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Abstract
Molecular bottle-brushes are highly branched macromolecules with side chains densely grafted to a
long polymer backbone. The brush-like architecture allows focusing of the side-chain tension to the
backbone and its amplification from the picoNewton to nanoNewton range. The backbone tension
depends on the overall molecular conformation and the surrounding environment. Here we study the
relation between the tension and conformation of the molecular brushes in solutions, melts, and on
substrates. In solutions, we find that the backbone tension in dense brushes with side chains attached
to every backbone monomer is on the order of f0N3/8 in athermal solvents, f0N1/3 in θ-solvents, and
f0 in poor solvents and melts, where N is the degree of polymerization of side chains, f0≃ kBT/b is
the maximum tension in side chains, b is the Kuhn length, kB is Boltzmann constant, and T is absolute
temperature. Depending on the side chain length and solvent quality, molecular brushes in solutions
develop tension on the order of 10–100 picoNewtons, which is sufficient to break hydrogen bonds.
Significant amplification of tension occurs upon adsorption of brushes onto a substrate. On a strongly
attractive substrate, maximum tension in the brush backbone is ~ f0N, reaching values on the order
of several nanoNewtons which exceed the strength of a typical covalent bond. At low grafting density
and high spreading parameter the cross-sectional profile of adsorbed molecular brush is
approximately rectangular with thicknes , where A is the Hamaker constant and S is the
spreading parameter. At a very high spreading parameter (S > A), the brush thickness saturates at
monolayer ~ b. At a low spreading parameter, the cross-sectional profile of adsorbed molecular brush
has triangular tent-like shape. In the cross-over between these two opposite cases, covering a wide
range of parameter space, the adsorbed molecular brush consists of two layers. Side chains in the
lower layer gain surface energy due to the direct interaction with the substrate, while the second layer
spreads on the top of the first layer. Scaling theory predicts that this second layer has a triangular
cross-section with width R ~ N3/5 and height h ~ N2/5. Using self-consistent field theory we calculate
the cap profile y (x) = h (1 − x2/R2)2, where x is the transverse distance from the backbone. The
predicted cap shape is in excellent agreement with both computer simulation and experiment.

NIH Public Access
Author Manuscript
J Phys Chem B. Author manuscript; available in PMC 2010 March 26.

Published in final edited form as:
J Phys Chem B. 2009 March 26; 113(12): 3750–3768.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1 Introduction
The development of the field of polymer brushes has been greatly influenced by the pioneering
work of P. G. de Gennes. [1] This work provided basic principles for the fundamental
understanding of conformations and structure of polymer brushes. In the present paper,
dedicated to the memory of P. G. de Gennes, we apply these principles to describe
conformations and bond tension of brush-like macromolecules in various systems, including
solutions, melts, and substrates.

Tension in macromolecules is typically induced by applying external forces, e.g. upon
mastication and stretching of rubber. Externally applied tension in macromolecules can vary
over six orders of magnitude from a very low value of 10fN ≈ kBT/250nm (where kB is
Boltzmann constant and T is absolute temperature), at which deformation of giant linear chains
with a size of 250nm becomes significant, to a very high value of 10nN at which covalent bonds
break.

Bond tension can also be induced without externally applied forces through intramolecular
interactions, such as Coulomb repulsion in polyelectrolytes or steric repulsion in branched
polymers. This self-induced tension is lower, typically ranging from 10fN to 10pN. The upper
limit of this range is on the order of kBT per Kuhn segment corresponding to almost fully
stretched polymers. Achieving higher tension (100pN – 10nN) in molecular bonds through
intramolecular interactions remains challenging. Tension in this range may have profound
implications on the properties of macromolecules as it changes their electronic structure. This
in turn directly impacts molecular reactivity, optical properties, and conductivity [2].
Mechanical stress could lower the activation barrier for certain reactions or even, depending
on the magnitude of the applied stress, switch them on and off [3].

Whenever a large number of polymer chains is forced to share the same volume of space, the
chains get extended. For example, this may occur in densely branched macromolecules, where
many linear branches are confined within a small volume due to chemical bonding. We have
recently demonstrated that the bond tension in branched macromolecules is non-uniformly
distributed between different sections within the same molecule. Further-more, with a proper
design of the molecular architecture, this self-generated tension can be focused to a particular
strand leading to significant tension amplification. [4] Very high tension can be generated in
molecular pom-poms, by focusing lower tension from many individual arms to the pom-pom
spacer. The synthesis of well-defined pom-poms with many (~ 100 – 1000) long arms is a
laborious process. In the present paper, we consider a different class of branched polymers -
molecular brushes with side chains densely grafted to a long flexible backbone, that are
synthetically more accessible and thus allow systematic experimental studies. Understanding
stress distribution in brush-like macromolecules leads to additional insights into structural
integrity and function of branched biological molecules such as aggrecans [5] and mucins
[6].

We study two different systems: brushes in dilute solutions and brushes on substrates (Fig. 1).
In Section 2, we analyze conformations of molecular brushes in various solvents and the
corresponding tension generated in their backbones. The focusing of tension in a molecular
brush from its numerous side chains to its backbone occurs at the two ends of the molecule (at
the distance from the ends comparable to the width of the molecular brush) and transmitted
along the rest of the backbone (see Fig. 2). We observe that backbone tension can be much
higher than the maximum tension in densely grafted side chains, f0 ≃ kBT/b, i.e. on the order
of kBT per Kuhn segment b. In a theta solvent, tension in the backbone reaches f0N1/3, while
in an athermal solvent, the maximum backbone tension is higher, f0N3/8, where N is the degree
of polymerization of side chains.
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Significant amplification of tension occurs upon adsorption onto a substrate. Recently, it has
been demonstrated that depending on the branching density and the strength of attraction to
the substrate, the adsorption-induced tension can exceed the strength of covalent bonds and
lead to the irreversible fracture of brush-like macromolecules [7]. In Section 3, we present a
detailed study of the adsorption of molecular brushes from a non-solvent (such as air) onto a
solid substrate. We demonstrate that such adsorption may lead to extremely high tension in the
backbone of the molecule (on the order of f0N). We also find that this tension depends on the
conformation of adsorbed macromolecules. We consider different adsorption regimes in some
of which the cross-sectional profile of molecular brush consists of a strongly adsorbed lower
layer and a tent-like cap (see Fig. 1b). Each regime shows different functional dependence of
tension on the side chain length, grafting density, and spreading parameter. In Section 4, the
shape of adsorbed brushes is calculated using self-consistent field theory (Appendix A) and is
found to be in good agreement with the results of computer simulations and molecular imaging
experiments.

2 Molecular brush in dilute solution
2.1 Model

In this section, we analyze the conformation of a molecular brush in a dilute solution and relate
it to the mechanical tension in the backbone and side chains. We consider molecular brushes
with exible and chemically identical backbone and side chains (Fig. 1a). The molecule contains
K ≫ 1 side chains each containing N ≫ 1 Kuhn monomers of length b and volume b3. Side
chains are tethered to the backbone with grafting density 1/m, where m < N is the number of
monomeric units in the spacer between neighboring side chains. The spatial distance between
these neighboring attachment points along the backbone is d. The total number of monomers
in a molecular brush is thus K (N + m) and the contour length of the molecule is Kd.

The solvent quality is specified by the excluded volume parameter υ = b3τ, where the deviation
of absolute temperature T from the θ-temperature is τ = 1 −θ/T for T > θ and τ = T/θ − 1 for
T < θ. [8] The free energy per repeating unit, consisting of one side chain and one spacer, is
the sum of the elastic free energy of the backbone spacer, Fsp, and the free energy of the side
chain Fsc:

(1)

Minimization of the free energy per repeating unit,∂ Frep/∂d = 0 gives two properties: the
equilibrium end-to-end distance of the spacer deq, and the bond tension fsp in the spacer as

(2)

This equation is valid at all equilibrium spacer elongations including the strong stretching limit
with deq ≃ bm. Note that the spacer tension, fsp, is equivalent to the backbone tension at the
location of a given spacer. We keep our discussion at the scaling level and drop numerical
coefficients on the order of unity. We are particularly interested in the conditions of strong
spacer elongation (deq ≃ bm) that correspond to high tension,

(3)

and can cause significant alterations in the electronic structure of molecular backbone and
ultimately rupture of chemical bonds. [2]
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To demonstrate the significant difference in tension between macromolecules in solutions and
on substrates, we first consider molecular brushes in dilute solutions. Conformations of
molecular brushes under various solvent conditions were investigated in previous studies [9,
10]. Below, we review basic results of these studies and calculate tension in molecular brushes
in good, Θ, and poor solvents.

2.2 Good and theta solvents
Figure 3 presents the tension in the spacer for different number m of monomers in the spacer
and the quality of solvent τ. For very long spacers, m ≳ N, there is no tension in the molecule
since both the side chains and spacers are unperturbed coils. A decrease in spacer length m <
N leads to the overlap of side chains, and to the increase in backbone tension. According to the
scaling model of molecular brushes [9–11], the arrangement of side chains in good and theta
solvents is considered as a cylinder of densely packed concentration blobs with the interaction
energy kBT per blob due to binary or ternary monomer-monomer interactions. In all regimes
of the diagram, the concentration blob size ξc (r) is on the order of average separation between
the side chains. At distance r from the backbone the area per side chain is proportional to rd
due to the cylindrical symmetry. Therefore, the blob size increases with the distance r from
the backbone as

(4)

The side chain tension decreases with the distance from the backbone as

(5)

Local crowding of the side chains creates effective local semidilute conditions inside the brush
with chain statistics depending on the solvent quality. In the semidilute good solvent regime,
the size of the thermal blob

(6)

is smaller than the size of the concentration blob [8,12]

(7)

where Φ(r) is the local monomer volume fraction at radial distance r from the backbone. Chains
are Gaussian on length scales below ξth and swollen on intermediate length scales ranging from
ξth to ξc. In order to determine the radial dependence of this volume fraction, we use the
condition that concentration blobs are space filling. equating Eq. 4 for the size of concentration
blobs and Eq. 7, we find the radial dependence of the volume fraction in the semidilute good
solvent regime

(8)

The radius R of the bottle brush is determined by the condition that the integral of the number
density Φ(r)/b3 per spacer is equal to the number of monomers in the side chain,
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(9)

leading to the expression

(10)

The number of tension blobs per side chain is given by

(11)

where

(12)

is the number of monomers per concentration blob at the distance r from the backbone. By
substituting this expression into integral (11) and multiplying it by kBT we get the free energy
of a side chain [11],

(13)

The phase diagram in Fig. 3 depicts different regimes of a brush-like macro-molecule in good
and theta solvents. The essential details of these regimes are discussed below.

