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Abstract
Protein biomarker discovery produces lengthy lists of candidates that must subsequently be verified
in blood or other accessible biofluids. Use of targeted mass spectrometry (MS) to verify disease- or
therapy-related changes in protein levels requires the selection of peptides that are quantifiable
surrogates for proteins of interest. Peptides that produce the highest ion-current response (high-
responding peptides) are likely to provide the best detection sensitivity. Identification of the most
effective signature peptides, particularly in the absence of experimental data, remains a major
resource constraint in developing targeted MS—based assays. Here we describe a computational
method that uses protein physicochemical properties to select high-responding peptides and
demonstrate its utility in identifying signature peptides in plasma, a complex proteome with a wide
range of protein concentrations. Our method, which employs a Random Forest classifier, facilitates
the development of targeted MS—based assays for biomarker verification or any application where
protein levels need to be measured.

Proteomic discovery experiments in case-and-control comparisons of tissue or proximal fluids
frequently generate lists comprising many tens to hundreds of candidate biomarkers1.
Integrative genomic approaches incorporating microarray data and literature mining are also
increasingly being used to guide identification of candidate protein biomarkers. To further
credential biomarker candidates and move them toward possible clinical implementation, it is
necessary to determine which of the proteins from lists of candidates differentially abundant
in diseased versus healthy patients can be detected in body fluids, such as blood, that can be
assayed with minimal invasiveness1.

This process, termed verification, has historically been approached using antibodies. High-
quality, well-characterized collections of antibodies suitable for protein detection in tissue are
now being developed2. But unfortunately, the required immunoassay-grade antibody pairs
necessary for sensitive and specific detection in blood exist for only a tiny percentage of the
proteome. Thus, for the majority of proteins, suitable reagents for their detection and
quantification in blood (or other biofluids) do not yet exist and alternative technologies are
needed to bridge the gap between discovery and clinical-assay development. This problem is
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an important aspect of the larger need in biology and medicine for quantitative methods to
measure the presence and abundance of any protein of interest.

Targeted MS is emerging as an assay technology capable of selective and sensitive detection
and quantification of potentially any protein of interest (or modification thereof) in the
proteome3–6. In stable isotope dilution—multiple reaction monitoring (MRM)-MS, peptides
(precursors) from candidate proteins of interest are selectively detected and caused to fragment
(products) in the mass spectrometer. The resulting product ions are used to quantify the peptide,
and therefore, the protein from which it was derived, by calculating the ratio of the signal
response of the endogenous peptide to a stable isotope—labeled version of the peptide added
as an internal standard3–6.

The first step in developing an MRM-MS—based assay involves selecting a subset of peptides
to use as quantitative surrogates for each candidate protein. ‘Signature peptides’1 correspond
to the subset of ‘proteotypic peptides’7 that, in addition to being sequence unique and
detectable, are also the highest responding peptides for each protein. Current methods rely on
selecting signature peptides based on detection in the initial MS discovery data3,5,
identification in databases of MS experimental data8,9 or computational approaches to predict
proteotypic peptides10–13. When multiple peptides are detected for a candidate protein for
which experimental data are available, selection is primarily based on high peptide-response.
Other considerations such as high-performance liquid chromatography (HPLC) retention time,
amino acid composition, uniqueness in the genome and charge state also play a role. After
selecting signature peptides, the targeted MRM-MS assay must be optimized for each peptide
to select appropriate precursor-to-product ion transitions5,14. Because some peptides fail the
optimization process due to poor chromatography, solubility problems, interference with
matrix or failure to recover the peptide after digestion in plasma, it is common for laboratories
to evaluate approximately five peptides per protein. This usually insures that at least one peptide
per protein is suitable for developing a quantitative assay3,5.

Two key problems usually arise with the selection of signature peptides for assay development.
First, only a fraction of peptides present in a complex sample are detected in discovery
proteomic experiments. This undersampling problem is well known and leads to poor
reproducibility of peptide and protein detection, even in replicate samples15. As a result, the
best signature peptides for any given candidate may not be the ones observed in the discovery
experiment. Second, it is of interest to quantify candidate proteins identified by methods other
than proteomics, such as genomic experiments or literature mining. These candidate proteins
may represent biomarkers or key components in signaling or metabolic pathways. In these
situations, de novo prediction of signature peptides is required.

Here we describe the enhanced signature peptide (ESP) predictor, a computational method to
predict high-responding peptides from a given protein. We (i) validate the method on ten
diverse experimental data sets not used in training the ESP predictor, (ii) show that ESP
predictions are significantly better at selecting high-responding peptides than existing
computational methods10,12,13, (iii) demonstrate that the ESP predictor can be used to define
the best peptides for targeted MRM-MS—based assay development in the absence of
experimental proteomic data for the protein and (iv) identify the most relevant physicochemical
properties used to predict high-responding peptides in the context of electrospray ionization
(ESI)-MS.
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RESULTS
Method overview

We developed a model to predict the probability that a peptide from a given protein will
generate a high response in an ESI-MS experiment. We define peptide response as the sum of
the extracted ion chromatogram (XIC) based on the monoisotopic peak for all charge states
and modifications detected from sequence-identified peptides. This measure is more consistent
with the intended application of the ESP predictor, which is to predict signature peptides from
an in silico digest of a candidate protein (Fig. 1a,b).

