
Variable selection in Bayesian smoothing spline ANOVA models:
Application to deterministic computer codes

Brian J. Reich, Curtis B. Storlie, and Howard D. Bondell1
Department of Statistics, North Carolina State University, 2501 Founders Drive, Box 8203, Raleigh,
NC 27695, U.S.A.

Abstract
With many predictors, choosing an appropriate subset of the covariates is a crucial, and difficult,
step in nonparametric regression. We propose a Bayesian nonparametric regression model for curve-
fitting and variable selection. We use the smoothing spline ANOVA framework to decompose the
regression function into interpretable main effect and interaction functions. Stochastic search variable
selection via MCMC sampling is used to search for models that fit the data well. Also, we show that
variable selection is highly-sensitive to hyperparameter choice and develop a technique to select
hyperparameters that control the long-run false positive rate. The method is used to build an emulator
for a complex computer model for two-phase fluid flow.
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1 Introduction
Nonparametric regression techniques have become a popular tool for analyzing complex
computer model output. For example, we consider a two-phase fluid flow simulation study
(Vaughn et al., 2000) carried out by Sandia National Labs as part of the 1996 compliance
certification application for the Waste Isolation Pilot Plant (WIPP) in New Mexico. The
computer model simulates the waste panel’s condition 10,000 years after the waste panel has
been penetrated by a drilling intrusion. The simulation model uses several input variables
describing various environmental conditions. The objectives are to predict waste pressure for
new sets of environmental conditions and to determine which environmental factors have the
largest effect on the response. Since the simulation model is computationally intensive, we
would like to develop an emulator, i.e., a statistical model to replicate the output of the complex
computer model, to address these objectives.

The nonparametric regression model for response yi is yi = μ + f(x1i,…,xpi) + ϵi, i = 1, …,N,
where μ is the intercept, f is the unknown function of covariates x1i, …,xpi, and ϵi is error. With
many predictors, choosing an appropriate subset of the covariates is a crucial, and difficult,
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step in fitting a nonparametric regression model. Several methods exist for curve fitting and
variable selection for multiple nonparametric regression. Multivariate adaptive regression
splines (MARS; Friedman, 1991) is a stepwise procedure that selects variables and knots for
a spline basis for each curve. However, it is well-known that stepwise selection can be unstable
and highly sensitive to small changes in the data, as it is a discrete procedure (Breiman, 1995).
Therefore, Lin and Zhang (2006) propose the component selection and smoothing operator
(COSSO) in smoothing spline analysis of variance models. The COSSO is a penalization
technique to perform variable selection via continuous shrinkage of the norm of each of the
functional components.

The Bayesian framework offers several potential advantages for nonparametric regression. For
example, missing data and non-Gaussian likelihoods can easily be incorporated in the Bayesian
model. Also, prediction is improved via Bayesian model averaging, and posterior model
probabilities are natural measures of model uncertainty.

A common approach is to model computer output as a Gaussian process. For example, “blind
Kriging” of Joseph et al. (2008) assumes the response is the sum of a mean trend and a Gaussian
process and variable selection is performed on the mean trend which is taken to be the sum of
second-order polynomials and interactions. However, all potential predictors are included in
the Gaussian process covariance and thus blind kriging does not perform any variable selection
on the overall model.

In contrast, Linkletter et al. (2006) model the regression function f as a p-dimensional Gaussian
process with covariance that depends on the p covariates. They perform variable selection on
the overall model using stochastic search variable selection via MCMC sampling (e.g., George
and McCulloch, 1993; Chipman, 1996; George and McCulloch, 1997; Mitchell and
Beauchamp; 1998) to include/exclude variables from the covariance of the Gaussian process.
While this method of variable selection improves prediction for complex computer model
output, it is difficult to interpret the relative contribution of each covariate, or groups of
covariates, to the p-dimensional fitted surface. Also, the covariance function used results in a
model that includes all higher-order functional interactions among the important predictors,
that is, their model can not reduce to an additive model where the response surface is the sum
of univariate functions. Therefore, the functional relationship between a predictor and the
outcome is always dependent on the value of all of the other predictors included in the model.
As a result, this model is well-suited for a complicated response surface, however, estimation
and prediction can be improved in many cases by assuming a simpler model.