Regime 1 (swollen brush and swollen spacer)—The stretching free energy of the
spacer in a good solvent is proportional to the number of tension blobs in the backbone with
the size ξsp ≃τ1/2b5/2m3/2/d3/2 [8,12,13],

(14)

Minimization of the free energy of the molecular brush corresponds to the balance between
the energies of the spacer and side chains, Fsp ≃ Fsc. From this condition we find the
equilibrium size of the spacer [9]

(15)

The tension in the spacer is higher for shorter spacers with fewer number of monomers m. The
higher tension fsp ≈ kBT/ξsp corresponds to a smaller Pincus blobs of the size [8,12,13]

(16)
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Note that tension is decreasing with improving solvent quality. This counter-intuitive behavior
is due to the change of spacer elasticity from Gaussian to nonlinear regime due to partial
swelling of the spacer.

Regime 2 (swollen brush and Gaussian spacer)—The above expressions are valid as
long as the Pincus blob of the spacer is larger than the size of the thermal blob, Eq. 6. Otherwise,
the elastic energy of the spacer is given by the Gaussian expression

(17)

which is balanced by the free energy of side chains, Eq. 13, at the equilibrium size of the spacer,

(18)

The cross-over between regimes 1 and 2 occurs for spacers with the number of monomers

(19)

which is shown in the phase plane (m,τ) in Fig. 3 by the thick black line.

Regime 3 (swollen brush and fully stretched spacer)—The Gaussian stretching of
the spacer and expression (17) for its free energy is valid as long as the spacer size d (Eq. 18)
is much smaller than its contour length bm. Shorter spacers with the number of monomers

(20)

are almost fully stretched with the tension higher than f0 = kBT/b.

In a good solvent, the tension in the spacer of the molecular brush is monotonically increasing
with decreasing number of monomers of the spacer:

(21)

where the values of exponents μi,νi and ti for regimes i = 1,2 and 3 are given in Table 1. Note,
that even though for short spacers with m < m23 (in regime 3) the tension is larger than f0, Eq.
21 is still applicable, because it is determined by the stretching of side chains (see Eq. 2) that
are far from full extension.

In an athermal solvent with the excluded volume parameter τ = 1 the two cross-over spacer
lengths coincide, m12 = m23 = N3/13 (Eq. 19 and Eq. 20), and the intermediate regime 2
disappears. The tension for this case is represented by the line a in Fig. 3, and corresponds to
the molecular brush in an athermal solvent. The tension in a fully stretched backbone of a
molecular brush with shorter spacers (m < N3/13) is larger than f0 (regime 3). The backbone
tension reaches its maximum value f0N3/8 ≫ f0 for the monomeric spacer (m = 1).

Regime 4 (theta brush and Gaussian spacer)—At temperatures close to the θ-
temperature the size of the thermal blob increases and becomes comparable to the size of the
concentration blob at the outer layer of the molecular brush, ξc (R) ≃ ξth. This condition
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corresponds to the cross-over between good and θ-solvent regimes of the molecular brush.
Substituting Eq. 10 for R in Eq. 4 for ξc we find the boundary between regimes 2 and 4:

(22)

Chains in regime 4 exhibit Gaussian statistics leading to the size of the concentration blob
given by

(23)

Since such blobs densely fill the molecular brush, the volume fraction Φ(r) can be found by
equating Eq. 23 and Eq. 4, and is equal to

(24)

Using calculations similar to the case of a good solvent, one can obtain the free energy of a
side chain [11]

(25)

Balancing this side chain free energy with the free energy of the spacer, Eq. 17, we find the
equilibrium size of the long spacer

(26)

valid for

(27)

The spacer in this regime is Gaussian, and its tension fsp ≃ kBTdeq/ (b2m) can be written in the
form of Eq. 21 with exponent t4 = 0 and exponents μ4 = −5/8 and ν4 = 1/8, as listed in Table
1.

Regime 5 (theta brush and fully stretched spacer)—Shorter spacers with m < m45 are
fully stretched. The tension increases with decreasing number m of monomers in the spacer,
and this is given by Eq. 21 with exponents μ5 = −5/3, ν5 = 1/3 and t5 = 0 (see Table 1). The
crossover boundary between good solvent regime 3 and θ-solvent regime 5 for a fully stretched
spacer occurs at

(28)

Tension in the backbone of a molecular brush in a θ-solvent is represented by the line b in Fig.
3. The maximum backbone tension (for monomeric spacer m = 1) in a θ-solvent reaches the
value f0N1/3 ≫ f0, which is lower than the maximum tension in a good solvent (f0N3/8) by the
factor N1/24.
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2.3 Poor solvent
It is commonly believed that when macromolecules are collapsed in a poor solvent, the chain
dimensions become smaller than or equal to its Gaussian size. We demonstrate that this is not
necessary the case for branched macromolecules. Below we describe the situation under which
the collapsed molecular brush is strongly stretched without direct application of external forces.
To explain the mechanism of chain stretching in poor solvent, consider a droplet of Z chains,
each of them consisting of N Kuhn monomers of length b in a solvent with the excluded volume
parameter υ < 0. The balance of two-body attraction and three-body repulsion leads to a globule
with the volume fraction Φ ≃ |υ|/b3. [8,12] The size of the corresponding thermal blob is ξth
≃ b4/|υ| and the number of monomers in this thermal blob is gth ≃ b6/|υ|2. The linear size of
the droplet, R ≃ (ZN/ |υ|)1/3, could be either larger or smaller than the Gaussian size of a single
chain, RG ≃ bN1/2, depending on the number Z of chains in the droplet. In the case of Z < (N/
gth)1/2 the size of this droplet is smaller than the Gaussian size of the chain and cross-linking
of these chains into the star does not significantly modify their conformations. The situation
is qualitatively different for larger number of chains, Z > (N/gth)1/2. In this case the size of free
chains is ideal and each of them overlaps with (N/gth)1/2 chains. Formation of a star with Z >
(N/gth)1/2 arms forces more chains to overlap and, therefore, leads to their stretching.

Figure 4 presents the tension in the spacer and the diagram of states for molecular brushes with
a different number m of spacer monomers and solvents with various quality below θ
temperature (τ < 0). We calculate the tension in the backbone of the molecular brush at
conditions corresponding to regimes 4 – 7 of the diagram in this figure, discussed in Refs. [9,
10], as well as for the regime 8, which was not addressed in the literature.

Regime 6 (collapsed brush and weakly stretched spacer)—The θ-like behavior of
the molecular brush is valid as long as the size of the outer blob ξ ≃ (Rd)1/2, Eq. 4, is smaller
than the size of the thermal blob, b/ |τ|, Eq. 6, where R is the thickness of the molecular brush.
The corresponding regimes 4 and 5 of the θ-brush extend in a symmetrical way to the opposite
side of the θ-line τ = 0. The boundary of regime 4 on the poor solvent side is obtained from
Eq. 22 by replacing τ → −τ:

(29)

Arms of the molecular brush are collapsed on the poor solvent side of this boundary (in the
regime 6). The polymer volume fraction Φ is determined by the balance of the attractive binary
and the repulsive ternary interactions, −kBTτΦN ≃ kBTΦ2N, leading to Φ ≃ −τ. [8,12]
Conformations of the outer part of the molecular brush in a poor solvent can be represented as
the dense packing (melt) of thermal blobs of the size ξth, Eq. 6. Although the small inner part
of the brush is θ-like, most of its properties are controlled by the outer part with uniform volume
fraction Φ ≃ −τ.

The dependence of the polymer brush thickness R on the spacer size d can be found from this
volume fraction, Φ ≃ Nb3/ (R2d) ≃ −τ, yielding R2 ≃ Nb3/ (−τd). The equilibrium values of
the spacer size deq and the brush thickness Req are determined from the minimum of the free
energy per repeating unit, kBTR2/ (b2N) + kBTd2/ (b2m) [10]:

(30)

Since the spacer is Gaussian, the tension in it is fsp≃ kBTdeq/ (b2m), and is given by equation
fsp ≃ f0mμ6 (−τ)t6 (Eq. 21 with i = 6 and ν6 = 0) with exponents μ6 = −2/3 and t6 = −1/3 presented
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in Table 1. Note that the backbone tension in a poor solvent does not depend on the length of
side chains, but only on spacer length and solvent quality.

The case of theta brush, represented by the line d in Fig. 4 for τ < 0, is similar to the line b in
Fig. 3 corresponding to θ-brush for τ > 0.