We used liquid chromatography (LC)-ESI-MS analyses of a yeast lysate sample, from three
proteomic laboratories, to derive a training set to model peptide response (Fig. 1c). For each
protein, we standardized the peptide response, using the z-score (z), and selected a threshold
to define ‘high’ (z ≥ 0) and ‘low’ (z ≤ −1) responding peptides. We also derived a set of ‘not
detected’ peptides from an in silico tryptic digest (no missed cleavages, mass 600–2,800 Da),
but we considered only peptides not sequence identified in any form, including missed
cleavages. Because we are only interested in detecting high-responding peptides, we combined
the ‘low’ and ‘not detected’ peptides together to create the final training set of ‘high’ versus
‘low/not detected’.

To develop a predictive model, one must encode the peptides as an n-dimensional property
vector. These properties represent specific characteristics of the peptides such as mass,
hydrophobicity and gasphase basicity. We considered 550 physicochemical properties
(Supplementary Table 1 online) to model peptide response16,17. For each physicochemical
property, we computed the property value by averaging over all amino acids in each peptide.
Thus, the training set comprised a matrix of ‘peptides by properties’ along with the class labels,
‘high’ or ‘low/not detected’.

We modeled peptide response using the Random Forest18 algorithm. Random Forest is a
nonlinear ensemble classifier composed of many individual decision trees. We chose Random
Forest because the algorithm, and its R implementation19, conveniently includes many features
especially suited to this type of analysis. Specifically, Random Forest effectively handles data
sets with large numbers of correlated features, provides insight into the model by determining
the most relevant properties during training18–21 and exhibits better performance for this data
set than using a Support Vector Machine22 does. Notably, the structure of the decision trees
that make up the final model are learned using only the training set, and the model is fixed for
subsequent testing and validation.

We also attempted to reduce the dimensionality of the training set by considering two feature-
selection techniques, Fisher Criterion Score23 and the area under the receiver operator curve
(ROC)24. We used the best features ranked by each of the feature selection methods to build
Support Vector Machine models using three different kernels and Random Forest. Random
Forest exhibited the best performance using all 550 properties, implying that feature selection
is not helpful in this context (Supplementary Fig. 1 online).

Metrics to evaluate the ESP predictor
We created the ESP predictor to select high-responding peptides from candidate proteins, in
the absence of MS experimental data, with the intention of developing an MRM-MS assay.
Therefore, we developed metrics to assess the success of such predictions. When developing
an MRM-MS assay, it is necessary to evaluate the assay performance of about five peptides
per protein in the biological matrix of interest (typically plasma) to reliably obtain at least one
peptide with suitable limits of detection and quantification. The expense and time associated
with generating synthetic peptides and evaluating the assay performance of each for MRM
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quantification (typically involving generation of a ten-point concentration response curve for
each peptide) make evaluation of more than five peptides per protein impractical.

We evaluated the ESP predictor on ten validation sets not used in training to assess its
performance (Table 1). We experimentally analyzed each validation set using ESI-MS and
selected the five highest-responding, fully tryptic (no missed cleavages) peptides from each
protein (Fig. 1a). Then, using the ESP predictor, we ranked the predicted probability of high
response for all tryptic peptides generated from an in silico digest of the same proteins and
selected the top five peptides for each protein (Fig. 1b). We calculated two metrics designed
to assess how well the ESP predictor selected the five highest-responding peptides for all
proteins in each validation set. First, we calculated the protein sensitivity, which is the percent
of proteins with one or more peptides predicted by the ESP predictor to be among the five
highest responding. Second, we calculated a P-value to test the hypothesis that the ESP
predictions are significantly better than random predictions, using a permutation test. In
gauging the performance of the ESP predictor, a combination of high protein sensitivity and
low P-value is desirable. A high protein sensitivity indicates that more proteins in the data set
have at least one correctly predicted high-responding peptide, whereas statistical significance
requires P < 0.05. We also compared the ESP predictor to three publicly available
computational methods for predicting proteotypic peptides10,12,13.

Validation of the ESP predictor
We wanted to demonstrate the advantage of applying a single model to predict high-responding
peptides in varied data spanning a wide range of different ESI experimental types, mixture
complexities, database search algorithms and XIC quantification methods. For a fair
assessment of how well the ESP predictor selects the five highest-responding peptides, we
restricted the validation sets to proteins with six or more theoretical peptides and five or more
sequence-identified peptides. The results indicate the ESP predictor performance is consistent
across all ten validation sets despite very different types of proteomic data (Table 1). On
average, the ESP predictor achieves a success rate of 89% at selecting one or more high-
responding peptides per protein. Across all validation sets, the ESP predictor correctly selects
approximately two out of five high-responding peptides from an average of 42 theoretical
peptides per protein.