Shively et al. (1999), for instance, propose a model for variable selection in additive non-
parametric regression. They take an empirical Bayesian approach and give each main effect
function an integrated Brownian motion prior. Wood et al. (2002) extend the work of Shively
et al. (1999) to non-additive models. They again assume integrated Brownian motion priors
for the main effect functions and model interactions between predictors as two-dimensional
surfaces with thin plate spline priors. However, it is difficult to interpret the relative
contributions of the main effect and interaction terms because the spans of these terms overlap.
To perform model selection, they use data-based priors for the parameters that control the prior
variance of the functional components. This allows for a BIC approximation of the posterior
probability of each model under consideration. This approach requires computing posterior
summaries of all models under consideration, which is infeasible in situations with many
predictors, especially when high-order interaction terms are being considered. Gustafson
(2000) also includes a two-way interactions but, to ensure identifiability, main effects are not
allowed to be in the model simultaneously with interactions and predictors are allowed to
interact with at most one other predictor. Complex computer models often have many
interaction terms, so this is a significant limitation.
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In this paper, we propose a Bayesian model for variable selection and curve fitting for
nonparametric multivariate regression. Our model uses the functional analysis of variance
framework (Wahba, 1990; Wahba et al., 1995, and Gu, 2002) to decompose the function f into
main effects fj, two-way interactions fjk, and so on, i.e.,

(1)

The functional ANOVA (BSS-ANOVA) is equipped with stochastic constraints that ensure
that each of the components are identified so their contribution to the overall fit can be studied
independently. Rather than confining the regression functions to the span of a finite set of basis
functions as in Bayesian splines, we use a more general Gaussian process prior for each
regression function.

We perform variable selection using stochastic search variable selection via MCMC sampling
to search for models that fit the data well. The orthogonality of the functional ANOVA
framework is particularly important when the objective is variable selection. For example,
assume two variables have important main effects but their interaction is not needed. If the
interaction is modeled haphazardly so the span of the interaction includes the main effect
spaces, it is possible that the inclusion probability could be split between the model with main
effects and no interaction and the model with the interaction alone, since both can give the
same fit. In this case, inclusion probabilities for the main effects and interaction could be less
than 1/2 and we would fail to identify the important terms. Because of the orthogonality, our
model only includes interactions that explain features of the data that can not be explained by
the main effects alone. Also, due to the additive structure of our regression function, we are
able to easily include categorical predictors which is problematic for Gaussian process models
(although Qian et al. (2008) suggest a way to incorporate categorical predictors into a GP
model). Our model is also computationally-efficient, as we avoid enumerating all possible
models and we avoid inverting large matrices at each MCMC iteration. We show that stochastic
search variable selection can be sensitive to hyperparameter selection and overcome this
problem by specifying hyperparameters that control the long-run false positive rate. Bayesian
model averaging is used for prediction, which is shown to improve predictive accuracy.

The paper proceeds as follows. Sections 2 and 3 introduce the model. The MCMC algorithm
for stochastic search variable selection is described in Section 4. Section 5 presents a brief
simulation study comparing our model with other nonparametric regression procedures. Our
Bayesian model compares favorably to MARS, COSSO, and Linkletter et al.’s method in terms
of predictive performance and selecting important variables in the model. Section 6 analyzes
the WIPP data. Here we illustrate the advantages of the Bayesian approach for quantifying
variable uncertainty. Section 7 concludes.

2 A Bayesian smoothing spline ANOVA (BSS-ANOVA) model
2.1 Simple nonparametric regression

For ease of presentation, we introduce the nonparametric model first in the single-predictor
case and then extend to the multiple-predictor case in Section 2.2. The simple nonparametric
regression model is

(2)

Reich et al. Page 3

Technometrics. Author manuscript; available in PMC 2009 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where f is an unknown function of a single covariate xi ∈ [0, 1] and . The regression
function f is typically restricted to a particular class of functions. We consider the subset of
Mth-order Sobolev space that includes only functions that integrate to zero and have M proper
derivatives, i.e., f ∈ ℱM where

(3)

To ensure that each draw from f’s prior is a member of this space, we select a Gaussian process
prior with cov(f(s), f(t)) = σ2τ2K1(s,t), where the kernel is defined as,

cm > 0 are known constants, and Bm is the mth Bernoulli polynomial. Wahba (1990) shows that
each draw from this Gaussian process resides in ℱM and the posterior mode assuming cm = ∞
for m ≤ M and cM+1 = 1 is the (M + 1)st order smoothing spline. Steinberg and Bursztyn
(2004) discuss an additional interpretation of this kernel. They show that for the same choices
of cm that this Gaussian process model is equivalent to a Bayesian trigonometric regression
model with diffuse priors for the low-order polynomial trends, a proper Gaussian prior for the
(M+1)st-degree polynomial, and independent Gaussian priors for the trigonometric basis
function’s coefficients with variances that depend on the frequencies of the trigonometric
functions.

For the remainder of the paper we select M = 1 and set c ≡ c1 = … = cM+1. Therefore draws
from the prior are continuously differentiable with path properties of integrated Brownian
motion. As discussed in Section 3, to perform variable selection we require c < ∞. In this kernel,
the term  controls the variability of the (M + 1)st-degree polynomial

trend and  is the stationary covariance of the deviation from
the polynomial trend. In our analyses in Sections 5 and 6, the constant c is set to 100 to give
vague, yet proper, priors for the linear and quadratic trends. So our model essentially fits a
quadratic response surface regression plus a remainder term which is a zero-mean stationary
Gaussian process constrained to be orthogonal to the quadratic trend. We have intentionally
overparameterized with τ2 and σ2 for reasons that will be clear in Section 3.