Regime 7 (collapsed brush and fully stretched spacer)—The tension in the spacer
fsp reaches the value f0 at the boundary between regimes 6 and 7, for the spacer length

(31)

The spacer in regime 7 is fully stretched and its tension (Eq. 21) is characterized by the
following exponents: μ7 = −2, t7 = −1, ν7 = 0 (Table 1). The crossover for brushes with fully
stretched spacers between θ-state (regime 5) and collapsed state (regime 7) can be obtained
from Eq. 28 by replacing τ → −τ:

(32)

Regime 8 (collapsed brush and unstretched spacer)—Elastic energy of the spacer
decreases with increasing spacer length m, reaching kBT per spacer at the boundary of the
regime 6, where the size of the spacer is equal to the size ξth of the thermal blob,

(33)

The θ-like brush conformation in the center of the molecule disappears along this boundary,
and the entire molecular brush in this regime can be represented by the uniformly dense packing
of thermal blobs.

Along the boundary of regimes 6 and 8, Eq. 33, the thickness R of the brush, Eq. 30, reaches
the Gaussian size of side arms, bN1/2, and retains this value throughout the whole regime 8.
Although both the arms and the spacer are almost unstretched in this regime, the entire
backbone is still elongated with the stretching energy kBT distributed over several p > 1 spacers.
Thus, the typical conformation of the backbone inside the tension blob of size ξt is the random
walk of p spacers with mean square end-to-end distance  The volume of the

molecular brush per contour length ξt is  The number of monomers in this volume
is equal to the product of the monomer concentration Φ/b3 and the volume of the section of
the brush containing p side arms, pN ≃ ξtb2N (Φ/b3). This gives the number of arms in a tension
blob p ≃ ξtb2 (Φ/b3), where  and Φ ≃ −τ, as derived above. By combining the
two equations for p, one obtains the size of the tension blob,

(34)

The resulting tension in the backbone, fsp ≃ kBT/ξt, is given by Eq. 21 with the exponents μ8
= −1, t8 = −1, and ν8 = 0. The tension in the backbone becomes negligible when the size of the
tension blob, ξt, Eq. 34, reaches the thickness Req ≃ bN1/2 of the brush at the boundary of the
regime 8 with the number of monomers in the spacer
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(35)

and this boundary is shown by the red lines in Fig. 4. The case of intermediate solvent is
represented by two lines b and c in Fig. 4, which pass through regimes 5 – 8. The line a in this
figure corresponds to a non-solvent regime (τ = −1) with the tension in the spacer f ≤ f0. The
maximum tension in the non-solvent case fsp ≈ f0 is reached for the monomeric spacer m = 1.

Summarizing this section, we conclude that the backbone of molecular brushes experiences
tension, fsp, in solutions, which is determined by the solvent quality, τ, the degrees of
polymerization, m, of the spacer, and in good and theta solvents by the degree of
polymerization, N, of side chains. High backbone tensions (fsp > f0 = kBT/b) are achieved for
relatively short spacers with m < m45 and m < m67 (Eq. 27 and Eq.31). The highest tension
fsp ≃ f0N3/8 is developed in densely branched macromolecules (m ≃ 1) in athermal solvent (τ
≃ 1). Decreasing solvent strength (τ < 1) for dense brushes (m ≃ 1) leads to the decrease in
the backbone tension (fsp ≃ f0N3/8τ1/8 in a good solvent, fsp ≃ f0N1/3 in a theta solvent, and
fsp ≃ f0(−τ)−1 in a poor solvent). Note that loosely grafted brushes (m ≫ 1) in regime 1 exhibit
an opposite behavior, i.e. increasing backbone tension with decreasing solvent quality. The
maximum tension in a melt (τ ≃ −1) is fsp ≃ f0. Although the backbone tension in a solution
can be higher than f0, and even approach the values sufficient to break hydrogen bonds (for
the molecular brush with N ≃ 28 and monomeric spacer m ≃ 1 in an athermal solvent, fsp ≃
f0N3/8 ≃ 8f0 ≃ 30pN), it is still too small to rupture covalent bonds. Below we demonstrate
that adsorption of molecular brushes on substrates significantly increases tension in side chains
and along the backbone.

3 Macromolecules on a substrate
Here we consider only the case of polymer in a non-solvent environment (τ = −1), which is
relevant to a typical experimental system, e.g. polymer chain at solid-air interface. Adsorption
of star polymers at solid – good solvent interface was studied by Halperin and Joanny. [14]
The strong intramolecular attraction (≃ kBT per monomer) in a non-solvent environment (e.g.,
in air) results in dense uniform packing of the monomers in the globular state of a molecule.
An attraction to the substrate leads only to the deformation of the macromolecule (changes its
shape without perturbing the dense packing of its monomers). The adsorption-induced
conformational changes allow increasing the number of monomer-substrate contacts at low
entropic costs. The polymer-substrate interaction has both short-term and long-term
contributions. The short-range contributions are characterized by two dimensionless
parameters - surface tension parameter γ and spreading parameter S, defined as

(36)

(37)

where γ1, γ2 and γ12 are respective surface tensions at air-substrate, polymer-air, and polymer-
substrate boundaries. Even though the adsorption from non-solvent results in lower tensions
compared to adsorption from solution, we show that the tension enhancement due to interaction
with the substrate is significant and may lead to a backbone tension on the order of several
nanoNewtons. This is sufficient to break covalent bonds as observed experimentally [7].
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3.1 An isolated linear polymer on substrate in a nonsolvent
A linear polymer containing N monomers (an isolated chain) spreads on a substrate with S ≥
0 and adopts a pancake conformation if spreading parameter S is large. This unimolecular
pancake has thickness h and radius

(38)

where Nb3 is the volume of this polymer in a non-solvent. In general, bottom and top surfaces
of the pancake would have different radii, R and R − δ, see Fig. 5. The shape of the pancake
can be approximated by the truncated cone with the surface energy consisting of two
contributions, the spreading energy

(39)

and the excess of the surface energy due to the edge contributions

(40)

(41)

The van der Waals energy has the simplest form for the cylindrical shape of the pancake with
δ = 0, , where A′= H/(kBT) is the effective dimensionless Hamaker constant
with traditional dimensional Hamaker constant H. [15] In addition, there is a correlation
contribution due to packing of the macromolecule with uniform density into a slit of thickness
h, which has the same functional form. [16] The sum of both contributions can be combined
into the effective van der Waals part of the free energy

(42)

Following Refs. [17,18] we assume, that the effective Hamaker constant A and the spreading
parameter S are independent variables and are both positive, A > 0 and S > 0. If the shape of
the pancake is not a perfect cylinder with δ > 0, the effective van der Waals free energy has an
additional contribution

(43)

The coefficient C depends on the shape of the pancake. A more accurate analysis in [17] predicts
a parabolic shape of the edge up to monomeric distances from the substrate, which leads to a
weak logarithmic dependence of the constant C on the thickness h. Below we discuss the
essential details of the different conformational regimes that are depicted in Figure 5.

Regime 1 (rectangular cross-section)—In the case of small deviations from the
cylindrical shape, δ ≪ R, the radius of the pancake can be determined from the balance of the
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spreading energy, Eq. 39, and the van der Waals free energy, Eq. 42. Using the relation between
the radius R and the height h, Eq. 38, we obtain the equilibrium height

(44)

and the equilibrium radius

(45)

of a pancake globule formed by a linear polymer (see Fig. 5). Minimizing the δ-dependent
corrections, Eq. 40 and Eq. 43, to the free energy in the case h ≪ δ ≪ R, we find the equilibrium
width of the truncated edge of the pancake

(46)

A decrease of the spreading parameter S leads to simultaneous increase in heq and δeq, and the
decrease in Req. This change of the shape continues until the molecule transforms from a
pancake to a tent-like shape at δ ≃ R. By equating Req, Eq. 45, and δeq from Eq. 46, we find
the value of the spreading parameter at the cross-over,

(47)

At this value of the spreading parameter all four terms of the free energy (spreading term, Eq.
39, surface term, Eq. 40, and two parts of the Hamaker free energy, Eq. 42 and Eq. 43) are on
the same order of magnitude.

Regime 2 (tent-like cross-section)—For the spreading parameter lower than the cross-
over value S12, (Eq. 47), the shape of the molecule remains tent-like, and is determined by the
balance of the surface free energy, kBTγh2/b2, which tends to atten the molecule, and the van
der Waals term, Eq. 42, which prefers to thicken the molecule. The resulting tent-like shape
of the molecule in regime 2, see Fig. 5, is characterized by the height

(48)

and by the radius of the base

(49)

The linear in asymmetry h/R decrease of  (Eq. 41) at fixed cross-sectional area hR can
be captured at the scaling level by a triangular asymmetric (heq/Req < 1) cross-section.

Regime 3 (monolayer)—The upper boundary of the regime 1 corresponds to the pancake
thickness h13 ≃ b at the value of the spreading parameter (see Eq. 44)

(50)
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At higher values of the spreading parameter, S > S13, the thickness of the pancake saturates at
the monomer size, h3 ≃ b. The lateral size of the pancake in this regime is R3 ≃ bN1/2.

3.2 Molecular brush on a substrate in a non-solvent
When side chains are tethered to the backbone of the molecular brush with the distance between
adjacent grafts d < Req, they overlap, and the overall shape of the adsorbed molecular brush
transforms from a pancake into a ribbon (Fig. 6). On a strongly adsorbing substrate, the
thickness h of the molecule is still governed by the balance of the spreading and the long-range
van der Waals interactions (h ≈ heq, Eq. 44). Due to dense grafting, side chains stretch in the
direction normal to the backbone. The tension of side chains is focused onto the backbone at
its ends and transmitted through the middle part of the backbone (see Fig. 2). The molecular
backbone also stretches to optimize the overall elastic response of the macromolecule to the
deformation.