Next, we used a permutation test to confirm that the ESP predictions are statistically more
significant, across multiple proteins, than random predictions and current computational
methods (Fig. 2 and Supplementary Fig. 2 online). The predictions on nine of the ten validation
sets tested were significantly better than random (P < 0.0001). Only the predictions on the most
complex mixture, undepleted plasma, were less significant (P = 0.036). The predictions for the
undepleted plasma are better understood in the context of predictions for the Plasma Hu14
(with the 14 most abundant proteins depleted) and Plasma Hu14 SCX (depleted and
fractionated) validation sets (Fig. 2b). The number of correct peptides selected significantly
increases (Table 1) as the mixture complexity decreases, suggesting less ion suppression and
better quantification due to less interference.

We also compared the performance of the ESP predictor on the HeLa_2 and Plasma Hu14 SCX
validation sets to three computational methods designed to predict proteotypic peptides (Table
2). We demonstrate, using the HeLa_2 and Plasma Hu14 SCX validation sets, that our method
for selecting high-responding peptides performs significantly better (based on Ts, Table 2) than
methods designed to predict proteotypic peptides (Fig. 2c,d). Compared to the HeLa_2
validation set, these other methods exhibit more variability with the Plasma Hu14 SCX
validation set, whereas ESP still performed well. Performance on fractionated plasma is
especially important because it represents a sample type frequently used in MRM biomarker
verification. It is relevant to note that these studies constitute the first evaluation of the
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performance of peptide response predictors in the context of plasma, the most difficult
proteome of all with respect to complexity and dynamic range of protein abundance.

To further demonstrate the robustness of the ESP predictor, we examined three quantification
methods to calculate peptide response using the HeLa_1 validation set. In addition to MSQuant
(Table 1 and Fig. 2a), we also searched the raw data using Spectrum Mill, which reports peptide
intensity. We also calculated the XIC based on the monoisotopic peak from the raw data. All
three methods exhibited similar performance (Supplementary Fig. 3 online). This suggests the
ESP predictor is agnostic to the method of calculating peptide response, as long as it is done
consistently.

The ESP predictor selects optimal signature peptides for MRM-MS assays
Having validated that the ESP predictor is successful at predicting high-responding peptides,
we sought to determine if the predictions can be used to select signature peptides to configure
MRM-MS assays in plasma. We tested the ability of the ESP predictor to select the correct
signature peptides for a set of 14 proteins (9 cardiovascular biomarkers, 4 nonhuman proteins
and prostate-specific antigen). For each of these proteins, we had previously experimentally
defined the validated MRM peptides and then configured successful MRM-MS assays using
these peptides. We used the ESP predictor to select five candidate signature-peptides and
compared the results to the validated MRM peptides for each protein (Fig. 1a,b). The ESP
predictor correctly selected two validated MRM peptides per protein, on average, yielding a
protein sensitivity of 93% (Fig. 3 and Supplementary Data online for all plots).

We then evaluated the usefulness of a proteomic database in defining signature peptides for
MRM-MS assay configuration for these 14 proteins. Using the MRM feature of the Global
Proteome Machine (GPM) respository8, a well-known and comprehensive database of
proteomic experimental data, we obtained an average of only 0.8 validated MRM peptides per
protein. Most importantly, for six of these proteins, no prior MS experimental data existed in
GPM (CD40, BNP, HRP, IL-33, leptin, and MBP). For these six proteins, ESP correctly
predicted 12 out of 18 validated MRM peptides. Across all 14 proteins, only 11 of the 39
validated MRM peptides were found in GPM, whereas ESP correctly predicted 29 of the 39
validated MRM peptides (Supplementary Table 2 online). For the eight proteins for which data
were available in GPM, there was good agreement between the ESP predictor and GPM in
predicting validated MRM peptides (Fig. 3c). These results point to potential issues in using
proteomic data in databases for MRM-MS assay configuration, as recently noted by others25,
and underscore the need for a computational approach to select signature peptides in the
absence of MS experimental data.

Important physicochemical properties
One major benefit of using Random Forest is that it facilitates model interpretation by
determining an importance score for each physicochemical property. We followed a procedure
similar to that described previously26 to determine the number of important properties. Briefly,
we randomly split the yeast training data into train (80%) and test (20%) sets. We then trained
a model using all 550 properties and recorded the test error using the variable importance
measure to rank the properties. Note that the variable importance measure was calculated once
using all properties to avoid overfitting. Next, we repeatedly removed the least important half
of the properties and recorded the test-set error at each step. We repeated this entire process
100 times to produce an error distribution (Fig. 4a). Because the test error was distributed
normally, we used a two-tailed t-test to determine the minimum number of properties at which
the test error distributions were no longer significantly different (P < 0.05). We selected 35
properties as the most important and grouped them into five major categories (Fig. 4c and
Supplementary Methods online for more information about the 35 properties). Even though

Fusaro et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2009 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



we used all properties in the final Random Forest model, we selected these 35 properties to
gain some insight into an interpretation of the model.

Stability of the ranking of important physicochemical properties is highly dependent on the
number of trees used in Random Forest. We built five Random Forest models using 100, 1,000,
10,000, 20,000 and 50,000 trees and analyzed the pair-wise Spearman rank correlation (ten
correlations with five models) of the property ranking for each Random Forest model. Not
surprisingly, the pair-wise correlation for a Random Forest with 100 trees indicates almost no
correlation of the property rank between models (R2 = 0.06 ± 0.02, mean ± s.d.). However, the
correlation continues to improve as we increase the number of trees (for 50,000 trees, R2 =
0.98 ± 0.001, mean ± s.d.). With 50,000 trees, the list of important physicochemical properties
becomes more stable and reproducible (Fig. 4b). We observed no indication of overfitting with
50,000 trees, which is consistent with the behavior of Random Forest (Supplementary Fig. 4
online).