2.2 Multiple regression
The nonparametric multiple regression model for response yi is yi = μ + f(x1i, …, xpi) + ϵi,
where x1i, …, xpi ∈ [0, 1] are covariates, f ∈ ℱ is the unknown function, and .
To perform variable selection, we use the ANOVA decomposition of the space ℱ into
orthogonal subspaces, i.e.,

(4)

where ⊕ the direct sum, ⊗ is the direct product, and each ℱj is given by (3) (See Wahba
(1990) or Gu (2002) for more details). Assume that each fj is a Gaussian process with covariance
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 and that each fkl is a Gaussian process with covariance
, where

(5)

For large c, the final term (c−1) KP (xki, xki′) KP (xli, xli′) gives a vague prior to the low-order
bivariate polynomial trend. Using this kernel, fj ∈ ℱj and fkl ∈ ℱk ⊗ ℱl. This will ensure that

each draw from this space will satisfy , to identify the intercept. This
also identifies the main effects by forcing the interactions to satisfy

. These constraints allow for a straightforward
interpretation of each term’s effect.

Higher order interactions can also be included. However, these terms are difficult to interpret.
Therefore, we combine all higher order interactions into a single process. Let the higher-order
interaction space be

(6)

where AC is the compliment of A. The covariance of the Gaussian process fo ∈ ℱo is

(7)

Defining the covariance this way assures that f0 will be orthogonal to each main effect and
interaction term.

The finite-dimensional model for the vector of observations y = (y1, …, yn)′ is

(8)

where μ = (μ, …, μ)′ is the intercept, xj = (xj1, …, xjn)′ is a vector of observations for the jth
covariate, fj(xj) is the jth main effect function evaluated at the n observations, fkl(xk, xl) is the
vectorized interaction, f0(x1, …, xp) captures higher-order interactions, and ε ~ N (0,σ2In). We
assume the intercept μ has a flat prior and that σ2 ~ InvGamma(a/2, b/2). The priors for the
main effect and interaction functions are defined through the kernels in (4) as

(9)
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(10)

(11)

where the (i, i′) component of the covariance matrix Σj is K1(xji; xji′), the (i, i′) component of
the covariance matrix Σkl is K2(xki, xki′, xli; xli′), Σ0 is defined similarly following (7), and τj,
τkl, and τ0 are unknown with priors given in Section 3. To help specify priors for τj, τkl, and
τ0, we rescale Σj, Σkl, and Σ0 to have trace n. After this standardization, στj (στkl) can be thought
of as the typical prior standard deviation of an element of fj (fkl).

2.3 Categorical predictors
Complex models often have categorical variables that represent different states or point to
different submodels to be used in the analysis. The BSS-ANOVA framework is also amendable
to these unordered categorical predictors. Assume xi ∈ {1, 2,…,G} is categorical and f(xi) =

θxi, where , g = 1, …, G. To identify the intercept we enforce the sum-to-zero

constraint . This model can also be written in the kernel framework by taking f to
be a mean-zero Gaussian process with singular covariance cov(f(s), f(t)) = σ2τ2K1(s, t), where
the kernel is defined as K1(s, t) = KN(s, t),

(12)

and I(·) is the indicator function. Note that with unordered categorical predictors we exclude
the low-order polynomial trend, i.e., KP (s, t) = 0 for all s and t.

Interactions including categorical predictors with the kernel given in (12) are handled no
differently than interactions between continuous predictors. For example, assume x1 ∈ {1, …,
G} is categorical and x2 ∈ [0, 1] is continuous. The kernel-based interaction is equivalent to
the model f1,2(x1; x2) = hx1(x2) for some hx1 ∈ ℱM that is, the effect of x2 is different within
each level of x1. An attractive feature of this kernel is that it enforces the restrictions ∫ hx1(x2)
dx2 = 0 for all x1 ∈ {1, …, G} and Σg hg(x2) = 0 for all x2 ∈ [0, 1] to separate the interaction
from the main effects.

3 Variable selection
It is common in variable selection to represent the subset of covariates included in the model
with indicator variables γj and γjk, where γj is one if the main effect for xj is in the model and
zero otherwise, and γjk is one if the interaction for xj and xk is in the model and zero otherwise.
To avoid enumerating all possible models, stochastic search variable selection (e.g., George
and McCulloch, 1993; Chipman, 1996; George and McCulloch, 1997; Mitchell and
Beauchamp, 1998) assigns priors to the binary indicators and computes model probabilities
using MCMC sampling. To perform variable selection in the nonparametric setting, we specify
priors for the standard deviations τj and τkl in terms of indicators γj and γkl to give priors with
positive mass at zero. Given that τj (τkl) is zero and c is finite, the curve fj (fkl) is equal to zero
and the term is removed from the model. This approach is slightly different than the original
formulation of George and McCulloch (1993), who give small but non-zero variance to
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negligible variables; in contrast with their approach, setting the variance precisely to zero
completely removes variables from the model.