The interplay of spreading, elastic, and van der Waals forces gives rise to a variety of molecular
brush conformations with different cross-sections of the molecule. In some cases, brushes may
even demonstrare spontaneous curvature of the backbone due to uneven distribution of
adsorbed side chains with respect to the backbone [19]. In this paper, we consider only
symmetric (50/50) distribution leading to locally straight backbone. To determine optimal
conformations of the molecular brush, we consider the free energy Frep per its repeating unit
which includes the backbone spacer and the side chain. Frep comprises the elastic free energy
of the backbone spacer between neighboring attachment points to the side chains, Fsp, and the
free energy of a side chain, Fsc, (Eq. 1) consisting of elastic, Felastic, and interaction,
Finteract, contributions:

(51)

The elastic part of the side chain free energy is

(52)

where the width of the absorbed brush

(53)

is found from the constant monomer number density condition, using d as the distance between
side chains and h as its height (Fig. 6). The contributions to the free energy due to interactions
with the substrate introduced in Eq. 39 – Eq. 43 above are reformulated for the ribbon-like
shape of the adsorbed molecular brush as

(54)

(55)

(56)
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(57)

where δ is the edge width (h ≪ δ ≪ R). The total free energy of a side chain in an adsorbed
molecular brush is

(58)

Note that the interaction energy, Finteract, of densely grafted molecular brushes (N ≫ m) with
the substrate is dominated by their side chains. Therefore, we include Finteract as a part of the
free energy of side chains Fsc (Eq. 58). The average tension in a side chain of a molecular brush
adsorbed from a non-solvent is fsc ≃ kBTReq/ (b2N) (if Req ≪ bN), while the backbone spacer
tension, fsp, is given by Eq. 2.

Depending on values of the spreading parameter S and spacer degree of polymerization m, one
finds different conformations of the adsorbed molecular brush depicted in the diagram in figure
7.

Regime 1 (rectangular cross-section, weakly stretched spacer)—At large values
of the spreading parameter S, the molecular brush spreads on a substrate to gain maximum
number of polymer-surface contacts. If the distance d between attachment points is relatively
large, the entropy loss due to side chain stretching is small compared to the spreading gain,

 Here, the equilibrium thickness of the ribbon heq, Eq. 44, is dictated by the
balance of the same interactions as for a pancake formed by an isolated linear chain (the
spreading and the van der Waals parts of the free energy, Eq. 54 and Eq. 56).

Note, that both spreading and van der Waals terms of the free energy depend only on the area
Rd of the repeating unit foot-print at the surface, which is reciprocally proportional to the height
h of the molecule (see Eq. 53). In order to find the width R and the distance between attachment
points d separately, we have to balance the elastic free energies of the side chain Felastic and
of the spacer Fsp that are much smaller than the spreading, and the van der Waals parts of the
free energy.

A cross-section of the absorbed molecular brush has the rectangular shape with the width

(59)

where heq is given by Eq. 44. Substituting this expression for the width of the ribbon into the
elastic part of the side chain free energy, Eq. 52, and differentiating it with respect to the
distance d between neighboring attachment points along the backbone, Eq. 2, we obtain the
tension in the spacer

(60)

The size deq of the weakly stretched spacer is obtained using the equation of tension in Gaussian
chains
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(61)

Thus we find the equilibrium distance between neighboring attachment points (equilibrium
size of a spacer)

(62)

The tension in the spacer in this regime is obtained by substituting deq from Eq. 62 into Eq.
61:

(63)

with exponents  Fig. 8 presents the dependence
of backbone tension, fsc, on spreading parameter S and spacer degree of polymerization m for
all predicted regimes with the corresponding exponents listed in Table 2.

Substituting deq from Eq. 62 into Eq. 59 we obtain the width of the brush

(64)

with exponents  presented in Table 3 for all
regimes i.

Regime 2 (van der Waals-controlled tent-like cross-section, weakly stretched
spacer)—At low values of the spreading parameter S,

(65)

the spreading part of the free energy,  (Eq. 54), becomes smaller than the edge

contribution  (Eq. 55), and the the cross-section becomes tent-like, similar to the case
of adsorbed linear chain. [20] The dependencies of the width R and height h of the tent-like
cross-section on the distance d between side chains are determined by the balance of the edge

contribution to the surface free energy , Eq. 55, and the edge contribution to the van
der Waals energy, Eq. 57 with δ ≃ R. Following the procedure similar to the one described for
regime 1, by substituting the expression for the width of the cross-section R into the elastic
free energy of a side chain, Eq. 52, and differentiating with respect to distance d we get the
dependence of spacer tension on the distance d between neighboring attachment points

(66)

Using Eq. 61 for Gaussian elasticity of the spacer, we obtain the equilibrium distance between
attachment points deq ≃ b (γN/A)1/10 m3/10 and equilibrium width of the cross-section Req,
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given by Eq. 64 with exponents  The height of
the brush has similar scaling

(67)

with exponents  given for all regimes i in Table
4.

The asymmetry R/h of the tent decreases with the spacer degree of polymerization m, and
increases with the side chain degree of polymerization N,

(68)

In this regime the spacer is weakly stretched with the tension given by Eq. 63 with exponents

, see Fig. 8 and Table 2.

Regime 3 (monolayer, weakly stretched spacer)—At the highest spreading parameter
S > S13 = A, (see Eq. 50), the height of the molecule saturates at the monomer size, heq ≈ b.
Properties of the absorbed molecular brush are determined by the balance of Gaussian elasticity
of the backbone, Eq. 17, and the side chain, Felastic ≃ kBTNb2/d2, see Eq. 52, with distance
between neighboring attachment points d ≃ b (Nm)1/4. Other results are listed in Table 2–Table
4 and plotted in Fig. 8.

Regime 4 (monolayer, strongly stretched spacer)—Tension in the spacer increases
with decreasing m, and the spacer becomes fully stretched at tension fsp ≈ f0, Eq. 3, at the
number of monomers in the spacer

(69)

The distance between attachment points for the molecular brush with strongly stretched spacer
is

(70)

In this regime the width of the molecule is fixed at the value R ≈ bN/m and the free energy per
repeating unit of the brush consists of elastic and spreading contributions

(71)

The spreading contribution does not depend on the distance d between attachment points and,
therefore, does not contribute to the tension in the spacer, Eq. 2. Corresponding exponents for
this regime are given in Table 2, Table 3 and Table 4. Note that none of the properties (Table
2–Table 4) in regimes 3 and 4 (monolayer conformation of the brush) depend on substrate
interaction parameters.

Regime 5 (rectangular cross-section, strongly stretched spacer)—As the
spreading parameter S decreases below the cross-over value
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(72)

the thickness of the brush h becomes larger than the monomer size b. This regime is analogous
to regime 1, with properties of the absorbed molecular brush determined by the balance of the
spreading (Eq. 54) and van der Waals (Eq. 56) parts of the free energy. The height of the
absorbed molecule in this regime 5, heq ≃ b (A/S)1/2, depends only on the spreading parameter
S and the Hamaker constant A, as in regime 1, see Eq. 44. The main difference between regimes
1 and 5 is that in regime 5 the spacer is almost fully stretched d ≃ bm (Eq. 70). The width R
of the molecular brush increases with decreasing the number of monomers in the spacer in this
regime 5 as

(73)

The corresponding exponents characterizing spacer tension fsp, brush width R, and height
heq are presented in Table 2–Table 4. Note that in order to calculate the tension in the spacer,
fsp, one needs to keep the dependence of the elastic free energy of side chains on the distance
d between side chain attachment points (Eq. 52) Felastic ≃ Nb2S/ (Ad2) and differentiate it with
respect to d to obtain the spacer tension fsp ≃ f0Nb3S/ (Ad3) before substituting the value of the
spacing between attachment points d ≃ bm. The tension in the spacer fsp ≃ f0NS/ (Am3)
decreases upon increasing the number of monomers m in the spacer, and reaches the cross-
over value f0 at the boundary between regimes 1 and 5:

(74)

Regime 6 (stretching controlled tent-like cross-section, weakly stretched
spacer)—Decreasing the length of the spacer in the tent-like conformation of the brush in
regime 2 leads to the increase of the tension in the arms. The stretching part of the free energy
increases and becomes on the order of van der Waals energy at the boundary between regimes
2 and 6 for the spacer length

(75)

Properties of molecular brushes with shorter spacers (m < m26) are determined by the balance

of stretching, Felastic, Eq. 52, and surface, , (Eq. 55 with δ ≃ R) free energies, resulting
in an optimal free energy

(76)

and backbone tension fsp, brush width Req; and height heq given in Table 2–Table 4 (see Fig.
8 for the plot of tension fsp). The aspect ratio of the tent-like cap in this regime increases with
the number of monomers in both spacer and side chain,

(77)
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Regime 7 (weakly adsorbing substrate, stretching controlled tent-like cross-
section, strongly stretched spacer)—Spacers with small numbers of monomers

(78)

are fully stretched with spacer sizes d ≈ bm, Eq. 70. Properties of such molecular brushes are
determined by the balance of the elastic energy of the side chain Felastic, Eq. 52, and the surface

free energy , Eq. 55 with δ ≃ R, similar to regime 6 (see Table 2–Table 4). The main
difference between regimes 6 and 7 is that spacers are fully stretched in regime 7.

The asymmetry R/h of the tent cross-section in this regime is

(79)

The aspect ratio Req/heq of the tent-like cap in regimes 6, 7, and also in regimes 8 and 9 discussed
below, increases with m, while in regime 2 (determined by the balance of van der Waals and
surface energies) this aspect ratio decreases with m (Eq. 68).

Note, that the brush properties in tent-like regimes 2, 6 and 7 do not depend on the spreading

parameter S because the corresponding spreading free energy , Eq. 54, is smaller than

the surface energy , Eq. 55 with δ ≃ R.

Regime 8 (two phases, strongly stretched spacer)—An unexpected prediction of our
theory is that the cross-over between the tent-like conformation for small spreading parameter
S (regime 7) and the rectangular cross-section for large spreading parameter S (regime 5) occurs
over a wide two-phase regime 8. In this regime, the cross-section of the brush consists of two
coexisting layers: (i) a lower layer with the rectangular shape of width R1 and height h1 and
(ii) the tent-like upper layer with width R2 < R1 and height h2 < R2 (Fig. 1b). Side chains
spontaneously partition between these two layers with the ratio of the number of chains in these
layers determined by the equality of chemical potentials of side chains in both layers.