DISCUSSION
The ESP predictor is more robust and performs significantly better than existing computational
methods or random predictions across ten experimentally diverse validation sets. Based on our
analyses, it provides a robust method to select candidate signature-peptides for MRM-MS
protein quantification, especially in the absence of MS-based experimental data. When applied
directly to MRM-MS—assay development for 14 proteins, our method achieved a success rate
of 93%, and on average correctly selected two signature peptides per protein. In particular, we
used the ESP predictor to successfully configure MRM-MS assays for six proteins in which
MS discovery data were not found in a comprehensive proteomic database.

We showed, using two validation sets, that the ESP predictor performs significantly better than
three previous methods designed to predict proteotypic peptides (Fig. 2c,d). We attribute the
success of our method to the following two factors. First, a unique aspect of our study, relative
to these prior studies, is the method used to determine the training set. Prior studies defined
their training set based on peptides ‘detected’ or ‘not detected’ in an MS experiment. Our
method focuses on predicting high-responding peptides. High-responding peptides are not only
proteotypic (that is, detectable and unique) but constitute that subset of proteotypic peptides
producing the highest MS response. Second, Random Forest is a committee of decision trees
that vote on deciding a final classification, and each of these trees is based on random
resampling in both feature and sample space. These characteristics of the Random Forest may
be responsible for the ability of the model to generalize well beyond the training set
(Supplementary Figs. 1 and 5 online).

A major advantage of the ESP predictor is that a single model performs well across all common
ESI experimental types. Unlike existing methods, which developed separate models for
different ESI platforms10 or even data set—specific models11, we observe very consistent
performance with a single model, indicating the model does not need to be retrained. We show
this by testing the ESP predictor against validation sets from multiple database-search
algorithms, quantification methods, mass spectrometers and experimental conditions. The ESP
predictor would probably need to be retrained to be used on data produced using matrix-assisted
laser desorption ionization (MALDI) MS, if a protease other than trypsin was used, or if other
sample preparation procedures differ significantly from those used for the training set (e.g.,
not reducing and alkylating cysteines before digestion or using different LC solvent buffers).

Use of the Random Forest classifier provides insight into the model by calculating the most
important physicochemical properties used to predict high-responding peptides. Because
Random Forest is a nonlinear model, it is not possible to determine the direction of response
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from each property (Supplementary Fig. 6 online). It is difficult to compare relevant
physicochemical properties (which are heavily influenced by the underlying experimental data)
across previous studies because each study used different training sets, properties and
computational models. For example, previously13 cysteine was shown to be important in
classifying a peptide as ‘not proteotypic’ because the sample was not alkylated, making
cysteine-containing peptides unlikely to be detected by MS. To further illustrate this point, in
our study, we applied two different feature-selection techniques and found minimal overlap
with the top 35 properties reported by the final Random Forest model (Supplementary Fig. 7
online). However, there is broad agreement that hydrophobicity, positive charge and energy
terms are critical for predicting high-responding peptides and proteotypic peptides10–13. We
grouped the top 35 properties into five categories: hydrophobicity, energy, structural, charge
and other (Fig. 4c). In previous studies examining ESI response, it was observed that Gibbs
free-energy transfer between amino acids has led to an increased response in peptides with
nonpolar regions27. This supports our findings that hydrophobicity and energy properties
influence peptide response. The structural properties may indicate likely cleavage sites during
protein digestion, and we know peptides must carry a charge to be detected in a mass
spectrometer28. It is worth mentioning that, although many of the properties appear similar in
name (that is, hydrophobicity), often the amino acid values were determined under different
experimental conditions. For example, a mathematical model has been developed29 to calculate
amino acid hydrophobicity based on HPLC performance of synthetic amino acids (rank 5 in
Fig. 4c). On the other hand, a model of retention time (that is, hydrophobicity; rank 12 inFig.
4c)30 was developed based on HPLC performance using a synthetic 5-mer peptide in which
individual amino acids were sequentially added in the middle. This suggests Random Forest
is able to leverage subtle differences in amino acid property values to appropriately calculate
peptide response.

In summary, we have shown that the ESP predictor is a robust method to predict high-
responding peptides from a given protein based entirely on the peptide sequence. The ESP
predictor greatly facilitates selection of optimal candidate signature-peptides for developing
targeted assays to detect and quantify any protein of interest in the proteome. The ESP predictor
fills a critical gap, enabling selection of candidate signature-peptides for proteins of interest in
the absence of high-quality MS-based experimental evidence. Its use should improve the
efficiency of biomarker verification, currently one of the most significant resource constraints
in the development of biomarkers for early detection of disease, and the development of
pharmacodynamic markers of therapeutic efficacy1,31,32.