Parameterization, identification, and prior selection for the hypervariances in Bayesian
hierarchical models is notoriously problematic and is an area of active research. After a
comparative study of several commonly-used priors, Gelman (2006) recommends either a
uniform or half-Cauchy prior on the standard deviation. Following this recommendation, we

assume , where ρ is the median of the half-
Cauchy prior. The interaction standard deviations τkl are modelled similarly.

Variable selection can be sensitive to the prior standard deviation. To illustrate the effect of
the prior standard deviation on model selection, first consider the simpler case of multiple linear

regression with orthogonal covariates, i.e., , where  Bern
(0.5), β ~ N (0, σ2τ2In), and ϵ ~ N (0, σ2In). Assuming σ2 ~ InvGamma (a/2, b/2), the marginal
posterior log odds of γj = 1 are approximately

(13)

where  is the least squares estimate of β and σ̂2 = (y′y + b)/(n + a) is σ2’s

posterior mode. If τ = 0, the log odds are zero for any value of ; as τ goes to infinity, the log

odds decline to negative infinity for any value of . Therefore, if τ’s prior is chosen haphazardly,
the influence of the data can be completely overwhelmed by the prior standard deviation.

Given the subtle relationship between τ and the posterior of γj, it is difficult to chose a prior
for τ that accurately depicts our prior model uncertainty. To alleviate this issue, we select priors
for the standard deviations to give desirable long-run false positive rates. The marginal log
odds for the univariate nonparametric model in Section 2.1 (analogous to (13) for linear
regression) are approximately

(14)

Appendix A.1 shows that under the null distribution y ~ N(0,σI),

(15)

where the expected value is taken with respect to y. This suggests that τ’s prior should be scaled
by , e.g., we take . This is similar to the unit-information prior of Kass and
Wasserman (1995) which uses -scaling and to the approach of Ishwaran and Rao (2005)
who use -scaling for the Bayesian linear regression model to give desirable frequentist
properties. It is important to note that since our prior depends on the sample size n the procedure
is not technically fully-Bayesian, however the procedure could easily be modified to be fully-
Bayesian by incorporating reliable prior information for τ.
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To select λ, we randomly generate 10,000 y for various n assuming y ~ N(0, In). For each
simulated data set, we compute E(π|y). Since it is common to select a variable if E(π|y) > 0.5
(e.g., Barbieri and Berger, 2004), Figure 1 shows the proportion of the 10,000 data sets that
give E(π|y) > 0.5 for each n and λ. After tuning τ’s prior to depend on n, the false positive rate
remains stable for n ≥ 50 and is around 0.05 for λ = 2. Although this result applies to the
univariate model, we also use half-Cauchy priors with λ = 2 for each standard deviation in the
multivariate model. Section 5’s simulation study verifies that this prior controls the false
positive rate in the multiple-predictor setting as well, even in the presence of correlated
predictors.

4 MCMC algorithm
This section describes the algorithm used to draw MCMC samples from the posterior of the
models defined in Sections 2 and 3. Gibbs sampling is used for μ and σ2. The full conditionals
for these parameters are

(16)

(17)

where

(18)

(19)

In the case of categorical predictors the covariance matrices will be singular, and we use the
generalized inverses.

Define all the parameters in the model other than the jth main effect parameters fj(xj) and τj as
Θj. Draws from p(fj(xj), τj|Θj) are made by first integrating over fj(xj) and making a draw from
p(τj|Θj) and then sampling fj(xj) given τj and Θj. Integrating over fj(xj) gives

(20)

where , zj = y − f(x1,…,xp) + fj(xj), and g(τj|λ) is the half-Cauchy
density function. Samples are drawn from p(τj|Θj) using adaptive-rejective sampling with
candidates taken from the τj’s prior. Note that we do not directly sample γj or ηj, but rather we
directly sample the standard deviation τj = γjηj assuming its zero-inflated half-Cauchy prior.
Given τj, the main effect curve has full conditional
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(21)

and is updated using Gibbs sampling. This approach is also used to update the interaction
curves.

Inverting the n × n matrix  at each MCMC iteration can be cumbersome for large
data sets. However, matrix inversion can be avoided by computing the spectral decomposition
Σj outside of the MCMC algorithm. Let , where Γj is the n × n orthonormal
eigenvector matrix and Dj is the diagonal matrix of eigenvalues dj1 ≥ … ≥ djn. Then fj(xj) can

updated by drawing  and setting

(22)

This sampling procedure only requires inversion of the diagonal matrix .