Note that the elastic part of the free energy, Felastic (Eq. 52) in regime 5 is smaller than either
spreading (Eq. 54) or van der Waals (Eq. 56) parts of the free energy at large values of the
spreading parameter S, but Felastic increases with decreasing the number of monomers m in the
spacer due to increasing elongation of side chains. These three parts of the free energy become
comparable at the boundary between regimes 5 and 8:

(80)

This cross-over takes place for the spreading parameter

(81)

Further decreases in the number of spacer monomers m results in a significant decrease of
entropy due to the extension of side chains. For spacers with

(82)
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additional side chains would also like to reach the substrate, but the resulting decrease of the
free energy due to the additional contacts with the substrate would be smaller than the free
energy increase due to chain extension. To minimize the total free energy, the adsorbed
macromolecule changes its conformation through re-partitioning of the side chains. A fraction
of side chains are forced to leave the surface and form the second layer on the top of the first
layer. Thus, at lower values of the spreading parameter S < S58, Eq. 81, or at shorter spacers
(Eq. 82), the second layer (cap) of side chains emerges. The molecules of the second layer are
much less stretched, but also do not gain any spreading energy, and their size is determined by
the balance of stretching and surface free energies. Side chains remaining in the first layer stay
at the marginal conditions of approximate equality of three parts of the free energy, Eq. 80.
This condition corresponds to equality of chemical potentials between the two layers.

The effective spreading parameter for this second layer of chains is zero Scap = 0, because this
cap is in contact with the same polymer material, γ12 = 0, γ1 = γ2. A cross-section of the
molecular brush in regime 8 is an elongated rectangle of length R1 and height h1 (first layer)
decorated by the tent-like cap of length R2 and height h2 (second layer), see Fig. 1b. Properties
of the bottom layer (width R1 and height h1) can be found from the properties of the adsorbed
molecular brush in regime 5 by replacing the number of monomers m in the spacer by the
number of monomers m1 in the section of the backbone between two adjacent side chains
belonging to this bottom layer,

(83)

(see columns 81st in Table 3 and Table 4). The width R2 and height h2 of the second layer (tent-
like cap) in regime 8 have the same scaling behavior as the width R and height h in regime 7,
see columns 82nd in Table 3 and Table 4. Along the boundary between regimes 7 and 8,

(84)

the width of both layers become comparable, R2 ≃ R1, and the overall cross-section of adsorbed
macromolecule becomes tent-like.

Note that both top and bottom layers contribute to the tension of the backbone. The bottom
layer dominates in Regime 8’, with equilibrium free energy per side chain Fsc(d) ≃
−kBTdNA−1/4S7/4/b. The corresponding tension in the backbone spacer fsp = −[∂Fsc(d)/
∂d]h=heq is

(85)

The contributions of both layers to the backbone tension become comparable along the dotted
line in regime 8 (Fig. 7)

(86)

(87)
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At lower values of the spreading parameter, S < S8, (regime 8”), the contribution of the upper
layer to the backbone tension fsp dominates, and the backbone tension approaches an
independent of S value (similar to regime 7), given by Eq. 63 with exponents, listed in Table
2 in column 8”.

Regimes 8’ and 8” are slightly modified just above regime 6 in Fig. 7 (see the shaded section
of regime 8). This section of the diagram is designated as regimes 10’ and 10”, respectively.
Here, the spacer is not fully stretched (d < bm), and the tension in the backbone is given by Eq.
61. Above the dotted line

(88)

the tension and all other parameters of the cross-section are the same as in regime 8’ except
for the spacer size d which is given here by

(89)

Below dotted line S10 the parameters of the cross-section are the same as in regime 6.

Regime 9 (strongly adsorbing substrate, densely grafted brush, monolayer with
cap, strongly stretched spacer)—This regime is relevant to experiments on adsorption
of dense brushes (m ≃ 1) to strongly attractive substrates (S ≃ 1) [7]. At high values of the
spreading parameter,

(90)

the thickness of the lower layer saturates at the monomer size h1 ≃ b. The fraction of side
chains in the first layer m/m1 is controlled by the balance of spreading energy gain
−kBTSR1d1/b2 (Eq. 54) and the elastic part of the free energy  (Eq. 52 with h1 = b).
The width of the first layer is obtained from the condition for the total number of monomers
per side chain in the first layer, R1 ≃ Nb2/d1 (see Eq. 53 with h1 ≃ b), where d1 ≃ bm1 is the
distance between attachment points of side chains in the first layer. The free energy of the first
layer per its repeating unit is

(91)

(see also Eq. 71 with m replaced by m1). The equilibrium value of the number of backbone
monomers between attachment points of side chains in the first layer

(92)

is determined by the condition  This gives the fraction of adsorbed side chains m/m1
≃ mS1/2. Therefore, increasing S leads to the corresponding increase of the number of side
chains in the first layer along with its equilibrium width as

(93)
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The dimensions of the second layer have the same dependence on parameters N,γ,m as in regime
8’. The number of chains in the cap decreases with increasing the spreading parameter S and
the number of monomers in the spacer m, and the cap disappears at the boundary between
regimes 9 and 4,

(94)

The tension in the backbone is dominated by the first layer and is given by

(95)

Thus backbone tension in regime 9 is the highest of all regimes for an adsorbed molecular
brush in a non-solvent. Note stronger than linear dependence of the backbone tension, fsp, on
the spreading parameter, S. It is due in part to the increase in the number of side chains in the
first layer with increasing S (Eq. 92). This increase in the number of side chains results in the
increase of the width, R1, of the first layer with the spreading parameter S (Eq. 93), which leads
to additional increase of the force (fsp ~ R1S) applied to the backbone. As the spreading
parameter increases further, the width of the first layer of an adsorbed molecular brush with
very short spacers (m ≃ 1) levels off at the length of almost fully stretched side chains R1 ≃
bN. This condition corresponds to the upper boundary of our scaling analysis. At higher
spreading parameters, we expect tension to grow linearly with both S and N.

Summarizing section 3: we have described three adsorption regimes for a linear chain at a
substrate in a non-solvent (Fig. 5): (i) monolayer (regime 3) for high values of the spreading
parameter; (ii) regime 2 with tent-like cross-section for a low spreading parameter; and (iii)
regime 1 with rectangular cross-section for an intermediate spreading parameter. We found
the same three regimes for adsorption of a loose molecular brush with long spacers between
attachments of side chains.

(i) At a high spreading parameter (S > A) the conformation of an adsorbed brush is a monolayer
with weakly stretched backbone (regime 3) or strongly stretched backbone for relatively shorter
spacers (regime 4). Both regimes 3 and 4 are characterized by the monomeric height of the
adsorbed molecule heq ≃ b and properties independent of interaction parameters S, A, and γ.

(ii) An adsorbed molecular brush has a tent-like cross-section for low values of the spreading
parameter (regimes 2, 6, and 7). In regime 2 the dominant parts of the free energy are surface
(Eq. 55) and van der Waals (Eq. 57) contributions - similar to the corresponding regime 2 for
adsorbed linear chain. In regime 6 with weakly stretched spacer and regime 7 with strongly
stretched spacer, the dominant free energy parts are surface (Eq. 55) and stretching (Eq. 52)
terms. The properties of the chain in these regimes 6 and 7 do not depend on the spreading
parameter S nor on the Hamaker constant A, while in regime 2, all properties depend on A. The
difference of the dominant contribution to free energy between regime 2 on one side and
regimes 6, 7 (and second layers of regimes 8 and 9) on the other side results in qualitatively
different dependence of the “tent” aspect ratio Req/heq and number of monomers in a spacer
m: the aspect ratio Req/ heq decreases with m in regime 2 and increases with m in all other
regimes.

(iii) A rectangular cross-section of adsorbed molecular bottle-brush is found for the
intermediate values of spreading parameter with weakly stretched backbone (regime 1) or
strongly stretched backbone (regime 5). The thickness of the adsorbed brush in these regimes

Panyukov et al. Page 21

J Phys Chem B. Author manuscript; available in PMC 2010 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1 and 5 is the same as of the adsorbed linear chain in regime 1, , and is determined
by the balance of spreading (Eq. 54) and Hamaker (Eq. 56) contributions to the free energy.

(iv) The unexpected result of our calculations is that the cross-over between regimes with tent-
like cross-sectional profiles of adsorbed brushes at low values of the spreading parameter and
rectangular or monolayer profiles at a high spreading parameter occurs via wide two-layer
regimes. The upper layer in these mixed regimes always has a tent-like profile. The lower layer
is rectangular with thickness  in regime 8 and is a monolayer with thickness h1 ≃
b in regime 9. The highest backbone tension for all of studied regimes is achieved in regime
9. Even further increase in tension is expected for higher spreading parameters (S > 1).

4 Shape of the adsorbed molecular brush
4.1 Theoretical predictions

Triangular tent-like cross-sectional profile—As discussed in Section 3.2, the triangular

profile is the simplest shape that captures a linear in the asymmetry h/R decrease of  at
the fixed cross-sectional area hR and minimizes the free energy of the adsorbed brush on the
scaling level. This prediction is in contrast to the previous studies of strongly adsorbed brush-
like macromolecules [21], where the cap was assumed to be a hemicylinder with the
hemicircular cross-section of radius R ≃ (Nb3/d)1/2. The surface free energy contribution
associated with a hemicircular cross-section, Fsurface/kBT ≃ γdR/b2 ≃ γ(Nd/b)1/2 is noticeably

larger than the contribution  (Eq. 76) for an asymmetric tent-like
configuration. In addition to different molecular weight (N) dependence, the two free energy
expressions demonstrate qualitatively different behavior as functions of the distance d between
grafting points. For a hemicircular cross-section, Fsurface ~ d1/2 increases with an increase in
d, whereas for a triangular cross-section, the surface free energy loss decreases as

 Overall, the hemicircular cross-section leads to a largely overestimated cap free
energy that incorrectly predicts the fraction of desorbed side chains and their contribution to
both tension and stiffness of adsorbed brush-like macro-molecules.

