associated inference.

Figure 3(b) plots the Kaplan-Meier curves using different expression estimates. The 5-year
PSA recurrence-free survival probability is 0.95  versus 0.58  for low and
high BM28 expression estimated by the joint model. Adjusting for measurement error in this
dataset has made a dramatic change in the conclusion about the prognostic value of BM28,
compared to the naive method.

6.5. Improved expression estimates
Figure 4 compares the naive and the joint model expression estimates, plotted against the
survival time on the x-axis. The mean expression ± two standard deviations is plotted for each
individual. Two improvements under the joint model are clear: 1) the noise, represented by the
error bars, is greatly reduced via the joint modeling, and 2) the mean expression levels are
distributed more tightly around a regression line, accentuating the relationship of the TMA
expression data and survival time.

7. Discussion
In TMA data analysis, statistical methods often focus on downstream models in predicting
disease outcome assuming  is a suffcient expression summary measure [29,30]. Relatively
little attention has been given to the modeling of within-tumor variation in these TMA
experiments. As we have shown in this paper with real data examples, analysis ignoring intra-
tumor variation can lead to false negative results, causing a tremendous waste of valuable tissue
resource and experimental costs. In this study, we propose and compare a two-stage approach
and a joint model to analyze tissue microarray data in a measurement error framework. The
two-stage approach computes a Latent Expression Index (LEI) in the first stage and then
associate the LEI with patient survival information using a proportional hazards model in the
second stage. We further adjust for clinical/pathological covariates Zi and the number of
repeated measures (Ki, ri) per each tumor to improve the effciency of the expression estimates.

Although the two-stage approach is attractive for its simplicity, interpretability and
straightforward computation, practitioners need to be aware of the associated statistical
limitations. As we discussed earlier, the regression calibration approach is an approximation
of the true model which reduces bias relative to the naive method but still leads to
underestimated β*. In addition, the survival information is not used in the first stage to compute
LEI, which can cause bias and effciency loss in estimating β* in the second stage. Finally, the
uncertainty of estimating the LEI quantity is not assimilated in the second stage, leading to
over-optimistic standard error estimates. For a review of this topic, see Tsiatis and Davidian
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[23]. In simulation studies, we show the two-stage methods reduce bias relative to the naive
approach in estimating the Cox regression coefficient, but still lead to under-estimated β*. The
joint analysis, however, outperforms the two-stage methods in terms of the bias and coverage
property in various simulated scenarios. In case studies, we applied the error methods to
prostate TMA data sets where the two-stage approach and the joint analysis generate 1) very
similar results in the AMACR data set and 2) disparate results in the BM28 data set. While the
first case study demonstrates a scenario where the two-stage approach is a good approximation
to the true model, the second suggests one where such approximation is not so accurate (the
higher order term can not be ignored when β* is a large value). Inference should be based on
the joint analysis whenever results differ.

A final notion is regarding the impact of the technology advancement on TMA data analysis.
Recent advances in quantitative assessment of the immunohistochemical staining provide
precise, objective, and reproducible protein expression measurements. Compared to the
conventional pathologist scoring on an ordinal scale, the Chromavision system used in our data
examples enables quantification of the antigen level on a continuous scale, free of the
subjectivity associated with pathologist-based visual scoring system. We should point out that
the Chromavision system not only quantifies the amount of protein expression, but also
provides a more accurate measure of the percentage of tissue that express the protein. A
statistical problem of interest is to extend our model to incorporate the percentage information
when summarizing the expression profile of a tumor. Another quantitative system, AQUA
[28], which stands for Automated Quantitative Analysis, measures fluorescence signals,
leading to higher sensitivity to very low antibody concentrations. In addition, it allows the
separation of tumor from stromal elements and the sub-cellular localization of signals for a co-
localization of the antigens in different cell compartments. As the technology is becoming more
and more refined, statistical models underpinning both biological and experimental issues are
in great need.
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Figure 1.
Variance plots to represent the within-subject variation in the TMA core-level expression data.
A) The AMACR data. Estimates of the variance components are:  and . B)
The BM28 data. Estimates of the variance components are:  and .
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Figure 2.
A simulation demonstration of the bias in Cox regression coefficient estimate as a function of
the number of repeated measures ri. The average bias with a 95% CI over 100 simulated datasets
of sample size n=200 is plotted.
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Figure 3.
Kaplan-Meier plots of prostate cancer recurrence. Patients are categorized into risk groups
based on the protein expression level of (a) AMACR and (b) BM28 profiled using TMAs. The
expression estimates are based on the A. Naive B. LEIeb C. LEIvrn and D. Joint model.
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Figure 4.
Comparison of the naive expression estimates (A, C) and the joint model expression estimates
(B, D). The top panel depicts the comparison in the AMACR data, the bottom panel depicts
the comparison in the BM28 data. The survival times are plotted on the x-axis.
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sê
( β̂

∗
)

sd
( β̂

∗
)

C
ov

er
ag

e

W
ei

bu
ll

Pr
op

or
tio

na
l H

az
ar

ds

β*  =
 1

X*
1.

01
0.

08
0.

08
0.

96
1.

01
0.

08
0.

08
0.

97

N
ai

ve
0.

75
0.

07
0.

08
0.

07
0

0.
75

0.
07

0.
08

0.
09

LE
Ieb

0.
93

0.
08

0.
09

0.
85

0.
93

0.
08

0.
09

0.
87

LE
Ifb

0.
93

0.
08

0.
09

0.
85

0.
93

0.
08

0.
09

0.
88

LE
Ivr

n
0.

97
0.

09
0.

10
0.

89
0.

96
0.

09
0.

10
0.

87

Jo
in

t M
od

el
1.

03
0.

11
0.

11
0.

95
1.

03
0.

11
0.

11
0.

95

β*  =
 2

X*
2.

05
0.

12
0.

12
0.

95
2.

03
0.

11
0.

10
0.

94

N
ai

ve
1.

13
0.

08
0.

10
0

1.
18

0.
08

0.
11

0

LE
Ieb

1.
51

0.
11

0.
13

0.
03

1.
58

0.
11

0.
13

0.
06

LE
Ifb

1.
48

0.
11

0.
12

0
1.

55
0.

11
0

0.
12

0.
04

LE
Ivr

n
1.

62
0.

11
0.

14
0.

19
1.

70
0.

11
0.

15
0.

30

Jo
in

t M
od

el
2.

16
0.

27
0.

30
0.

89
2.

07
0.

19
0.

20
0.

93

Stat Med. Author manuscript; available in PMC 2009 September 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shen et al. Page 18
Ta

bl
e 

II
A

 c
as

e 
st

ud
y 

us
in

g 
pr

os
ta

te
 c

an
ce

r T
M

A
 d

at
as

et
s. β̂

∗
sê
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