METHODS
Defining empiric peptide classification training set

The National Cancer Institute Clinical Proteomic Technology Assessment in Cancer Program
(NCI-CPTAC) prepared a tryptic digest of a yeast lysate sample and sent it to three proteomic
laboratories: Vanderbilt University, New York University (NYU) and the Broad Institute. All
laboratories were expected to follow the same MS protocol on an LTQ-Orbitrap mass
spectrometer. Vanderbilt analyzed the sample in duplicate on two instruments, NYU analyzed
the sample in duplicate, and the Broad Institute performed six replicates. Thus, the yeast lysate
was analyzed 12 times across four LTQ-Orbitraps. The raw files were searched using Spectrum
Mill v3.4 beta with a precursor mass tolerance of 0.05 Da and fragment mass tolerance of 0.7
Da, specifying up to two missed cleavages and the following modifications: cysteine
carbamidomethylation, carbamylation of N termini and lysine, oxidized methionine and
pyroglutamic acid. The tandem MS (MS/MS) data were autovalidated at the protein level with
a protein score of 25 and at the peptide level using a score of 13, percent similarity of 70%,
forward-reverse score of 2, and rank 1-2 score difference of 2, for all charge states. In total,
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4,230 peptides (570 proteins) were identified. The peptide identities, m/z, and retention time
were exported to calculate the XIC for the monoisotopic peak.

The XIC for each peptide (in a given charge state) was calculated by determining the location
(m/z and retention time) of the peptide peak. If a peptide was sequenced multiple times (that
is, has many MS/MS spectra), the peptide with the best Spectrum Mill score on a per charge
basis was used for this purpose. Peptides with the highest score indicate the highest confidence
in matching the fragment spectra compared to spectra with lower scores for the same peptide.

In each LC-MS/MS run, different sets of peptides were sequence identified owing to the
stochastic behavior of the mass spectrometer. Therefore, retention times were propagated
across different LC-MS/MS runs using a quadratic regression model (R2 = 0.99 for all LC-MS/
MS runs). This yielded an approximate elution time, and allowed us to ‘hunt’ for peptides not
sequence identified in a particular LC-MS/MS run. The XIC was calculated using a
combination of retention time and m/z for each peptide.

An in-house program was developed to automatically calculate the XIC using the Thermo
Software Development Kit. The XIC was calculated using a retention time tolerance of ± 2.5
min and m/z tolerance of ± 15 p.p.m. A summary table was created where the response for each
peptide was obtained by summing the XIC values for all peptide variations (that is, peptides
with multiple charge states and common modifications). This reduced the list to 3,637 peptides.

The yeast LC-MS/MS runs from each institute (Vanderbilt, NYU, Broad Institute) were then
median normalized to account for any instrument or processing differences (which were
expected to be minor because all samples were processed following the same protocol). The
median normalization divides each LC-MS/MS run by its median XIC value and then
multiplies it by the common median XIC (the median of the median of all 12 LC-MS/MS runs).
A table of identified peptides was created, with their corresponding XIC (if present) in all 12
LC-MS/MS runs. The median of all 12 LC-MS/MS runs was selected as the ‘official’ XIC
value for each peptide. Peptides with a coefficient of variance (s.d./mean×100%) >100% were
rejected. In addition, any peptide with a median XIC of zero was rejected, indicating that it
was not reliably detected in all LC-MS/MS runs.

Next, a set of peptides ‘not detected’ in the mass spectrometer was created. An in silico tryptic
digest was performed for all sequence-identified proteins. A substring search was used to
remove any in silico peptide where we had evidence of a sequence-identified peptide. For
example, if the in silico peptide was LQTISALPK and the sequence-identified peptide was
LQTISALPKGDELR, the in silico peptide was rejected because it is a substring of the
sequence-identified peptide. Thus, the ‘not detected’ set of peptides was not seen in any form
of the sequence-identified peptides. In addition, any peptide sequence that was not unique and
any N- or C-terminal peptides (~4% of the peptides) were removed. The final peptide set
contained a list of sequence-identified peptides (with their corresponding XIC) and peptides
that were not sequence identified in any form.

To classify peptides as high- or low-responding, we considered only proteins with seven or
more sequence-identified peptides. The peptide response within each protein was log
transformed (excluding peptides ‘not detected’) to create a normal distribution and is justified
by the Box Cox transformation33. The log-transformed data were then standardized, using the
z-score (z), within each protein. High-responding peptides were selected with a z ≥ 0 whereas
low-responding peptides were selected with a z ≤ −1. This procedure was used only to create
the training set and does not apply to the validation sets, where we examined only the five
highest-responding peptides. The ‘not detected’ peptides were then appended to the low-
responding peptides to create a binary high (n = 623) versus low/not detected (n = 2,530)
classifier.
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Calculation of physicochemical properties for peptides
A diverse set of 550 physicochemical properties was used to calculate the peptide feature set.
Properties such as length, number of acidic (glutamic acid, asparagine) and basic (arginine,
lysine, histidine) residues were calculated by counting the number of amino acids in each
peptide. The Bioinformatics package in Matlab was used to calculate the peptide mass and pI.
The gas phase basicity was calculated from Zhang’s model17. The remaining 544
physicochemical properties contained individual values for each amino acid. For each peptide
and a given property, the constituent amino acid numerical values were averaged to produce
a single value. Missing values were ignored. The average (rather than median or sum) was
chosen because it is sensitive to outliers and normalizes for peptide length. It was assumed that
the average physicochemical property across each peptide was sufficient to capture relevant
information about peptide response. The model does not incorporate protein context such as
flanking amino acids or protein information (e.g., protein molecular weight or protein pI). We
view this as a separate problem from predicting high-responding peptides34,35. Calculations
of the peptide feature set were performed in Matlab R2006b (MathWorks).

