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Abstract
IκB kinase β (IKKβ), a major kinase downstream of various proinflammatory signals, mediates
multiple cellular functions through phosphorylation and regulation of its substrates. On the basis of
protein sequence analysis, we identified arrest-defective protein 1 (ARD1), a protein involved in
apoptosis and cell proliferation processes in many human cancer cells, as a new IKKβ substrate. We
provided evidence showing that ARD1 is indeed a bona fide substrate of IKKβ. IKKβ physically
associated with ARD1 and phosphorylated it at Ser209. Phosphorylation by IKKβ destabilized ARD1
and induced its proteasome-mediated degradation. Impaired growth suppression was observed in
ARD1 phosphorylation-mimic mutant (S209E)-transfected cells as compared with ARD1 non-
phosphorylatable mutant (S209A)-transfected cells. Our findings of molecular interactions between
ARD1 and IKKβ may enable further understanding of the upstream regulation mechanisms of ARD1
and of the diverse functions of IKKβ.
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Introduction
Arrest-defective protein 1 (ARD1), first identified in yeast, is the catalytic subunit of NatA
acetyltransferase, responsible for N-terminal α-acetylation [1]. Mutation of Ard1 in yeast leads
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to defective entry into the stationary phase and sporulation in response to nutrient deprivation
or mating pheromone α-factor [2;3]. In mammalian cells, ARD1 possesses both N-terminal
α-protein and ε-protein acetylation activities, thus representing a novel kind of
acetyltransferase [4;5]. ARD1 has been reported to mediate hypoxia-inducible factor 1α
(HIF-1α) ubiquitination and degradation through Lys532 acetylation [5]; however, several
groups were unable to replicate this observation [6;7;8]. Another ε-acetylation substrate of
ARD1 is β-catenin, which was shown to mediate the cell proliferation effect of ARD1 in lung
cancer cells [9]. In addition to cell growth control, ARD1 is also involved in DNA damage-
induced apoptosis [10]. Although ARD1 plays a critical role in regulating cell proliferation
and apoptosis, the molecular mechanisms regulating ARD1 stability and functions remain
largely unclear.

IκB kinase β (IKKβ) is a component of the IKK complex, which contains IKKα, IKKβ, and a
regulatory subunit, IKKγ. When activated by proinflammatory signals such as tumor necrosis
factor α (TNFα) and lipopolysaccharide (LPS), IKKβ triggers the degradation of IκBα through
phosphorylation, which in turn releases and mediates the nuclear translocation of nuclear factor
κB (NF-κB). NF-κB then activates gene expression by binding to the target DNA sequence
and thus contributing to diverse functions. Although first identified as the kinase for IκBα,
IKKβ was subsequently shown to have other substrates as well. By identification of these non-
IκBα downstream substrates, more cellular functions independent of IκBα have been found.
For example, IKKβ is able to phosphorylate insulin receptor substrate 1 (IRS1) to suppress
insulin signaling [11]. IKKβ also affects mitogen-activated protein kinase (MAPK) pathway
by repressing DOK1 via phosphorylation-dependent manner and therefore increases cell
migration [12;13]. Additionally, IKKβ has been shown to promote breast cancer development
through phosphorylation-mediated inhibition of two tumor suppressors, forkhead box O3a
(FOXO3a) and tuberous sclerosis complex 1 (TSC1). IKKβ triggers the degradation of
FOXO3a and TSC1, thereby exerting anti-apoptosis effects [14] and promoting angiogenesis
[15]. All these findings suggest that IKKβ might have versatile roles in participating in
physiological functions.

In the current study, we identified ARD1 as a substrate of IKKβ. IKKβ associated with and
phosphorylated ARD1 at Ser209 in vitro and in vivo. Phosphorylation of ARD1 by IKKβ
decreased its stability and led to the proteasome-mediated degradation of ARD1. IKKβ reduced
the growth suppression effect of ARD1 through phosphorylation. We conclude that IKKβ
down-regulates ARD1 through phosphorylation and destabilization.