In practice retaining all n eigenvector/eigenvalue pairs in the spectral decomposition of Σj may
be unnecessary. A reduced model replaces  is the first
K rows of Γj and  is the diagonal matrix with diagonal elements dj1, …, djK. Analogous
simplifications may be used for the interaction curves.

MCMC sampling is carried out in the freely available software package R (R Development
Core Team, 2006). We generate 20,000 samples from the posterior and discard the first 5,000.
Convergence is monitored by inspecting trace plots of the deviance and several of the variance
parameters. For each MCMC iteration our model is on the order of (number of terms in the
model)*K2. Therefore as the number of interactions increases computation becomes more time-
consuming. For the WIPP data in Section 6 the two-way interaction model runs in a few hours
on an ordinary PC.

We compare models using the deviance information criterion (DIC) of Speigelhalter et al.
(2002), defined as DIC = D ̄ + pD where D ̄ is the posterior mean of the deviance, pD = D ̄ − D ̂
is the effective number of parameters, and D ̂ is the deviance evaluated at the the posterior mean
of the parameters in the likelihood. The model’s fit is measured by D ̄, while the model’s
complexity is captured by pD. Models with smaller DIC are preferred.

5 Simulation study
In this section we conduct a simulution study to compare the BSS-ANOVA model described
in Section 2 to MARS, the COSSO, and the Gaussian process model of Linkletter et al.
(2006). MARS analyses are done in R using the “polymers” function in the “polspline”
package. The Gaussian process model of Linkletter assumes that f (x1,…, xp) is multivariate
normal with mean μ and covariance

(23)
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The correlation parameter ρj’s prior is a mixture of a Uniform(0,1) and a point mass at one,
with the point mass at one having prior probability 0.25. If ρk = 1, xk does not appear in the
covariance and is essentially removed from the model.

5.1 Setting
Data are generated assuming the underlying models in Table 1. We use 50 simulated data sets
for each simulation scenario. Following Li and Zhang (2006), we specify models using four
building block functions (plotted in Figure 2):

• g1(t) = t

• g2(t) = (2t − 1)2

• g3(t) = sin(2πt)/(2 − sin(2πt))

• g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt) + 0.4 cos3(2πt) + 0.5 sin3(2πt).

The covariates x1, …, xp are generated on the interval [0,1] using three covariance structures:
independence, compound symmetry (CS), and autoregressive (AR). For the independence
case, the covariates are generated as independent Uniform(0,1). To draw covariates with a
compound symmetric covariance, we sample w0, …, wp as independent Uniform(0,1) variables

and define xj = (wj + two)/(1 + t), to give  for any pair (j, j′). The
autoregressive covariates are generated by sampling w1, …, wp as independent Normal (0,1)

variables, and defining x1 = w1 and . The covariates are trimmed
on [−2.5, 2.5] and scaled to [0,1].

The methods are compared in terms of prediction accuracy and variable selection. For each
data set and method we compute

(24)

where f is the true mean curve, f̂ is the estimated value (the posterior mean, averaged over all
models, for Bayesian methods), xi, i = 1, …, n, are the observed design points, and zj, j = 1,
…, 1000, are unobserved locations drawn independently from the covariate distribution.

We also record the true positive and false positive rates for each model. The true (false) positive
rate is computed by recording the proportion of the important (unimportant) variables included
for each data set and averaging over all simulated data sets. A variable is deemed to be included
in the BSS-ANOVA model if the posterior inclusion probability is greater than 0.5. Linkletter
et al. use an added-variable method to select important variables at a given Type I error level.
For computational convenience, we assume a covariate is in the model if the posterior median
of ρk < 0.5. This gives Type I error of approximately 0.05 for the simulation below. We also
tune MARS’s generalized cross-validation penalty to give Type I error near 0.05 (gcv = 2.5
for design 1 and gcv = 2 for designs 2 and 3).

Main effects only models are used for design 1 for MARS, COSSO, and the BSS-ANOVA
models; all possible two-way interactions are included as candidates for the other designs. The
f0 component is included for all BSS-ANOVA fits.
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5.2 Results
For each simulation design, the Bayesian MSE is substantially smaller than the MSE for MARS
and COSSO (Table 2a). Although MARS is able is mimic many of the important features of
the true curves, its piece-wise linear fit does not match the smooth true curves in Figure 2. As
also shown by Lin and Zhang (2006), the COSSO improves on MARS. Although the fitted
curves from the COSSO are often similar to the Bayesian model, the Bayesian model achieves
smaller MSE through model averaging. It may also be possible to improve the performance of
the frequentist methods using non-Bayesian model averaging such as bagging (Brieman,
1996).