Random Forest classifier for predicting high-responding peptides
Random Forest is a nonlinear ensemble algorithm composed of many individual decision trees.
Each tree is grown using a randomized tree-building algorithm. For each tree (num_tree), a
bootstrap sample (that is, random data subset sampled with replacement) is selected from the
training set. At each decision branch in the tree, the best spilt is chosen from a randomly selected
subset of properties (rather than all properties), num_feature. With these two random steps
each tree is different. Predictions result from the ensemble of all trees by taking the majority
vote. Instead of relying on this binary classification, a probabilistic output (the fraction of trees
that vote high) was used and referred to as probability of response.

The peptide training data were imbalanced. High-responding peptides, the class of interest,
comprised only ~20% of the data. Most classifiers focus on optimizing overall accuracy at the
expense of misclassifying the minority class (high-responding peptides). Down sampling is a
common technique to handle imbalanced data sets36. In Random Forest, the number of training
samples for each class was set to the size of the minority class (n = 623), and samples were
selected via bootstrapping with replacement from both the minority and majority classes. This
process was repeated for each tree and exhibits a significant improvement in performance and
generalization36.

Balanced class sizes were used to optimize num_tree and num_feature parameters in Random
Forest. The num_feature parameter was optimized by setting num_tree to 1,000 and varying
num_feature between 2 and 550 features. The optimal value for num_feature was determined
to be 90 (Supplementary Fig. 8 online). The num_tree parameter was optimized by increasing
the number of trees until the variable importance measure was consistent and reproducible
(Fig. 4b). The num_tree parameter was set to 50,000 trees.

The training data were used to calculate a no call region in order to judge the model performance
on peptides confidently classified as either high or low/not detected. Peptides with a predicted
probability of response between 0.38–0.65 were labeled as no call and the model was not
penalized. Peptides with a predicted probability greater than or equal to 0.65 were classified
as high and peptides with a predicted probability less than or equal to 0.38 were classified as
low/not detected. The reject region was selected based on a false positive rate (1 — specificity)
of 10%. This choice of reject region yielded calls on 74% of the training data.

The weighted accuracy was used to account for the imbalanced class size. The weighted
accuracy is calculated as: Aw = 0.5 * (sensitivity + specificity) where sensitivity is the percent
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of true positives and specificity is the percent of true negatives. The yeast training data were
split into training (90%) and test (10%) sets. The training and test set weighted accuracies were
81% and 76%, respectively. We also examined the area under the curve (AUC) for a receiver
operating characteristic (ROC) plot24 on the test data. The AUC is a standard measure of
performance where a perfect classification would have an AUC of 1 and random classification
would have an AUC of 0.5. The AUC for the test set was 83% (P = 9.4e-9) indicating the
predictions are significantly better than random (Supplementary Fig. 9 online). Random Forest
and ROC calculations were performed in R (http://CRAN.R-project.org/) using the Random
Forest package v. 4.5-18 (ref. 19) and ROCR library v. 1.0-2 (ref. 37), respectively.

Random Forest variable importance score
A measure of how each property contributes to the overall model performance is determined
during Random Forest training. When the values for an important property are permuted there
should be a noticeable decrease in model accuracy. Likewise, when the values for an irrelevant
property are permuted there should be little change in model accuracy. The difference in the
two accuracies are then averaged for all trees and normalized by the standard error to produce
an importance measure, referred to as the variable importance score.

Permutation test to evaluate the significance of the ESP predictions
All proteins were required to contain at least six or more predicted tryptic peptides (from an
in silico digest) and at least five or more sequence-identified peptides. For each protein, the
five highest-responding peptides were selected (based on experimental data, Fig. 1a down to
‘MRM-MS assay optimization’). Then, using the same protein, five peptides with the highest
probability of response were selected using the ESP predictor (Fig. 1b). For each validation
set, the actual test statistic (Ts) was calculated as the sum of the number of peptides in common
between the top five peptides from the experimental and computational methods for each
protein. Next, a random test statistic (Trs) was calculated by randomly sampling five peptides
and taking the sum of the number of peptides in common with the top five experimentally
derived peptides for each protein in the validation set. This process was repeated 10,000 times
to produce a null distribution for each validation set. The resulting distribution was used to
estimate a one-tailed P-value. Using this procedure, the statistical significance of the
predictions made by the ESP predictor was calculated as the number of proteins (also selected
at random from the respective validation set) increased. The permutation test implicitly
accounts for differences in the number of peptides from each protein. The permutation test
calculations were performed in R.