Materials and methods
Constructs

The FLAG-IKKβ and FLAG-nIKKβ plasmids were generated as previously described [15].
The Myc-ARD1 and HA-ARD1 plasmids were constructed by inserting the cDNA of hARD1
into the pcDNA6 and pCMV5 vectors containing the Myc and HA tags, respectively. We
constructed the GST-ARD1 plasmid by subcloning the ARD1 fragment into the pGEX6P-1
GST vector. All constructs of ARD1 mutants were generated as follows. The PCR reaction
was performed in a total volume of 25 μl pfu reaction buffer containing 30 ng DNA, 0.2 mM
dNTPs, 0.4 pmol of each primer, 1.5 μl DMSO and 1 μl pfu polymerase. Cycling conditions
were 94°C (5 minutes) for one cycle; 94°C (1 minute), 55°C (1 minute), and 68°C (14 minutes)
for 20 cycles; and a final extension of 68°C (10 minutes). 1 μl DpnI was then added and
incubated at 37°C for 1.5 hours to remove the methylated DNA. The sequences were confirmed
by DNA sequencing.
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Experimental reagents
We used antibodies to FLAG (F3165, Sigma, St. Louis, MO), HA (11666606001, Roche,
Switzerland), Myc (11667203001, Roche), ARD1 (15-288-22667, GenWay, San Diego, CA),
acetyl lysine (05-515 and 06-933, Upstate, Billerica, MA), and α-tubulin (T-5168, Sigma).
Cycloheximide and MG132 were purchased from Sigma.

Cell culture
Cells were cultured in Dulbecco's modified Eagle's medium (DMEM)/F12 medium
supplemented with 10% fetal bovine serum (FBS). For transient transfection, cells at 50-60%
confluence were transfected with DNA by SN liposome (DNA:SN=1μg:1μl) [16]. Six hours
after transfection, the DNA-liposome mixture was removed and the fresh medium was added.
Cells were harvested for analysis 2 days after transfection.

Immunoprecipitation and immunoblotting assays
Immunoprecipitation and immunoblotting assays were performed as described previously
[14]. Briefly, radioimmunoprecipitation assay-B (RIPA-B) buffer (1% Triton X-100, 150 mM
NaCl, 20 mM Na2PO4, 1 mM PMSF, 3 μg/ml aprotinin, 750 μg/ml benzamidine, 2 mM
Na3VO4, 5 mM NaF, pH 7.4) was used as lysis and immunoprecipitation buffers. For
immunoprecipitation, specific antibodies were incubated with cell lysates at 4°C for 16-18
hours. Protein A or Protein G was then added for another 3 hours. Immunoprecipitates were
washed five times using RIPA-B buffer. Sodium dodecyl sulfate (SDS)-polyacrylamide gel
electrophoresis (PAGE) sampling buffer was added, and the samples were boiled for 10
minutes. Beads were spun down, and the supernatants were loaded onto an SDS-PAGE. For
immunoblotting, proteins subjected to SDS-PAGE were transferred onto polyvinylidene
fluoride (PVDF) membrane pretreated with methanol. Membranes were then blocked with 5%
skim milk or 1% bovine serum albumin (BSA) in Tris-buffered saline (TBS) buffer (10 mM
Tris, 150 mM NaCl, pH 7.9) with 0.05% Tween 20. The indicated proteins and phosphorylation
levels were analyzed by using specific antibodies. Horseradish peroxidase (HRP)-conjugated
secondary antibodies and Enhanced Chemiluminescence (ECL) kit were used for detection.

In vitro kinase assays
IKKβ kinase assays were performed as described previously [14;17]. Briefly, FLAG-IKKβ or
FLAG-nIKKβ transfected-cells were lysed and immunoprecipitated with anti-FLAG
antibodies. IKKβ kinase activity was analyzed by in vitro kinase assay using purified GST-
ARD1 as the substrate and GST and GST-IκBα were served as negative and positive controls,
respectively. Reactions were performed at 30°C for 30 minutes in a final volume of 50 μl
consisting of kinase buffer (20 mM Tris, 7.5 mM MgCl2, 30 μM ATP, 10 μCi γ-[32P]-ATP)
and were stopped by adding 20 μl of SDS-PAGE sampling buffer and boiling for 10 minutes.
Reaction products were loaded on an SDS-PAGE and analyzed by autoradiography.