Shape of the tent from self-consistent field theory—The scaling analysis predicts a
tent-like shape of the cap with large aspect ratio Req/heq ≫ 1. (see e.g. Eq. 68, Eq.77 and Eq.
79). Although the tent-like cross-section of the adsorbed molecular brush, presented above,
provides correct scaling laws (e.g. Eq. 64 and Eq.67), it is only schematic and does not specify
the details of the shape. A more accurate description of the cap shape for regimes 7, 8, and 9
can be obtained using the analytical self-consistent field (SCF) theory developed earlier for
strongly stretched dry (solvent-free) brushes [22]. Appendix A presents the derivation of the
profile of the molecular cross-section y(x) for S = 0 and long side chains (N ≫ 1)

(96)

where index “0” is assigned to the parameters of the molecular brush at S = 0. The width R0
and height h0 are given by scaling dependences for regime 7 with the numerical coefficients
on the order of unity (see Appendix A). The same shape of the cap (second layer) is expected
in regimes 8 and 9.

A tent-like configuration of the cap is thermodynamically stable for the molecular brush with
any backbone length L = bmK ≫ R in the regimes of the diagram in Fig. 7 above the line S78
(Eq. 84). Here, the macromolecule is envisioned as a ribbon with a rectangular first layer
(regime 8) or monolayer (regime 9) and a tent-like cap. The surface free energy losses
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associated with side edges of the ribbon (first layer) introduces an effective attraction between
distal parts of the macromolecule. Therefore, the molecular brush with long backbone will self-
organize into a two-dimensional (pancake) globule with the thickness of the first layer

 (regime 8) or heq ≃ b (regime 9), but still containing almost unperturbed tent-
like second layer above the backbone. These pancake globules have been experimentally
observed, and the tent-like second layer allows one to study the details of two-dimensional
polymer conformations and dynamics using atomic force microscopy (see below). Stability of
the tent-like conformation in the absence of the first layer (regimes 2, 6, and 7) depends on the
relative value of backbone length L and persistence length lp controlling the ability of the chain
to bend and stick to itself, transferring from a semi-flexible conformation with tent-like cross-
section into a pancake globule.

4.2 Experiment and computer simulation
To verify the theoretical prediction of the cap shape, we carried out both molecular imaging
and computer simulation studies of adsorbed brushes with different lengths of the side chains.
In both cases, the studied systems corresponded to regime 9 with a large spreading parameter
of S ~ 1 and a very short backbone spacer of m ~ 1. For molecular imaging experiments, we
employed an Atomic Force Microscope (multimode, Nanoscope 3A, Veeco Metrology Group)
using soft Si cantilevers with a spring constant of 5 N/m and a resonance frequency of 160 kHz.
Figure 9 shows height images of single molecular brushes with poly(n-butyl acrylate) (pBA)
side chains measured in tapping mode. The height contrast was sufficient to image both the
first layer and the second layer (cap). Figure 9 also shows the cross-sectional profile of the
imaged molecules, which allows measurements of the width (R1) and height (h1) of the first
layer, as well as the width (R2) and the height (h2) of the cap. These molecular dimensions
were measured for a series of brush-like macromolecules with different degrees of
polymerization of the pBA side chains ranging from N = 44 to N = 138. Figure 10 shows log-
log plots for the measured molecular dimensions along with the linear fits of the data points
that give the following scaling laws: R1 ~ N1/03±0/04, h1 ~ N0, R2 ~ N0/65±0/04, and h2 ~
N0/57±0/02. The best agreement between theory (regime 9) and experiment was found for the
dimensions of the first layer, i.e. h1 and R1 (Eq. 93), as well as for the width of the cap, R2, for
which the theoretical prediction is R2 ~ N3/5 (Table 3). The height of the cap exhibits less good
agreement with theory (h2 ~ N2/5, see Table 4) due to significant experimental error of AFM
measurements in the nanometer range. The physical contact between single molecules and the
AFM tip may lead to underestimation of the cap height due to cap deformation and to
overestimation of the cap width due to convolution with the tip shape. These effects are
particularly significant when studying soft nanometer sized objects, such as polymer
molecules. To verify the cap deformation we carried out the AFM measurements under
different forces and also used the newly developed soft lithography technique to mold
individual molecules. [23] The obtained results indicated that the deformation of the cap was
small and did not exceed 20 %. Unlike the cap height, the width of the cap was significantly
overestimated by AFM. Since the tip shape on the nanometer scale is largely unknown, we

used the generic correction for the tip-induced broadening of the cap , where
rtip = 10nm is the radius of the tip. Figure 10 presents experimental values of R2 corrected for
the tip-induced broadening by subtracting ΔR2 from the experimental data. Additional
contributions to the experimental error may be due to polydispersity of the side chains. Here
we expect that longer side chains will preferentially segregate in the first layer, while shorter
side chains will stay in the cap. This partitioning will shift the effective molecular weight of
side chains in the cap. Despite the described uncertainties, the molecular imaging experiments
confirm the strong asymmetry of the cap, i.e. R2 ≫ h2 due to spreading and extension of side
chains in the second layer on top of the first layer.
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We have carried out molecular dynamics simulations of a brush-like macromolecule on a
strongly attractive substrate. In the computer simulations, we have used a truncated and shifted
Lennard-Jones potential [24], [8] for monomer-monomer interactions with energy parameter
ε = 0.5kBT, corresponding to poor solvent, and a van der Waals interaction potential between
the monomers and the substrate (the 3 − 9 potential) [25] with a variable adsorption strength.
For covalent bonds, we investigated two classes of bond potentials: the finitely extensible
nonlinear elastic (FENE) potential [24], [8] and an infinitely extensible nonlinear elastic
(IENE) potential

(97)

with the exponent, which affects the steepness of the potential, n = 32, the spring constant
K2 = 8ε/σ2, and the bond length parameter a = 1.1σ, where σ is the Lennard-Jones length unit.
Figure 11a presents a snap shot of an adsorbed molecular brush with K = 256 side chains each
containing N = 16 monomers obtained using an IENE potential. Figure 11b shows a cross-
sectional profile of monomer density for an adsorbed brush measured perpendicular to the
backbone. The monomer density is time-averaged and averaged over all side chains along the
central, i.e. “transmission”, part of the backbone (see Fig. 2). Similar to the AFM experiments
(Fig. 9) the profile clearly exhibits the first layer and a tent-like cap. The shape of the cap,
obtained by AFM and computer simulations, was compared with the prediction of SCF theory
(Eq. 96). The SCF predictions are shown as red dashed lines in cross-sectional profiles in Fig.
9 and Fig. 11 and demonstrate excellent agreement with experiments and simulations. Both
techniques (AFM and computer simulation) confirm the strong asymmetry of the cap R2 ≫
h2.

5 Discussion and conclusions
The paper describes conformations and bond tension of molecular bottle-brushes in solution,
melt and on substrate. In solution, the backbone experiences tension fsp, which depends on the
solvent quality τ, the degree of polymerization of the spacer m, and (in the case of good and
θ solvents) the degree of polymerization of the side chains N. The backbone tension becomes
significant, i.e. fsp > f0 = kBT/b, for short spacers. The highest tension fsp = f0N3/8 is developed
in the maximally dense brushes (m ~ 1) in athermal solvent (τ ~ 1). Lowering the solvent
strength leads to the decrease of the backbone tension for densely grafted brushes following
different scaling with the solvent quality parameter τ in good (τ > 0) and poor (τ < 0) solvents.
In good solvent, tension decreases with decreasing τ as fsp ≃ f0N3/8τ1/8 reaching fsp ≃ f0N1/3

in theta solvent. In poor solvent backbone tension decreases even further as fsp ≃ f0(−τ)−1,
reaching fsp ≃ f0 in a non-solvent environment (τ ≃ −1), e.g. melt. Note, that the backbone
tension in poor solvent does not depend on the length of the side chains. It is interesting that
loosely grafted molecular brushes exhibit an opposite behavior in good solvent, i.e. the
backbone tension increases with decreasing solvent quality. To summarize, the backbone
tension fsp in a solution can approach the level sufficient to break hydrogen bonds, however,
it is too small to rupture a covalent bond. For example, for a molecular brush with N ≃ 103

Kuhn segments and spacer with m ≃ 1 monomers, the backbone tension ranges from fsp ≃ f0
≃ 4pN in a melt to fsp ≃ 10003/8f0 ≃ 50pN in an athermal solvent (τ ≃ 1).