Analysis and MS summary for all validation sets
All protein mixtures were digested using trypsin and analyzed using reversed-phased nano LC-
ESI-MS/MS on multiple LTQ Oribtrap and LTQ-FT mass spectrometers (Thermo). Specific
conditions concerning chromatography, buffers, injection volume and MS analysis settings
varied according to each validation set (full details for all validation sets are provided in the
Supplementary Methods). Validation sets were subsequently processed using either Spectrum
Mill 3.4 beta (Agilent Technologies) or Mascot v. 2.1.0.3 (Matrix Science) to determine
sequence-identified peptides from the collected MS/MS spectra. Peptide response was
calculated using either an in-house developed program to calculate the XIC, MSQuant v. 1.4.2
b5 (http://msquant.sourceforge.net/), or Spectrum Mill. The total peptide response was
calculated by summing all forms of a given peptide (that is, multiple charge states and the
following modifications: carbamidomethylation, carbamylated lysine, oxidized methionine
and pyroglutamic acid). The following is a brief summary of each validation set:

ISB-18 is a publicly available standard protein mix consisting of 18 proteins provided
by the Institute for Systems Biology (ISB)38. Only the LTQ-FT data were considered.
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Yeast test refers to the 10% of proteins held-out from the training set in order to
evaluate the model performance.

Plasma refers to neat plasma (that is, undepleted plasma).

Sigma48 refers to a set of 48 equimolar proteins (Universal Proteomics Standard Set,
Sigma). The samples were digested using a trifluoroethanol-assisted digestion
protocol39.

Plasma Hu14 SCX refers to a plasma sample with the 14 most abundant proteins
removed using a MARS Hu-14 column (Agilent Technologies) and then fractionated
using strong cation exchange (SCX). Eleven fractions were collected and analyzed.

Yeast_2 refers to a separate independent analysis of a yeast mixture. Importantly,
proteins in common with the yeast training set were removed.

HeLa_1 refers to HeLaS3 cell lysate digested in-solution.

HeLa_2 refers to HeLaS3 cell lysate analyzed by GeLC-MS (Supplementary
Methods).

Pull-Down refers to a GeLC-MS affinity pull-down experiment from a HeLaS3 cell
lysate.

Plasma Hu14 refers to a plasma sample with the 14 most abundant proteins removed
using a MARS Hu-14 column.

MRM-MS assay development
The validated MRM peptides were defined from single protein digests for each of the 14
proteins. Peptide selection for the 14 target proteins was based upon experimental observation
using commercially available protein standards. Briefly, the proteins were individually
digested with trypsin and analyzed by nano LC-MS/MS in positive-ion electrospray on an LTQ
linear ion trap mass spectrometer (Thermo) with data-dependent acquisition. Peptide-sequence
identity was determined using Spectrum Mill on the collected MS/MS spectra. Approximately
five candidate peptide standards per protein were chosen based primarily on high relative
response. Exclusion criteria included large hydrophobic or small hydrophilic peptides, flanking
tryptic ends with dibasic amino acids (KK, RR, KR, RK) at the N or C terminus and peptide
identity corresponding to multiple endogenous plasma proteins. Peptide standards containing
methionine and cysteine were avoided if possible. Stable isotope—labeled versions of each
candidate peptide were synthesized for quantification and MRM response curves were
optimized in plasma for each protein over a wide concentration range. All peptides that
performed satisfactorily over the response curves are referred to as “validated MRM peptides.”

All MRM experiments were performed on a 4000 Q Trap Hybrid triple quadrupole/linear ion
trap mass spectrometer coupled to a Tempo LC system (Applied Biosystems). Data analysis
was done using MultiQuant software (Applied Biosystems).

The GPM database was searched (December 19, 2008) by entering the protein Ensembl
accession number and then selecting the ‘MRM’ link. For some proteins, a large number of
peptides were listed. Only the top five peptides were considered based on the number of times
observed in the GPM database.