For each simulation design (inclusion rates are not given for Design 2 because it is does not
fall within our BSS-ANOVA model that does not include three-way interactions) the BSS-
ANOVA model also maintains the nominal false positive rate; for all simulations 3–10% of
the truly uninformative variables are included in the model (Table 2b), supporting the choice
of hyperparameters in Section 3. To further support the hyperparameter selection, we also
simulated 50 data sets from the null model with p = 10 unimportant predictors and σ = 2.28
(not shown in Table 2). The false selection rate was no more than 7.5% for independent, CS,
or AR(1) covariates. Also, despite the potential effects of concurvity (Gu, 1992;Gu, 2004),
nonparametric analogue of multicollinearity, the BSS-ANOVA is able to identify truly
important predictors at a high rate even with correlated predictors.

The BSS-ANOVA model also outperforms Linkletter’s method for designs 1 and 3. These
designs exclude some of the interactions involving the important main effects, and therefore
Linletter’s full-interaction model is not appropriate. Linkletter’s method does perform well for
design 2 which includes a three-way interaction and no variables not included in the three-way
interaction. This illustrates that Linkletter et al.’s method is preferred if the response surface
is a complicated function of high-order interactions between all of the significant predictors,
whereas the proposed method is likely to perform well if the response surface is the sum of
simple univariate and bivariate functions.

6 Analysis of the WIPP data
In this section we analyze the WIPP data described in Section 1. The outcome variable of
interest here is cumulative brine flow (m3) into waste repository at 10,000 years for a drilling
intrusion at 1000 year that penetrates the repository and an underlying region of pressurized
brine; an E1 intrusion in the terminology of Helton et al. (2000). The four main pathways by
which brine enters the repository are flow through the anhydrite marker beds, drainage from
the disturbed rock zone, flow down the intruding borehole from overlying formations, and
brine flow up the borehole from a pressurized brine pocket. There are n = 300 observations
and we include p = 11 possible predictors. The predictors involved in the Two-Phase Fluid
Flow model describe various environmental conditions and are described briefly in Appendix
A.2 and in detail in Vaughn et al. (2000). All of the predictors are continuous except for the
pointer variable for microbial degradation of cellulose (WMICDFLG) which has three levels:
(1) no microbial degradation of cellulose, (2) microbial degradation of only cellulose, and (3)
microbial degradation of cellulose, plastic, and rubber.

We compare the BSS-ANOVA model with two-way interactions with the model of Linkletter
et al. (2007). It is difficult to incorporate categorical predictors in Linkletter et al.’s Gaussian
process model, but to facilitate the comparison we order the three categories of microbial
degradation of cellulose by their within-level mean response and treat the ordered variable as
continuous. The inclusion probabilities in Table 3 for the BSS-ANOVA’s main effects are
fairly similar to the inclusion probabilities for Linkletter et al.’s model. Five variables have
posterior inclusion probabilities equal to 1.00 for both models: anhydrite permeability
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(ANHPRM), borehole permeability (BHPRM), bulk compressibility of brine pocket
(BPCOMP), halite porosity (HALPOR), and microbial degradation of cellulose
(WMICDFLG). This set of important variables is consistent with previous analysis of this
model using stepwise regression approaches (Helton, 2000 and Storlie, 2007).

The posterior mean curves from the BSS-ANOVA model for several predictors are plotted in
Figure 3. Note that due to the BSS-ANOVA decomposition the estimates of the main effect
curves are interpretable on their own. There is no need to numerically integrate over the other
predictors as in partial dependence plots (Hastie et al., 2001). The effects for bulk
compressibility (BPCOMP) and borehole permeability (BHPERM) are postive. Increasing
BPCOMP increases the amount of brine that leaves the brine pocket for each unit drop in
pressure, and increasing BHPRM both reduces the pressure in the repository and reduces
resistance to flow between the brine pocket and the repository. Both of these result in a larger
brine flow into the repository through the borehole. Positive effects are also indicated for
ANHPRM and HALPOR. These result from reducing the resistance to flow in the anhydrite
and halite, respectively which increases brine flow from the marker beds. Notice also how the
effect from ANHPRM is flat for the first half of its range. This is because it needs to exceed a
threshold before the permeability is high enough to counteract the pressure in the repository
and allow for brine to flow from the marker beds. There is also an overall negative effect when
going from levels 1 to 2 to 3 for the microbial degradation flag (WMICDFLG) as seen in Figure
4b. This is because the more microbial gas that is generated, the higher the repository pressure
which discourages brine inflow.

The inclusion probabilities for the remaining variables are less than 0.10 using Linkletter et
al.’s model. The BSS-ANOVA model identifies an additional main effect, residual brine
saturation in the shaft (SHRBRSAT), with inclusion probability 0.66. This association is
somewhat surprising because the shaft seals are quite effective so the flow is unlikely to go
down the shaft. This is being looked into further.