Significant amplification of tension occurs upon adsorption onto a substrate even in a non-
solvent environment (considered in this paper), which is the most relevant system to
experiments at a substrate-air interface. Depending on the spreading parameter S and the spacer
length m, this system exhibits many conformational regimes (see Figure 7 and Table 3 and
Table 4) with different functional dependences for the backbone tension (see Table 2). Loose
brushes on a strongly adsorbing substrate adopt a shape of a monolayer (h ≃ b), which is similar
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to linear chains. In this regime, the brush molecule optimizes its shape at a constant number
of monomeric contacts with the substrate. Therefore, the properties of the brush, such as
backbone tension fsp, width R, and height h depend neither on the substrate-molecule
interaction parameters S and A nor on the molecule − non-solvent interaction parameter γ. The
key properties for the monolayer conformation can be summarized for weakly stretched
backbone (with fsp < f0) as

(98)

and for strongly stretched backbone (fsp > f0) as

(99)

At lower values of spreading parameter S < A, a loosely grafted molecular brush adsorbs
yielding a thicker layer with rectangular cross-section of thickness h ≃ b (A/S)1/2 determined
by the balance of spreading and van der Waals interactions (similar to an adsorbed linear chain).
In adsorption regimes 1 and 5 with rectangular cross-section, the properties of molecular brush
are similar to properties in a monolayer regimes 3 and 4, but modified by the ratio of van der
Waals and spreading parameters A/S and are still independent of the polymer – non-solvent
surface tension, γ. The main properties of an adsorbed molecular brush with a rectangular cross-
section and a weakly stretched backbone (fsp < f0) are

(100)

while for strongly stretched backbone (fsp > f0) they are

(101)

At the lowest values of spreading parameter S, the cross-section of an adsorbed molecular brush
is tent-like. The properties of loosely grafted brushes on a weakly attracted surface are
independent of S and determined by the balance of polymer – non-solvent (e.g. air) surface
energy with the surface tension parameter γ and van der Waals interactions with the Hamaker
parameter A. Therefore, the properties of an adsorbed brush in the van der Waals − controlled
regime (tent-like profile and low backbone tension) depend on the ratio γ/A and can be written
as

(102)

The corresponding properties of molecular brushes with higher grafting density at weakly
adsorbing substrates are determined by the balance of polymer- non-solvent surface energy
and entropic elasticity of side chains and are independent not only of spreading parameter S,
but also of the Hamaker constant A. The molecular cross-section is still tent-like and the main
properties for the regime with weakly stretched backbone (fsp < f0) are
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(103)

and for strongly stretched backbone (fsp > f0) the tension is

(104)

while the dimension of the tent-like cross-section are

(105)

The cross-over between adsorbed brushes with a tent-like shape at low values of spreading
parameter and a rectangular or monolayer cross-section at a higher spreading parameter occurs
via unexpectedly wide regimes with a two-layer cross-section. The second layer is formed by
those side chains that lose more entropy due to stretching compared to the energy decrease due
to extra contacts with the surface in the first layer. The partitioning of side chains between the
two layers is determined by the equality of their chemical potentials and the fraction of side
chains in the first layer is m/m1 ≃ m(AS)−1/4. At intermediate values of spreading parameter,
the dimensions of the first layer are determined by the balance of spreading and van der Waals
interactions (similar to regimes 1 and 5) and are independent on the length of the spacer m

(106)

The dimensions of the tent-like second layer are the same as in regime 7 (see Eq. 105). The
backbone tension is dominated by the side chains in the upper layer for lower values of
spreading parameter (regime 8”) and is given by Eq. 104. At higher values of spreading
parameter, the tension is controlled by the first layer. The tension depends linearly on the length
of the side chains, N, and it is independent on the length of the spacer, m,

(107)

At even higher values of spreading parameter S > A, the first layer becomes a monolayer with
dimensions

(108)

while the second remains tent-like with size given by Equation 105. The backbone tension in
this regime is also linear in the length of side chains

(109)

In regimes 9 and 8’, the backbone tension, fsp, is dominated by the first layer in the segregated
molecular brush and is related to the spreading parameter S and the width of the first layer
R1 as fsp ≃ f0SR1/b (see Eq. 106–Eq.109). The fraction of side chains in the first layer in regime
9 is given by m/m1 ≃ mS1/2 (Eq. 92). Upon further increase of spreading parameter, side chains
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become fully stretched, R1 ≃ bN, and backbone tension reaches fsp ≃ f0SN which can approach
the level of nanoNewtons sufficient to rupture covalent bonds. For example, for N = 100 Kuhn
monomers and the spreading parameter S ≃ 5 (using Eq. 37 at room temperature for γ1 − γ2 −
γ12 = 20mJ/m2 and b2 = 1nm2), one obtains fsp ≃ 2nN. This estimate is consistent with the data
in ref. [7], that demonstrate multiple random scissions of C − C bonds in backbones of poly(n-
butyl acrylate) molecular brushes with long side chains on various liquid and solid substrates
at similar backbone tension. Two projections in Fig. 8 demonstrate scaling dependences of the
backbone tension fsp as the function of m and S, respectively, corresponding to different
(horizontal and vertical) cross-sections of the diagram in Fig. 7.

In all regimes, the tent-like shape of the cap is strongly asymmetric (h2 ≪ R2), which allows
minimization of the surface free energy. The asymmetry was confirmed by both experiments
and computer simulations. Depending on the regime, the aspect ratio (asymmetry) Req/heq of
the tent cross-section exhibits different dependences on m, N, γ, and S. For example, in regimes
6 and 7, Req/heq increases with the number of monomers in spacer (Eq. 77 and Eq. 79), in
contrast to regime 2 (Eq. 68).

The above considerations can be generalized to the case of the starlike [26] and dendritic
macromolecules. Thus, we observe that special architecture of the molecule may lead to high
amplification of the tension in specific chain strands. Structure and properties of branched
macromolecules strongly depend on the tension in their bonds. Adsorption-induced tension
can exceed the strength of covalent bonds and lead to the irreversible fracture of
macromolecules [7]. If molecules are assembled of designed, e.g. DNA [27–29], fragments,
then our results hold the key to making architectures that undergo well-defined fragmentation
upon adsorption. Even when the bonds are not broken, the self-generated tension (in solution,
melt, and on substrate) can alter the electronic structure of monomers and directly impact
molecular reactivity, optical properties, and conductivity of macromolecules [3].
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Appendix

Appendix

A Self-consistent field (SCF) model
We use SCF formalism developed for strongly stretched polymer brushes [22] to examine the
shape of the cross-section in a dry (solvent-free) molecular brush on a substrate with the
spreading parameter S ≤ 0. The case S = 0 applies also to the second layer (cap) of adsorbed
molecular brush (regimes 8 and 9 of the diagram in Figure 5).

Consider cross-section profile y(x) of the adsorbed molecular brush. This function represents
brush height y(x) at the transverse coordinate position x away from the backbone. Maximum
height is y(0) = h and the edges of the brush are defined by x = −R and x = R with y(−R) = y
(R) = 0. Since the cross-section of the adsorbed molecular brush is symmetric y(x) = y(−x), we
consider only the right half of this cross-section with non-negative argument x ≥ 0. The side
chains are extended in the lateral direction (along x-axis). The region of a radius ~ h around
the backbone, where the branches emanate in a “star-like” fashion, is small compared to the
total area of the cross-section when h ≪ R. Under these conditions, the side chains can be
envisioned as “tethered” to the vertical plane (passing through the backbone of the molecular
brush, x = 0) with the grafting area s = dh per chain, where d is the distance between branches
along the backbone. Side chains are modeled as trajectories x(n) with specified position x of
each monomer with the index n, where x is the distance from the backbone (assumed, for
simplicity, straight).

Panyukov et al. Page 28

J Phys Chem B. Author manuscript; available in PMC 2010 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Following [22], we introduce the local chain stretching function E(x,x′) = dx/dn, which
determines the extension of a side arm at the distance x from the backbone provided that its
free end is located at the distance x′ > x. Assuming that free ends of side chains can be found
everywhere within the volume of the molecular brush we also introduce the distribution
function of the free ends g(x′) normalized as

(A.1)

A.1 Free energy functional
For a fixed distance d between attachment points of side chains to the backbone, the free energy
Fsc per repeating unit is given by

(A.2)

where , while the van der Waals contribution, FυdW, is currently
omitted. The spreading contribution is specified as

(A.3)

where y˙ ≡ dy/dx, and we use dimensionless variables y and x, as well as distances R, d and h
(measured in units of the monomer size b). The first term in Eq. A.3 is the surface energy of
brush - non-solvent (air) with dimensionless surface tension γ (Eq. 36), while the second term
is the energy gain due to polymer-surface contact with spreading parameter S defined by Eq.
37. At small curvatures |y˙| ≪ 1 expression (A.3) is simplified as

(A.4)

The elastic energy of a non-uniformly extended side chain is given by [22]

(A.5)

where E(x,x′) is a function describing local stretching at position x for a chain with free end at
location x′. An additional condition of dense packing of the monomers inside the brush, ϕ(x)
= 1, can be rewritten as

(A.6)

This equation is similar to that for the planar molten brush except that the effective grafting
density [y(x)d]−1 decreases as a function of the distance x from the backbone. Another two
constraints on functions E(x,x′) and y(x) insure the conservation of the total number of
monomers of the chain with the given position x′ of the end,
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(A.7)

and the conservation of the total number of monomers in the cross-section of the molecular
brush,

(A.8)

The total free energy Fsc per repeating unit takes the form

(A.9)

Minimization of Fsc with respect to three unknown functions, y(x), g(x) and E(x,x′), taking into
account of additional constraints (A.6), (A.7) and (A.8), determines parameters of the
equilibrium structure of the molecular brush at fixed values of S, d and R. Minimization of the
elastic free energy (second term in Eq. A.9) by taking into account constraints (A.6) and (A.
7) leads to the universal function for the local chain stretching

(A.10)

The details of this procedure can be found in the original paper [22].

By implementing Eq. A.10 and Eq. A.6 we express the elastic free energy Felastic in Eq. A.5
as

(A.11)

The total free energy Fsc depends on the single unknown function y(x),

(A.12)

where the parameter u is determined as

(A.13)

and the only constraint on y(x) is imposed by Eq. A.8.