Data and software availability
The yeast MS data used to develop the model are publicly available from Tranche
(http://tranche.proteomecommons.org/). The ESP predictor is freely available as a module in
the GenePattern integrative genomics software package (http://www.genepattern.org/) under
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the category ‘proteomics’. The automated script to calculate the XIC using the Thermo
Software Development Kit is available upon request. Source code and examples are available
as Supplementary Source Code online. The data associated with this manuscript may be
downloaded from the ProteomeCommons.org Tranche system
⟨/http://www.proteomecommons.org/data-downloader.jsp?
fileName=90MaGKV4KHKHOyOvNGSXxtDhAEQbJA3KbZap6ruHxvUFDk%
2BvOFyhawX%2BhSQa%2Bxa/KvG6oQCYON4nsZ/
uDw55FfNDAU0AAAAAAAAMLw==S⟩.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
ESP application and model development overview. (a) A typical proteomic workflow to select
signature peptides for targeted protein analysis using MRM. Candidate proteins are
experimentally analyzed, and five signature peptides per protein are selected based primarily
on high peptide-response and sequence composition, among other factors. After optimization,
the remaining peptides are referred to as validated MRM peptides. (b) We computationally
digest each candidate protein, in silico (no missed cleavages, 600–2,800 Da), to produce a set
of predicted tryptic peptides. Peptide sequences are input into the ESP predictor and we select
the five peptides with the highest probability of response for each protein. To validate the ESP
predictions, we compare the top five predicted peptides to the experimentally determined five
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highest-responding peptides from a, denoted by asterisks (3 out of 5, in this example). (c) We
developed the ESP predictor using peptides from a yeast lysate experimental analysis. We
trained the ESP predictor using Random Forest on 90% of the peptides and held out 10% to
test the model, referred to as Yeast test. We split the data at the protein level to avoid any bias
in training and testing the model on peptides from the same protein and to keep the training
and test data completely separated.
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Figure 2.
ESP predictor validation and method comparison. ESP predictions outperform existing
computation models and are statistically significant for all validation data sets based on a
random permutation test. We plotted the mean number of cumulative correctly predicted
peptides (Ts) for random combinations of 1–20 proteins. We calculated the 95% confidence
interval of the mean, but the error bars were too small to display. The null distribution for P-
value calculation is derived using a predictor that randomly selects the top five high-responding
peptides for a protein (Supplementary Fig. 2). (a) ESP predictor performance on multiple
validation sets, with the performance of a random predictor shown in gray. Each validation set
produces its own set of random distributions, depending on the number of peptides per protein.
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We grouped all random distributions into a single shaded area. (b) ESP predictions on plasma
validation sets. The samples represent undepleted plasma, top 14 most-abundant proteins
depleted, and depleted and then fractionated using SCX (also referred to as MUDPIT). Random
selection of the top five peptides resulted in the gray area. (c) Comparison between the ESP
predictor, proteotypic predictors and random predictions on a HeLa GeLC-MS cell lysate.
(d) Comparison between the ESP predictor, proteotypic predictors and random predictions on
a depleted and fractionated plasma sample. This is the sample type most commonly used for
MRM biomarker verification. See Tables 1 and 2 for more details. STEPP, SVM technique
for evaluating proteotypic peptides.
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Figure 3.
ESP predictions translate into experimentally validated MRM peptides. For each protein, we
performed an in silico digest (600–2,800 Da) and ensured that the top five peptides predicted
by the ESP predictor were unique in the Swiss-Prot human database. Although additional
filtering criteria could easily be applied after analysis with the ESP predictor, we opted for no
filtering (except top five uniqueness) to demonstrate the simplicity of using the ESP predictor
to select candidate signature-peptides to configure an MRM-MS assay. For all plots, peptides
are sorted by the ESP predicted probability of response (y-axis). The actual rank order of
measured peptide response is shown in Supplementary Table 2. (a) The ESP predictor correctly
selected all three validated MRM peptides (filled black circles) out of the five predicted
candidate signature-peptides for troponin I. (b) The ESP predictor correctly selected two
validated MRM peptides out of the five predicted candidate signature-peptides for IL-33. In
a and b, two representative proteins not found in the GPM database are shown. (c) GPM
correctly selected all four of the validated MRM peptides among the top five. Three peptides
are common between the ESP predictor and GPM. (d) Only two peptides were suggested by
GPM of which only one was a validated MRM peptide. In c and d, two representative proteins
are shown where we overlaid the MRM peptides suggested by GPM (open red circles).
Example d highlights the limitations of relying solely on database predictions because two
validated MRM peptides would have been missed.
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Figure 4.
Analysis of important physicochemical properties in predicting high-responding peptides. (a)
The yeast training set was randomly split into training- (80%) and test- (20%) sets to produce
100 different Random Forest models (1,000 trees) at each step of halving the number of
important properties. The box plot shows the test set error distribution. (b) The stability of
property importance improves with increased number of trees in the Random Forest model.
For a given number of trees, five models were built and the pairwise Spearman rank correlation
coefficient of determination (R2) was calculated for the ranked list of important features (error
bars ± 1 s.d). (c) The top 35 features from the ESP predictor using 50,000 trees are listed.
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Table 2
Comparison of computational methods

Method Validation set PS ≥1a PS ≥2b Tsc

ESP Predictor HeLa_2 (GeLC-MS) 86% 54% 498d

STEPP13 HeLa_2 (GeLC-MS) 80% 44% 425d

Peptide sieve (PAGE-ESI)10 HeLa_2 (GeLC-MS) 77% 43% 413d

Peptide detectability12 HeLa_2 (GeLC-MS) 77% 41% 394d

ESP predictor Plasma Hu14 SCX 93% 49% 74d

Peptide sieve (MUDPIT-ESI) Plasma Hu14 SCX 82% 46% 65d

STEPP Plasma Hu14 SCX 69% 36% 51e

Peptide detectability Plasma Hu14 SCX 62% 13% 35f

The ESP predictor demonstrates the best performance compared to existing computational methods. Refer to Table 1 for additional validation set
information. STEPP, SVM technique for evaluating proteotypic peptides.

a
Protein sensitivity (PS): The percent of proteins with one or more peptides predicted by the ESP predictor to be among the five highest responding.

b
The percent of proteins with two or more peptides predicted by the ESP predictor to be among the five highest responding.

c
Test statistic (Ts). The sum of correct peptides among the five highest-responding peptides for all proteins in the validation set.

d
P < 0.0001

e
P = 0.0029

f
P = 0.6685 based on null distribution for the entire validation set, by permutation test.

Nat Biotechnol. Author manuscript; available in PMC 2009 September 28.