The inclusion probability for the BSS-ANOVA’s main effects are as high or higher than the
inclusion probabilities for Linkletter et al.’s model for each predictor. This may be due to the
fact that when a variable is included in the Gaussian process model all interactions must be
included, whereas the additive model can simply add a main effect curve. The posterior mean
curves in Figure 3 are fairly smooth, suggesting that low-order polynomial fits are adequate.
The priors for these low-order polynomials are vague under the BSS-ANOVA model, so the
model is able to essentially reduce to quadratic regression for these predictors. This is a very
different fit from Linkletter et al.’s model which for most draws is a full Gaussian process in
these five dimensions. For these data DIC prefers the BSS-ANOVA decomposition (DIC =
362; pD = 68.4) compared to Linkletter et al.’s model (DIC = 375; pD = 65.3). Note that we do
not use DIC for variable selection – this is done using the Bayesian variable selection algorithm
described in Section 3 – we use DIC to compare the fits of the non-nested BSS-ANOVA and
Gaussian process models, both of which average over several models defined by the binary
inclusion indicators.

Of the 55 possible two-way interactions in the BSS-ANOVA, 4 have inclusion probability
greater than 0.5 (Table 3). Also, the f0 term for higher order terms is included only 7% of the
time. The interaction with the highest inclusion probability (1.00) is the interaction between
bulk compressibility of brine pocket (BPCOMP) and microbial degradation of cellulose
(WMICDFLG). Figures 4a and 4b plot the fitted values (posterior mean, averaging over all
models) of the interaction effect for this pair of predictors. Figure 4a clearly demonstrates the
constraints of the BSS-ANOVA model for interactions. The curve for each level of
WMICDFLG integrates to zero and the sum of the three curves equals zero for each value of
BPCOMP. Figure 4b is the sum of the interaction and main effect curves. Here we see an
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increasing trend for BPCOMP for each level of WMICDFLG, however the trend is nearly flat
when WMICDFLG equals level 3, which implies microbial degradation of cellulose, plastic,
and rubber. This is reasonable because the gas produced by the degradation could cause enough
pressure to make brine inflow negligable for this range of BPCOMP. Figures 4c and 4d plot
the fitted values for the interaction between compressibility of brine pocket (BPCOMP) and
intrinsic brine pocket permeability (BHPERM) which has the second largest inclusion
probability (0.93). Notice in the upper right corner that the interaction indicates a decrease in
brine inflow from the additive effects. This is very interesting because at large values of
BHPERM and BPCOMP so much brine flows down the borehole that the repository saturates
and rises to hydrostatic pressure, which reduces brine inflow from the brine pocket. These
important interactions have not been studied in the previous analysis of this problem. However,
they would easily help to give the scientists an increased understanding and/or confirmation
of their model.

We measure variable importance with the posterior 95% interval of fj and fkl’s L2-norms,

, respectively. The L2-norms are proportional to the
proportion of variation in the model explained by each term. We approximate these integrals
by taking the sum at the n = 300 design points. The L2-norm intervals in Table 3 show that of
the predictors included with probability 1.00, borehole permeability (BHPRM) generally
explains the largest proportion of the variance in the fitted function. Also, even though there
are interactions selected with probability greater than 0.5, these terms explain less variation in
the fitted surface than the important main effects. This sensitivity analysis accounts for variable
selection uncertainty, that is, the L2-norm is computed every MCMC iteration, even iterations
that exclude the variable. Another common approach to sensitivity analysis is to first select the
important variables and then compute the L2-norms for the important variables using the model
including only the selected variables. To illustrate how these approaches differ, we refit the
BSS-ANOVA model using only the variables with inclusion probability greater than 0.5. The
resulting L2-norms are given in Table 3 (“BSS-ANOVA best model”). The intervals for this
model are generally narrower than the intervals from the full model. Therefore, accounting for
variable selection uncertainty in sensitivity analysis gives wider, more realistic, posterior
intervals.

Section 3 develops a method for selecting the hyperparameter λ which controls the strength of
the variances’ priors. Based on these results we recommend using λ = 2. For these data however
the posterior inclusion probabilities are robust to the selection of λ. We refit the model with λ
∈ {1, 2, 3}; the posterior mean number of variables in the model (i.e., the posterior mean of

) was 16.4 with λ = 1, 14.8 with λ = 2, and 13.4 with λ = 3. Also,
for all three choices of λ the same subset of terms with inclusion probability greater than 0.5
are identified with the sole exception that halite permeability (HALPRM) is included in the
model with inclusion probability 0.51 with λ = 1 (compared to 0.46 with λ = 2).

7 Discussion
This paper presents a fully-Bayesian procedure for variable selection and curve-fitting for
nonparametric regression. Our model uses the smoothing splines ANOVA decomposition and
selects components via stochastic search variable selection. We tune the model to have a desired
false positive rate. The simulation study shows that the Bayesian model has advantages over
other nonparametric variable selection models in terms of both prediction accuracy and variable
selection. The model is used to build an emulator for complex computer model output.