Minimization of Fsc with respect to y(x) and taking into account Eq. A.8 is equivalent to
unconditional minimization of the functional
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(A.14)

where λ is the Lagrange multiplier. The function y(x) is determined by the Eulier equation
[30] as

(A.15)

with the boundary conditions y(R) = 0 and y˙ (0) = 0. (The latter condition implies that the
contour line is smooth at the top of the cross-section, x = 0). Integration of Eq. A.15 gives

(A.16)

By applying the conservation condition (A.8) we find the Lagrange multiplier

(A.17)

Substituting y(x) in Eq. A.14 and introducing new combinations of parameters,

(A.18)

we express the free energy Fsc as

(A.19)

Minimization of free energy F with respect to R (which is equivalent to minimizing F with
respect to z ~ R5, dF/dz = 0) gives

(A.20)

The Lagrange multiplier λ in Eq. A.17 is then expressed as

(A.21)

where z = z(α) is the solution of Eq. A.20. Correspondingly, y(x) in Eq. A.16 is given by
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(A.22)

or, equivalently,

(A.23)

where t = x/R is the reduced distance from the backbone. Eq. A.23 gives

(A.24)

and it can therefore be rewritten as

(A.25)

A.2 Distribution function of the free ends g(x′)
The condition (A.6) relates the distribution function of the free ends g(x′) to the profile y(x) of
the contour line as

(A.26)

By introducing new variables ξ = R2 − x2, η = R2 − (x′)2 and the new function υ(η) = g(x′)/2x
′, we transform the integral equation (A.26) into the Abel equation,

(A.27)

Its solution

(A.28)

provides the distribution function of the free chain ends,

(A.29)
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A.3 Spreading parameter S = 0
When S ~ α = 0, the parameter z = 1, and the transverse size of the molecular cross-section is
given by Eq. A.18,

(A.30)

whereas the height of the cross-section is determined by Eq. A.24 as

(A.31)

Here, as above, the subscript “0” indicates the cross-section dimensions at S = 0. The
corresponding free energy Fsc,0 per side chain is

(A.32)

The product of the Lagrange multiplier λ0, γ and N determines chemical potential μ0 of the
side chain,

(A.33)

As expected, Eq. A.30, Eq. A.31 and Eq. A.32 confirm exponents predicted for dimensions of
the tent-like cross-section in regimes 2, 6, 7, and for the cap in regimes 8 and 9 in the diagram
in Figure 7, and that all numerical coefficients in scaling dependences (A.30) – (A.32) are on
the order of unity. (Note that full cross-section is symmetric with the total transverse size
2R0).

The profile of the molecular brush cross-section y(x) is specified as

(A.34)

where t = x/R0 is the reduced distance from the backbone. The corresponding distribution
function of the free ends of the side chains for the brush cap (S = 0) at equilibrium is

(A.35)

This distribution has a maximum in the middle of the cross-section, t = x/R0 = 1/2.

A.4 Spreading parameter S < 0
When S ~ α < 0 the parameter z = (R/R0)5 < 1, and the wetting of the substrate by molecular
brush is only partial. When α ≪ −1, the approximate solution of Eq. A.20 is given by
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(A.36)

leading to asymptotic dependences

(A.37)

and

(A.38)

Eq. A.37 and Eq. A.38 are valid when the side chains are still stretched with respect to the
Gaussian size, 

The SCF model provides smooth crossover between the two regimes, −1 ≪ α ≤ 0 and α ≪
−1. The profile of the cross-section y(x) and the distribution function of free ends g(x) for
arbitrary value of S ≤ 0 are given by Eq. A.25 and Eq. A.29. When z = 1 Eq. A.25 and Eq. A.
29 reduce to Eq. A.34 and Eq. A.35, respectively. When z ≪ 1 we find

(A.39)

with t = x/R. Here, the elastic contribution due to side chains is asymptotically negligible with
respect to the surface free energy, but the shape of the molecular brush cross-section is still
asymmetric (R/h ≫ 1), indicating partial wetting of the substrate.

The previously omitted van der Waals contribution FυdW is important only in distal part of the
cross-section (close to the contact line, x = R). To estimate where FυdW affects the shape of the
cross-section y(x), we equate the densities of the elastic and the van der Waals free energies,
u2x2y(x) ≃ [y(x)]−2. (For simplicity, A/kBT is assumed here to be on the order of unity). The
condition y(x*) = (ux*)−2/3 determines the length x* beyond which the profile of the contour
line y(x) changes significantly. By introducing the relative deviation from the contact line
δx* = R − x* and using expression (A.34) one finds that when S = 0,δx*/R0 ≃ N−1/15 and y
(δx*)/h0 ≃ N−2/15. For long branches N ≫ 1 both δx*/R0 and y(δx*)/h0 approach zero, thus
indicating that in the limit of N → ∞ Eq. A.34 correctly describes the contour line y(x) in the
whole interval of 0 ≤ x ≤ R0. The situation is similar to the case of the planar brush swollen in
a solvent. Analytical expression of the SCF model [31] for the polymer density profile in such
a brush (when expressed in the reduced dimensionless variables) becomes asymptotically
rigorous in the limit N → ∞.

Note that in this limit of large N ≫ 1, when Eq. A.25 is asymptotically rigorous, contact angle
Ω = arctan[y˙ (x = R)] obeys the Young’s law,

(A.40)

This is because free ends of side chains are not extended, and the behavior of the molecular
brush near solid-liquid-solvent contact line (x = R) is similar to that of the liquid droplet of side
chains.
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Figure 1.
A molecular bottle-brush is a branched macromolecule consisting of a exible backbone and
many side chains of size R attached to it. Each side chain contains N monomers and the spacer
between neighboring attachment points has average size d and consists of m monomers.
Molecular brushes with a high grafting density of the side chains can adopt different
conformations, including: (a) a cylindrical worm-like conformation in solutions and (b) a at
ribbon with a tent-like cap on strongly attracting substrates. In this paper, one analyzes the
following molecular dimensions: radius of the cylinder R, length d of the spacer between
neighboring side chains, width R1 and height h1 of the first layer (ribbon), and width R2 and
height h2 of the second layer (cap).
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Figure 2.
Theory predicts characteristic variaton of mechanical tension along the backbone of a
cylindrical molecular brush. One discriminates three distinct regions of the backbone: (i) two
focusing regions at the backbone ends, where amplification of tension occurs, and (ii) one
transmission region in the central section of the backbone which acts as a tension transmitter
or tension “wire”. In this paper, we analyze bond tension in the transmission region.
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Figure 3.
3d logarithmic plot of the tension in the molecular brush spacer in good and theta solvents as
the function of the number of Kuhn segments, m, in the spacer and the solvent quality τ > 0.
Thin dotted and solid lines correspond to the cross-sections with constant fsp and τ respectively.
Projections on (m,fsp) plane for two different qualities of solvent τ is shown by lines a and b
in 3d plot. Projection on (m,τ) plane presents the diagram of states of the molecular brush.
Regimes 1 – 5 of the diagram of states are discussed in the text.
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Figure 4.
3d logarithmic plot of the tension in the molecular brush spacer in poor and θ solvents as a
function of the number of Kuhn segments, m, in the spacer and the solvent quality τ < 0. The
same notations as in Fig. 3. Curves a,b,c,d and their projections on the plane (m,fsp) present
the variation of spacer tension fsp with m at a different solvent quality τ. Regimes 4 – 8 of the
diagram of states (m,τ) are discussed in the text.
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Figure 5.
The shape of a linear polymer absorbed on a substrate in three regimes: regime 1 at S12 < S <
A, regime 2 at 0 < S < S12, and regime 3 at S > A.
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Figure 6.
Adsorbed molecular brush under non-solvent conditions adopts a ribbon-like confirmation.
Volume per side chain with length R, depth d, and height h is marked by darker shading. The
width of the edge is δ.
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Figure 7.
Diagram of states of adsorbed molecular brushes with schematically shown cross-sections.
Regions with tent-like cap are shaded by a solid color, while regions with weakly stretched
spacer, fsp < f0, are shaded by inclined parallel lines.
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Figure 8.
3d logarithmic plot of the tension fsp in the backbone of an adsorbed brush under non-solvent
condition. Left projection on the (S, fsp) plane presents the variation of the tension fsp with the
spreading parameter S for three different spacer lengths, mc < mb < ma (see vertical lines a −
c in the diagram in Fig. 7). Right projection on the (m, fsp) plane presents the variation of the
tension fsp with the spacer length m for three different spreading parameters Sd < Se < Sf (see
horizontal lines d − f in the diagram in Fig. 7). Projection on the (m,S) plane represents the
diagram of states shown in Fig. 7.
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Figure 9.
Atomic force microscopy was used to measure height images and cross-sectional profiles of
individual molecular brushes (K = 520) with poly(n-butyl acrylate) side chains (N = 61) on
mica. The cross-sectional profile was measured along the bold yellow dashed line and averaged
for multiple (ca. 50) profiles taken within the rectangular box. The profile clearly depicts both
layers of the adsorbed brush macromolecules: (i) the flat first layer of height h1 and width
2R1 and (ii) the cap on top of the first layer of height h2 and width 2R2. Note that the height
scale is deliberately exaggerated to visualize the nanometer height of both layers. The profile
shows excellent agreement with the cap shape predicted by SCF theory (Eq. 96) and shown as
the red dashed line.
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Figure 10.
The height (h1) and width (2R1) of the first layer and the height (h2) and width (2R2) of the cap
(second layer on top of the first layer - see Fig. 1b) were measured as a function of the degree
of polymerization of the poly(n-butyl acrylate) side chains on mica. The linear fits (red solid
lines) of the log-log plots give the following scaling laws: R1 ~ N1/03±0/04, R2 ~ N0/65±0/02,
h1 ~ N0, and h2 ~ N0/57±0/04.
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Figure 11.
(a) Snap shot of computer simulation of a brush-like macromolecule (K = 256, N = 16) on a
attractive substrate. (b) The average cross-sectional profile of the monomer density measured
perpendicular to the backbone demonstrates excellent agreement between the computer
simulation and SCF theory (red dashed line - see Eq. 96).
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