Identification of phosphorylation sites by mass spectrometry analysis
Cell lysate from FLAG-IKKβ- and Myc-ARD1-cotransfected HEK293T cells was
immunoprecipitated by anti-Myc antibodies. After separation on SDS-PAGE, protein bands
corresponding to ARD1 were identified, excised from the gel, and then subjected to digestion
by trypsin or other proteases. After isolation by immobilized metal affinity chromatography,
the enriched phosphopeptides were analyzed by using mass spectrometry analysis.
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Results and discussion
IKKβ physically interacts with ARD1

Since IKKβ functions as an oncoprotein and ARD1 might have a role in suppression of tumor
progression, it is tempting to know whether IKKβ-mediated tumor development via regulating
ARD1. To examine the physical association between IKKβ and ARD1, we first performed
exogenous protein reciprocal coimmunoprecipitation assays. We cotransfected FLAG-IKKβ
and HA-ARD1 into HEK293T cells, and found the presence of HA-ARD1 in FLAG-IKKβ
immunoprecipitates (Fig. 1A). Consistently, FLAG-IKKβ was detected in HA-ARD1
immunoprecipitates (Fig. 1A). This interaction was also observed with endogenous IKKβ and
ARD1 using specific antibodies to IKKβ and ARD1 (Fig. 1B). Together, these results
demonstrated the association between ARD1 and IKKβ.

IKKβ phosphorylates ARD1
Analysis of the amino acid sequence revealed an IKKβ consensus motif (DSψXXS/T) on
ARD1 (Fig. 2A), which is present in many substrates of IKKβ, for example, IκBα, FOXO3a,
and TSC1. This sequence (DSKDLS) is evolutionarily conserved from human to mouse (Fig.
2B), suggesting the importance of this region. The observation that ARD1 contains a potential
IKKβ phosphorylation motif prompted us to investigate whether ARD1 is a substrate of
IKKβ. As shown in Fig. 2C, in vitro kinase assay demonstrated that GST-ARD1 but not GST
protein is efficiently phosphorylated by FLAG-IKKβ (lanes 1 and 2, left panel). In contrast,
no phosphorylation of ARD1 was observed with kinase dead FLAG-nIKKβ control (lane 4,
left panel). This result demonstrated that IKKβ phosphorylates ARD1 in vitro. Because ARD1
is an acetyltransferase, we next questioned whether ARD1 could induce ε-acetylation of
IKKβ. HEK293T cells were cotransfected with ARD1 and IKKβ and treated with sodium
butyrate to prevent protein deacetylation. The acetylated IKKβ was detected by anti-acetyl
lysine antibodies. We were unable to detect any ε-acetylation of IKKβ (data not shown), even
after using two different antibodies. In summary, our results suggest that ARD1 is a
physiological substrate of IKKβ.

IKKβ phosphorylation site is identified on ARD1
To further identify the IKKβ phosphorylation site on ARD1, we cotransfected Myc-ARD1 and
FLAG-IKKβ plasmids into HEK293T cells and purified ARD1 protein for mass spectrometry
analysis. The results demonstrated in vivo phosphorylation of ARD1 by IKKβ at Ser209 (Fig.
3A). To demonstrate the phosphorylation is dependent on IKKβ but not other IKKβ-regulated
Ser/Thr kinases, we performed in vitro kinase assays using immunoprecipitated IKKβ or
purified IKKβ. Substitution of Ala for Ser209 (S209A) abolished the phosphorylation of ARD1
by IKKβ immunocomplex (Fig. 3B) or purified IKKβ (Fig. 3C). Together, these results from
kinase assays and mass spectrometry analysis indicate that IKKβ phosphorylates ARD1 at
Ser209 in vitro and in vivo.

Phosphorylation by IKKβ decreases the stability of ARD1
We next generated ARD1 (S209E) mutant to mimic the phosphorylation by IKKβ and studied
the mechanisms of ARD1 regulation by IKKβ. Since lower expression level of ARD1 (S209E)
protein was observed, we first clarified whether the phosphorylation of ARD1 affects its
stability. Treatment with cycloheximide to inhibit protein translation showed the decreased
stability of ARD1 (S209E) (Fig. 4A) compared with that of wild-type (WT) ARD1 or ARD1
(S209A). The protein of ARD1 (S209E) was restored to a level similar to that of ARD1 (WT)
or ARD1 (S209A) after MG132 treatment (Fig. 4B), suggesting that phosphorylation of ARD1
enhances its proteasome-mediated degradation. Together, these results demonstrated that
phosphorylation of ARD1 by IKKβ contributes to its destabilization and degradation.
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Phosphorylation of ARD1 by IKKβ reduced its growth suppression effect
On the basis of our observation that IKKβ phosphorylates and destabilizes ARD1, we next
asked whether phosphorylation by IKKβ affects the biological function of ARD1. We found
ARD1 (WT)-transfected cells grow much slowly than vector control-transfected cells. In
addition, expression of ARD1 non-phosphorylatable mutant (S209A) significantly inhibited
cell growth of HEK293T cells as compared with ARD1 phosphorylation-mimic mutant
(S209E) (Fig. 4C), suggesting phosphorylation by IKKβ decreases the growth suppression
function of ARD1.