Another challenge in the analysis of complex computer model output is jointly modeling
computer model output and actual field data. A common approach is to model both the true
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response and the bias between field and simulated data with separate Gaussian processes. Our
approach could be used in this case to identify important variables for both Gaussian processes,
that is, to identify conditions that affect the true process and to identify potentially different
variables that predict a discrepancy between simulated and real data. Also, although we applied
our method to the deterministic WIPP model, our simulation study suggests that the BSS-
ANOVA model is also adept at estimating the mean response for data having random errors.

Appendix

Appendix

A.1 Approximate expected log odds of π = 1
For the univariate nonparametric model in Section 2.1, integrating over f and σ2 gives

(25)

Assuming the data are standardized so that y′y = n and assuming a = b, for large n we have

(26)

Taking the expected value with respect to y ~ N (0, I) gives

(27)

(28)

where d1, …, dn are the eigenvalues of Σ. Recalling that Σ is scaled so that trace

, a first-order Taylor series at τ2 = 0 gives .

A.2 Variable Descriptions for Two-Phase Fluid Flow Example
ANHPRM - Logarithm of anhydrite permeability (m2)

BHPRM - Logarithm of borehole permeability (m2)

BPCOMP - Bulk compressibility of brine pocket (Pa−1)

BPPRM - Logarithm of intrinsic brine pocket permeability (m2).

HALPOR - Halite porosity (dimensionless)

HALPRM - Logarithm of halite permeability (m2)
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SHPRMSAP - Logarithm of permeability (m2) of asphalt component of shaft seal (m2)

SHPRMCLY - Logarithm of permeability (m2) for clay components of shaft.

SHPRMHAL - Pointer variable (dimensionless) used to select permeability in crushed salt
component of shaft seal at different times

SHRBRSAT - Residual brine saturation in shaft (dimensionless)

WMICDFLG - Pointer variable for microbial degradation of cellulose. WMICDFLG = 1, 2,
and 3 implies no microbial degradation of cellulose, microbial degradation of only cellulose,
microbial degradation of cellulose, plastic, and rubber.
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Figure 1.
Plot of the probability (with respect to y’s null distribution) that E(π|y, λ) > 0.5 by λ.
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Figure 2.
Plots of the true functions used in the simulation study.
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Figure 3.
Raw data vs main effect curves (i.e., fj(x)) for the WIPP data. The solid lines are the medians
and the dashed lines are 95% intervals.
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Figure 4.
Interaction plots for compressibility of brine pocket (BPCOMP) × microbial degradation of
cellulose (WMICDFLG) and compressibility of brine pocket (BPCOMP) × intrinsic brine
pocket permeability (BHPERM). Panels (a) and (c) give the posterior mean of fjk(xj, xk) and
Panels (b) and (d) give the posterior means of fj(xj) + fk(xk) + fjk(xj, xk).
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Table 1
Simulation study design.

Design n p σ f (x1, …, xp)

1 100 10 2.28 5g1(x1) + 3g2(x2) + 4g3(x3) + 6g4(x4)

2 100 4 2.28 5g1(x1) + 3g2(x2) + 4g3(x1x2x3)

3 100 6 2.28 5g1(x1) + 3g2(x2) + 4g3(x3) + 6g4(x4) 4g3(x1x2)
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Table 3
Comparison of variable importance for the WIPP data. “Inc. Prob” in the posterior inclusion probability and “L2 norm”
is the posterior 95% interval of .

BSS-ANOVA Linkletter BSS-ANOVA best model

Inc. Prob. L2 norm Inc. Prob. L2 norm

ANHPRM 1.00 (0.43, 1.10) 1.00 (0.41, 0.89)

BHPERM 1.00 (1.59, 3.13) 1.00 (1.81, 2.88)

BPCOMP 1.00 (0.78, 1.67) 1.00 (0.83, 1.45)

BPPRM 0.08 (0.00, 0.03) 0.01 –

HALPOR 1.00 (0.56, 1.67) 1.00 (0.58, 1.09)

HALPRM 0.46 (0.00, 0.10) 0.03 –

SHPRMCLY 0.28 (0.00, 0.07) 0.01 –

SHPRMSAP 0.12 (0.00, 0.03) 0.07 –

SHPRNHAL 0.11 (0.00, 0.04) 0.00 –

SHRBRSAT 0.66 (0.00, 0.14) 0.03 (0.01, 0.13)

WMICDFLG 1.00 (0.66, 1.55) 1.00 (0.80, 1.57)

BPCOMP × WMICDFLG 1.00 (0.41, 0.99) – (0.44, 0.92)

BPCOMP × BHPERM 0.93 (0.00, 0.21) – (0.04, 0.34)

SHPRMSAP × WMICDFLG 0.85 (0.00, 0.18) – (0.02, 0.15)

SHRGSSAT × SHPRNHAL 0.60 (0.00, 0.10) – (0.01, 0.12)
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