Whether ARD1's function in tumorigenesis is as an oncoprotein or a tumor suppressor has
remained a matter of controversy in the literature [10;18;19]. It has been reported that protein
post-translational modifications may change its function, for example, IKKα phosphorylation
of CREB-binding protein (CBP) determines its associated partners and the oncoprotein/tumor
suppressor role [20]. In the current studies, we identified IKKβ as a kinase of ARD1 that
mediated its phosphorylation on Ser209, thereby resulting in the degradation of ARD1.
Considering that IKKβ has been shown an association with oncogenic activity through
negatively regulating its downstream substrates, for example, TSC1 and FOXO3a [14;15], the
destabilization of ARD1 by IKKβ seems to favor a tumor suppressor role for ARD1. Indeed,
our results showed expression of ARD1 in HEK293T cells suppresses cell growth.

In summary, we identified an upstream kinase, IKKβ, which associated with and
phosphorylated ARD1, resulting in its destabilization (Fig. 4D). The phosphorylation of ARD1
by IKKβ reduced the growth suppression effect of ARD1. Further investigation into the
biological effect of this post-translational modification may advance our knowledge of IKKβ
functions and may clarify the controversial role of ARD1 in the development of cancer.
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Fig. 1.
ARD1 physically interacted with IKKβ. (A) Exogenous interaction of ARD1 and IKKβ.
HEK293T cells were cotransfected with HA-ARD1 and FLAG-IKKβ, and cell lysates were
immunoprecipitated with anti-FLAG or anti-HA antibodies. The association between HA-
ARD1 and FLAG-IKKβ was analyzed by reciprocal coimmunoprecipitation and
immunoblotting assays. (B) Endogenous interaction of ARD1 and IKKβ in HEK293T cells.
Cell lysates were immunoprecipitated with specific antibodies to ARD1 and IKKβ to identify
the association of endogenous proteins.
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Fig. 2.
IKKβ phosphorylated ARD1 in vitro. (A) ARD1 contains a putative IKKβ phosphorylation
motif (DSψXXS/T). D, aspartic acid; S, serine; ψ, hydrophobic amino acid; X, any amino acid.
(B) IKKβ consensus motif (DSKDLS) on ARD1 is conserved from human to mouse. (C) ARD1
was phosphorylated by IKKβ. FLAG-IKKβ or FLAG-nIKKβ was transfected into HEK293T
cells and immunoprecipitated for in vitro kinase assay using GST-ARD1 as the substrate. GST
and GST-IκBα proteins were used as negative and positive controls, respectively.
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Fig. 3.
Identification of IKKβ phosphorylation site on ARD1. (A) HEK293T cells were transfected
with FLAG-IKKβ and Myc-ARD1. After separation by SDS-PAGE electrophoresis, the band
representing ARD1 protein was isolated and analyzed by mass spectrometry. (B) The IKKβ
phosphorylation site on ARD1, Ser209, was identified by in vitro kinase assays.
Immunoprecipitated FLAG-IKKβ was used in the kinase assay and kinase dead FLAG-
nIKKβ was served as a negative control. (C) Purified IKKβ protein was incubated with GST-
ARD1 (WT) and GST-ARD1 (S209A) in the kinase assay.
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Fig. 4.
Phosphorylation by IKKβ destabilized ARD1 and reduced the growth suppression effect of
ARD1. (A) Phosphorylation of ARD1 by IKKβ decreased its stability as determined by
treatment with cycloheximide (100 μg/ml). The graph shows the relative intensity of various
ARD1 proteins at different time points (standardized to 1 for the cycloheximide-pretreated
[CHX 0 hours] sample). W, WT; A, S209A; E, S209E. (B) Treatment of MG132 restored the
protein expression of ARD1 (S209E) mutant. HEK293T cells were transfected with various
ARD1 constructs and treated with MG132 for 6 hours before analysis. W, WT; A, S209A; E,
S209E. (C) Constructs of vector control, ARD1 WT and various ARD1 mutants were
transfected into HEK293T cells. Cells (1×106) were plated 2 days after transfection and the
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number of cells was counted at different time points. V, vector control; W, WT; A, S209A; E,
S209E. (D) A model by which phosphorylation of ARD1 by IKKβ induces ARD1 degradation
and decreases its growth suppression effect.
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